10-301/601: Introduction to Machine Learning Lecture 15 – Learning Theory (Infinite Case)

Henry Chai & Matt Gormley

10/23/23

Front Matter

- Announcements
 - HW5 released 10/9, due 10/27 (Friday) at 11:59 PM
 - Exam 3 scheduled
 - Tuesday, December 12th from 5:30 PM to 8:30 PM
 - Sign up for peer tutoring! See <u>Piazza</u> for more details

Recall -Theorem 1: Finite, Realizable Case For a *finite* hypothesis set *H* such that c^{*} ∈ *H* (*realizable*) and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \le \epsilon$

Recall -Theorem 1: Finite, Realizable Case For a *finite* hypothesis set *H* such that c^{*} ∈ *H* (*realizable*) and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

$$M = \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \le \epsilon$

• Making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary • For a *finite* hypothesis set \mathcal{H} such that $c^* \in \mathcal{H}$ (*realizable*) and arbitrary distribution p^* , given a training dataset S where |S| = M, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \frac{1}{M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$

with probability at least $1 - \delta$.

Recall -Theorem 2: Finite, Agnostic Case • For a *finite* hypothesis set \mathcal{H} and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{2\epsilon^2} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ satisfy $|R(h) - \hat{R}(h)| \leq \epsilon$

Bound is inversely quadratic in *e*, e.g., halving *e* means
we need four times as many labelled training data points

Statistical Learning Theory Corollary • For a *finite* hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training dataset S where |S| = M, all $h \in \mathcal{H}$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}$$

with probability at least $1 - \delta$.

What happens when $|\mathcal{H}| = \infty$?

• For a *finite* hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training data set S where |S| = M, all $h \in \mathcal{H}$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}$$

with probability at least $1 - \delta$.

Labellings

- Given some finite set of data points $S = \{x^{(1)}, ..., x^{(M)}\}$ and some hypothesis $h \in \mathcal{H}$, applying h to each point in S results in a <u>labelling</u>
 - $[h(x^{(1)}), ..., h(x^{(M)})]$ is a vector of M +1's and -1's (recall: our discussion of PAC learning assumes binary classification)
- Given $S = \{x^{(1)}, ..., x^{(M)}\}$, each hypothesis in \mathcal{H} induces a labelling but not necessarily a unique labelling
 - The set of labellings induced by \mathcal{H} on S is
 - $\mathcal{H}(S) = \left\{ \left[h(\boldsymbol{x}^{(1)}), \dots, h(\boldsymbol{x}^{(M)}) \right] \mid h \in \mathcal{H} \right\}$

Example: Labellings

 $\mathcal{H} = \{h_1, h_2, h_3\}$

 h_1 h_2

 $\mathcal{H} = \{h_1, h_2, h_3\}$

 $[h_1(\mathbf{x}^{(1)}), h_1(\mathbf{x}^{(2)}), h_1(\mathbf{x}^{(3)}), h_1(\mathbf{x}^{(4)})]$ = (-1, +1, -1, +1)

 $\mathcal{H} = \{h_1, h_2, h_3\}$

 $[h_1(\mathbf{x}^{(1)}), h_1(\mathbf{x}^{(2)}), h_1(\mathbf{x}^{(3)}), h_1(\mathbf{x}^{(4)})]$ = (-1, +1, -1, +1)

 $\mathcal{H} = \{h_1, h_2, h_3\}$

 $[h_1(\mathbf{x}^{(1)}), h_1(\mathbf{x}^{(2)}), h_1(\mathbf{x}^{(3)}), h_1(\mathbf{x}^{(4)})]$ = (+1, +1, -1, -1)

 $|\mathcal{H}(S)| = 2$

 h_1 h_2

VC-Dimension

• $\mathcal{H}(S)$ is the set of all labellings induced by \mathcal{H} on S

- If |S| = M, then $|\mathcal{H}(S)| \le 2^M$
- \mathcal{H} shatters *S* if $|\mathcal{H}(S)| = 2^M$
- The <u>VC-dimension</u> of \mathcal{H} , $VC(\mathcal{H})$, is the size of the largest set *S* that can be shattered by \mathcal{H} .
 - If \mathcal{H} can shatter arbitrarily large finite sets, then $VC(\mathcal{H}) = \infty$
- To prove that $VC(\mathcal{H}) = d$, you need to show
 - 1. \exists some set of d data points that \mathcal{H} can shatter and
 - 2. \nexists a set of d + 1 data points that \mathcal{H} can shatter

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

• Can $\mathcal H$ shatter some set of 1 point?

