10-301/601: Introduction
to Machine Learning
Lecture 16 - Naive Bayes

Henry Chai & Matt Gormley
10/25/23



Front Matter

10/25/23

* Announcements:

* HWS5 released 10/9, due 10/27 (Friday) at 11:59 PM

- HW6 released 10/27 (Friday), due 11/3 at 11:59 PM
* You may only use at most 2 late days on HW6

* Exam 2 on 11/9

- All topics between Lecture 8 and Lecture 16
(today’s lecture) are in-scope

* Exam 1 content may be referenced but will not be

the primary focus of any question
* Exam 3 0on 12/12 from 5:30 PM to 8:30 PM

* Sign up for peer tutoring! See Piazza for more details



https://piazza.com/class/l6xoswmdxo10m/post/985

Recall:
Maximum a

Posteriori
(MAP)
Estimation

10/25/23

* Insight: sometimes we have prior information we want

to incorporate into parameter estimation

* ldea: use Bayes rule to reason about the posterior

distribution over the parameters
* MLE finds 8 = argmax p(D|6)
6

* MAP finds 8 = argmax p(6|D)
0

= argmax p(D|6)p(6)/p(D)
= argmax p(D|60)p(6)
6

PN

likelihood prior

= argmax logp(D|6) + logp(O)
6 — _/
~—

log-posterior




Recall:
Maximum a

Posteriori
(MAP)
Estimation

10/25/23

. Specify the generative story, i.e., the data generating

distribution, including a prior distribution

Maximize the log-posterior of D = {xV), ..., x(M)}

N
tuap(0) = logp(6) + ) logp(xV16)

1=1

. Solve in closed form: take partial derivatives,

set to 0 and solve



* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

Coin p(x|p) = ¢p*(1 — )™
F|ipping - Assume a Beta prior over the parameter ¢, which has pdf
MAP = -
9 (1= )F!
f(qbla,ﬁ) _ B(C(,ﬁ)

where B(a, B) = fol d*1(1 — ¢p)B~1d¢ is a normalizing

constant to ensure the distribution integrates to 1
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Beta

Distribution
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Beta

Distribution
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Why use this - A Bernoulli random variable takes value 1 (or heads) with

stra nge |ooking probability ¢ and value O (or tails) with probability 1 — ¢
Beta prior? * The pmf of the Bernoulli distribution is

The Beta p(x|$) = p(1 — )1
distribution is - Assume a Beta prior over the parameter ¢, which has pdf
the conjugate Hr1(1 — )P

prior for the F(gla.p) = B(a, B)

Bernoulli where B(a, §) = fol $* (1 — ¢)P~1d¢ is a normalizing

distribution! constant to ensure the distribution integrates to 1

10/25/23



Coin

Flipping
MAP
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* Given N iid samples {x(l), e x(N)}, the log-posterior is

£(¢) = log f(pla, f) + Z logp(x™|)

N

a-101 ﬁl N N
=log¢ B((aﬁq;) +Zl g p*™ (1 — o)1=

=(a—1)logp + (p — 1) log(l — ¢) —logB(a, B)

N
+ z x™ log ¢ + (1- x(”)) log(1 — ¢)
n=1

= (a: 1+ Nylogp+(B—1+ Ny)log(1l— o)
—logB(a, )



Coin

Flipping
MAP
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- Given N iid samples {x(1), ..., x(M)}, the partial derivative of

the log-posterior is
¢ (a—1+Ny) (B—-1+Ny)

ap ¢ 1—¢

(a — 1+ N;)
+N0)+((X—1+N1)

—>43MAP=(IB_1

a — 1isa “pseudocount” of the number of 1’s (or heads)

you’ve “observed”

*f — lis a “pseudocount” of the number of 0’s (or tails)

you’ve “observed”

10



Coin

Flipping
MAP:
Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ng = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior with @ = 2 and § = 5, then

- (2 -1+ 10) _11_10
¢MAP_(2—1+10)+(5—1+2)_17 12

11



Coin

Flipping
MAP:
Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ng = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior with @ = 101 and f = 101, then

(101 —1+4+10) 110 1
dmap = — 51575
(101 —1+4+10)+ (101 —-1+4+2) 212 2

12



Coin

Flipping
MAP:
Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ng = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior witha = 1 and f = 1, then

- (1-1+10) 10
¢MAP_(1—1+10)+(1—1+2)_12_¢MLE

13



You should be able to...