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- Can $\mathcal H$ shatter some set of 1 point?
- Can $\mathcal H$ shatter some set of 2 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can $\mathcal H$ shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can $\mathcal H$ shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can $\mathcal H$ shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can $\mathcal H$ shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter *some* set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can $\mathcal H$ shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can $\mathcal H$ shatter some set of 1 point?
 - Can \mathcal{H} shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can $\mathcal H$ shatter some set of 1 point?
 - Can $\mathcal H$ shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can $\mathcal H$ shatter some set of 4 points?

S₁ All points on the convex hull

At least one point inside the convex hull

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- Can $\mathcal H$ shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can $\mathcal H$ shatter some set of 4 points?

S₁ All points on the convex hull

At least one point inside the convex hull

- $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators
- What is $VC(\mathcal{H})$?
 - Can $\mathcal H$ shatter some set of 1 point?
 - Can $\mathcal H$ shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can $\mathcal H$ shatter some set of 4 points?

S₁ All points on the convex hull

At least one point inside the convex hull

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- Can $\mathcal H$ shatter some set of 1 point?
- Can $\mathcal H$ shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can $\mathcal H$ shatter some set of 4 points?

 $|\mathcal{H}(S_1)| = 14$ All points on the convex hull

At least one point inside the convex hull

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- Can $\mathcal H$ shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can $\mathcal H$ shatter some set of 4 points?

 $|\mathcal{H}(S_1)| = 14$ All points on the convex hull

At least one point inside the convex hull

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- Can $\mathcal H$ shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can $\mathcal H$ shatter some set of 4 points?

 $|\mathcal{H}(S_1)| = 14$ All points on the convex hull

At least one point inside the convex hull

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

• What is $VC(\mathcal{H})$?

- Can $\mathcal H$ shatter some set of 1 point?
- Can $\mathcal H$ shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can $\mathcal H$ shatter some set of 4 points?

 $|\mathcal{H}(S_1)| = 14$ All points on the convex hull

At least one point inside the convex hull

 $|\mathcal{H}(S_2)| = 14$

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all 2-dimensional linear separators

- $VC(\mathcal{H}) = 3$
 - Can $\mathcal H$ shatter some set of 1 point?
 - Can $\mathcal H$ shatter some set of 2 points?
 - Can \mathcal{H} shatter some set of 3 points?
 - Can $\mathcal H$ shatter some set of 4 points?

 $|\mathcal{H}(S_1)| = 14$ All points on the convex hull

At least one point inside the convex hull

 $|\mathcal{H}(S_2)| = 14$

• $x \in \mathbb{R}^2$ and $\mathcal{H} =$ all d-dimensional linear separators

• $VC(\mathcal{H}) = d + 1$

• $x \in \mathbb{R}$ and \mathcal{H} = all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x; a) = \operatorname{sign}(x - a)$

• $VC(\mathcal{H}) = 1$

• $x \in \mathbb{R}$ and $\mathcal{H} =$ all 1-dimensional positive intervals

Theorem 3: Vapnik-Chervonenkis (VC)-Bound • Infinite, realizable case: for any hypothesis set \mathcal{H} such that $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M = O\left(\frac{1}{\epsilon} \left(VC(\mathcal{H})\log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \le \epsilon$

Statistical Learning Theory Corollary 3 • Infinite, realizable case: for any hypothesis set \mathcal{H} such that $c^* \in \mathcal{H}$ and arbitrary distribution p^* , given a training dataset S where |S| = M, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have

$$R(h) \le O\left(\frac{1}{M}\left(VC(\mathcal{H})\log\left(\frac{M}{VC(\mathcal{H})}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

with probability at least $1 - \delta$.

Theorem 4: Vapnik-Chervonenkis (VC)-Bound • Infinite, agnostic case: for any hypothesis set \mathcal{H} and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M = O\left(\frac{1}{\epsilon^2} \left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ have $|R(h) - \hat{R}(h)| \le \epsilon$

Statistical Learning Theory Corollary 4 • Infinite, agnostic case: for any hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training dataset Swhere |S| = M, all $h \in \mathcal{H}$ have

$$R(h) \leq \hat{R}(h) + O\left(\sqrt{\frac{1}{M}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)}\right)$$

with probability at least $1 - \delta$.

Approximation Generalization Tradeoff

How well does *h* generalize? $R(h) \leq \hat{R}(h) + O\left(\sqrt{\frac{1}{M}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)}\right)$ How well does *h* approximate *c**?

Approximation Generalization Tradeoff

Increases as $VC(\mathcal{H})$ increases $R(h) \leq \widehat{R}(h) + O\left(\sqrt{\frac{1}{M}\left(VC(\mathcal{H}) + \log\left(\frac{1}{\delta}\right)\right)}\right)$ Decreases as $VC(\mathcal{H})$ increases

Learning Theory and Model Selection

Learning Theory Learning Objectives You should be able to...

- Identify the properties of a learning setting and assumptions required to ensure low generalization error
- Distinguish true error, train error, test error
- Define PAC and explain what it means to be approximately correct and what occurs with high probability
- Apply sample complexity bounds to real-world machine learning examples
- Theoretically motivate regularization

Recall: Probabilistic Learning

- Previously:
 - (Unknown) Target function, $c^*: \mathcal{X} \to \mathcal{Y}$
 - Classifier, $h: \mathcal{X} \to \mathcal{Y}$
 - Goal: find a classifier, h, that best approximates c^*
- Now:
 - (Unknown) Target *distribution*, $y \sim p^*(Y|\mathbf{x})$
 - Distribution, $p(Y|\mathbf{x})$
 - Goal: find a distribution, p, that best approximates p^*

Recall: Maximum Likelihood Estimation (MLE) • Given independent, identically distributed observations (iid) $\mathcal{D} = \left\{x^{(i)}\right\}_{i=1}^{N}$ from a parametrized probability distribution, MLE sets the parameters by maximizing the likelihood of the data:

$$\theta^{MLE} = \underset{\theta}{\operatorname{argmax}} p(\mathcal{D} \mid \theta) = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{N} p(x^{(i)} \mid \theta)$$

 Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data Recall: Maximum Likelihood Estimation (MLE) • Given independent, identically distributed observations (iid) $\mathcal{D} = \left\{x^{(i)}\right\}_{i=1}^{N}$ from a parametrized probability distribution, MLE sets the parameters by maximizing the *log*-likelihood of the data:

$$\theta^{MLE} = \underset{\theta}{\operatorname{argmax}} \log p(\mathcal{D} \mid \theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(x^{(i)} \mid \theta)$$

 Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data Bernoulli Distribution MLE

- A Bernoulli random variable takes value 1 with probability ϕ and value 0 with probability 1ϕ
- The pmf of the Bernoulli distribution is

 $p(x|\phi) = \phi^x (1-\phi)^{1-x}$

Maximum a Posteriori (MAP) Estimation

- Insight: sometimes we have *prior* information we want to incorporate into parameter estimation
- Idea: use Bayes rule to reason about the *posterior* distribution over the parameters

Maximum a Posteriori (MAP) Estimation 1. Specify the *generative story*, i.e., the data generating distribution, including a *prior distribution*

- 2. Maximize the log-posterior of $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}\$ $\ell_{MAP}(\theta) = \log p(\theta) + \sum_{i=1}^{N} \log p(x^{(i)}|\theta)$
- 3. Solve in *closed form*: take partial derivatives, set to 0 and solve