* Recall probability basics, including but not limited to:
discrete and continuous random variables, probability
mass functions, probability density functions, events vs.
random variables, expectation and variance, joint
probability distributions, marginal probabilities,
conditional probabilities, independence, conditional

Lea rning independence

ObjECtiVES - State the principle of maximum likelihood estimation and
explain what it tries to accomplish

MLE/MAP

- State the principle of maximum a posteriori estimation
and explain why we use it

* Derive the MLE or MAP parameters of a simple model in
closed form

10/25/23 14



Text Data




Bag-of-Words
Model

10/25/23

X1 X2 X3 X4 X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) (Dr. Seuss)

16



Bag-of-Words

Model
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X1 X2 X3 Xg X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) “mom”) (“dad”) (Dr. Seuss)
1 1 0 0 0 0 1

The Cat in the Hat
(by Dr. Seuss)

Source: https://en.wikipedia.org/wiki/The Cat in the Hat#/media/File:The Cat in the Hat.png

17


https://en.wikipedia.org/wiki/The_Cat_in_the_Hat

Bag-of-Words

Model

10/25/23

X1 X2 X3 Xg X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom” (“dad”) (Dr. Seuss)
1 1 0 0 0 0 1

0 0 1 0 0 0 0

Go, Dog. Go!
(by P. D. Eastman)

by P.D.Eastman

Source: https://en.wikipedia.org/wiki/Go, Dog. Gol#/media/File:Go Dog Go.jpg

18


https://en.wikipedia.org/wiki/Go,_Dog._Go!

Bag-of-Words

Model

10/25/23

X1 X2 X3 Xg X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom” (“dad”) (Dr. Seuss)
1 1 0 0 0 0 1

0 0 1 0 0 0 0
0 0 0 1 0 0 1

uDr.Seuss (1
3’% One fish

One Fish, Two Fish, % two fish

Red Fish, Blue Fish M
(by Dr. Seuss) Iodifieh
7 ~2 blue fish

Source: https://en.wikipedia.org/wiki/One Fish, Two Fish, Red Fish, Blue Fish#/media/File:One Fish Two Fish Red Fish Blue Fish (cover art).ipg

19


https://en.wikipedia.org/wiki/One_Fish,_Two_Fish,_Red_Fish,_Blue_Fish

X1 X2 X3 Xg X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom” (“dad”) (Dr. Seuss)
1 1 0 0 0 0 1

0 0 1 0 0 0 0
0 0 0 1 0 0 1
0 0 0 0 0

Bag-of-Words

Model

Are You My Mother?
(by P. D. Eastman)

). Eastman

10/25/23 Source: https://en.wikipedia.org/wiki/Are You My Mother%3F#/media/File:Areyoumymother.gif



https://en.wikipedia.org/wiki/Are_You_My_Mother%3F

Building a
Probabilistic

Classifier

10/25/23

* Define a decision rule

- Given a test data point x’, predict its label ¥ using
the posterior distribution P(Y = y|X = x")

- Common choice: ¥ = argmaxP(Y = y|X = x')
y

- Model the posterior distribution

* Option 1 - Model P(Y|X) directly as some function
of X (recall: logistic regression)

* Option 2 - Use Bayes' rule:

P(X|Y) P(Y)

PO o« P(X|Y) P(Y)

P(Y|X) =

21



How hard is

modelling
P(X|Y)?
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* Define a decision rule

- Given a test data point x’, predict its label ¥ using
the posterior distribution P(Y = y|X = x")

- Common choice: ¥ = argmaxP(Y = y|X = x')
y

- Model the posterior distribution

* Option 1 - Model P(Y|X) directly as some function
of X (recall: logistic regression)

* Option 2 - Use Bayes' rule:

P(X|Y) P(Y)

PO o« P(X|Y) P(Y)

P(Y|X) =

22



How hard is

modelling
P(X|Y)?

10/25/23

X1 X2 X3 X4 X5 X6 _
0 0 0 0 0 0 0,

1 0 0 0 0
1 1 0 0 0
1 0 1 0 0

o O O
D
w

23



Naive Bayes

Assumption
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- Assume features are conditionally independent given

the label:

D
Pexiv) = | [ PXaln)
d=1

* Pros:

* Significantly reduces computational complexity

* Also reduces model complexity, combats overfitting

* Cons:

* Is a strong, often illogical assumption

- We’ll see a relaxed version of this later in the

semester when we discuss Bayesian networks

24



Recipe for
Naive Bayes
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* Define a model and model parameters

- Make the naive Bayes assumption
* Assume independent, identically distributed (iid) data
- Parameters:m = P(Y = 1),04, = P(Xg = 1|Y = y)

* Write down an objective function

* Maximize the log-likelihood

* Optimize the objective w.r.t. the model parameters

* Solve in closed form: take partial derivatives, set to O
and solve

25



Setting the

EICINEES
via MLE

10/25/23

25 (1, 0) = log P(D = {x(l),y(l), ...,x(N),y(N)}|n, 0)

N N
=tog| [P(x™,y™|,0) = log| [P(x™]y™,6) P(y™]|)
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Setting the

EICINEES
via MLE
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* Binary label

- Y ~ Bernoulli(m)
- = NY=1/N
- N = # of data points
* Ny—1 = # of data points with label 1

* Binary features

“XglY =y ~ Bernoulli(@d’y)

A~ Ny=y, x ;=1
Py — 4 d
ed,y _ /NY:y

* Ny—, = # of data points with label y

* Ny—y, x,=1 = # of data points with label y and
feature X; =1

27



Poll Question 1:
Given this
dataset, what is

the MLE of it?

Poll Question 2:
Given this

dataset, what is
the MLE of 05 ;7

10/25/23

T o6 m moOoO ® >

. 0/6

1/6
2/6

. 3/6

4/6
5/6

.6/6
. 7/6 (TOXIC)

28



Bernoulli

Naive
Bayes

10/25/23

* Binary label

- Y ~ Bernoulli(m)
g = Nr=1/

- 1T
- N = # of data points
* Ny—1 = # of data points with label 1

* Binary features

“XglY =y ~ Bernoulli(@d’y)

A~ Ny=y, x ;=1
Py — 4 d
ed,y _ /NY:y

* Ny—, = # of data points with label y

* Ny—y, x,=1 = # of data points with label y and
feature X; =1

29



Multinomial

Naive
Bayes
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* Binary label

- Y ~ Bernoulli(m)
g = Nr=1/

Tl
- N = # of data points
* Ny—, = # of data points with label 1

* Discrete features (X4 can take on one of K possible values)

- XglY =y~ Categorical(@d,l,y, e 9d,1<—1,y)

& Ny=y, x ;=k
*Oary = /Ny,

* Ny—, = # of data points with label y

* Ny—y, x,=k = # of data points with label y and
feature X; =k

30



Gaussian

Naive
Bayes
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* Binary label

Y ~ Bernoulli(r)
- = NY=1/N
- N = # of data points
* Ny—1 = # of data points with label 1

* Real-valued features

. Xdly — y ~ GﬂUSSian(,ud’y; O-c%y)

. =1 (n)
.ud,y _ Ny—y Zn;y(n)zy xd

A2 1 ¥y n) A 2
%dy _Ny=y n:ym=y Xd Ha,y

* Ny_,, = # of data points with label y



Multiclass
Gaussian

Naive
Bayes

10/25/23

* Discrete label (Y can take on one of M possible values)

- Y ~ Categorical(myq, ..., mp;)
o — NY=m
Tl = /N
- N = # of data points
* Ny—_,, = # of data points with label m

* Real-valued features

. Xdly — y ~ GﬂUSSian(,ud’y; O-c%y)

. o1 (n)
Hd,y _ NY Zny(n)zy xd

=y

* Ny_,, = # of data points with label y

32



* Fisher (1936) used 150 measurements of flowers from 3

different species: Iris setosa (0), Iris virginica (1), Iris

versicolor (2) collected by Anderson (1936)

m Sepal Length |Sepal Width

Visualizing
Gaussian

Naive 0 3.0
Bayes 0 4.9 3.6
0 5.3 3.7
1 4.9 2.4
1 5.7 2.8
1 6.3 3.3
1 6.7 3.0

10/25/23



Visualizing
Gaussian

Naive
Bayes
(2 classes)
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Figure courtesy of William Cohen
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Visualizing
Gaussian

Naive
Bayes
(2 classes)
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45

Figure courtesy of William Cohen
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Visualizing
Gaussian

Naive
Bayes
(2 classes,
equal
variances)

10/25/23

Classification with Naive Bayes

Figure courtesy of Matt Gormley
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Visualizing
Gaussian

Naive
Bayes

(2 classes,
learned
variances)
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Classification with Naive Bayes

Figure courtesy of Matt Gormley
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Visualizing
Gaussian

NENVE
Bayes
(3 classes,
equal
variances)
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Classification with Naive Bayes

Figure courtesy of Matt Gormley
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Visualizing
Gaussian

NENVE
Bayes

(3 classes,
learned
variances)
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5.0 -

4.5 -

4.0 -
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2.5 -

2.0 -

1.5 -

1.0 -

Classification with Naive Bayes

Figure courtesy of Matt Gormley
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Visualizing
Gaussian

Naive
Bayes

(2 classes,
learned
variances)

10/25/23
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Visualizing
Gaussian

Naive
Bayes

(2 classes,
learned
variances)
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Classification with Naive Bayes

Figure courtesy of Matt Gormley
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!

- Given a test data point x’ = [x1, ..., xp]"

Bernoulli

Naive
Bayes:
Making
Predictions

10/25/23



What if some
Word-Label

pair never
appears in our
training data?

10/25/23

- Given a test data point x’ = [xg, ---»xz’)]T

P(Y=1|x") x P(Y =1D)P(x'|Y =1)

D !/
!/
=T ‘ ‘ 9d,1(1 - ed,l)
d=1

D

P(Y = 0|x') « (1 — ﬁ)l
f d

<
I
)

L0 otherwise

A

=1

0,4(1—84,)

D
Lif# 1_[ 9,4(1 - Ba.) 4>
d=1

1-x,

44



What if some
Word-Label

pair never
appears in our
training data?

10/25/23

(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) (Dr. Seuss)
1 1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 1
0 0 0 0 1 0 0
The Cat in the Hat gets a Dog (by ?7?)

* If some @d,y = (0 and that word appears in our test data

x',then P(Y = y|x') = 0 even if all the other features
in x’ point to the label being y!

45



Setting the

EICINEES
via MAP

10/25/23

* Binary label

- Y ~ Bernoulli(m)
- ==ty
- N = # of data points
* Ny—1 = # of data points with label 1

* Binary features

cXqlY =y ~ Bernoulli(@d,y) and 6, , ~ Beta(a, )

A _ Ny—oy xy=1t(a-1)
ed,y — /Ny=y+(a—1)+(ﬁ—1)

* Ny—, = # of data points with label y

* Ny—y, x,=1 = # of data points with label y and
feature X; =1

- Common choice:a =2, = 2

46



Logistic
Regression vs.

Naive Bayes

10/25/23

- Naive Bayes is a generative model

By modelling P(X|Y) and P(Y), we can generate

new data points:
1. Sample alabely ~ P(Y)
2. Sample features x; ~ P(X4|Y = y)

* Logistic regression is a discriminative model

- By modelling P(Y|X), we can only discriminate (or

distinguish) between classes.

47



Logistic
Regression vs.

Naive Bayes
(Ng and
Jordan, 2001)

10/25/23

* Naive Bayes and logistic regression form a generative-
discriminative model pair
 Recall that under certain conditions, the Gaussian Naive

Bayes (GNB) decision boundary is linear

* If the Naive Bayes assumption holds, then in the limit of
infinite training data, GNB and logistic regression learn

the same (linear) decision boundary!

* In general, Naive Bayes performs well when data is

scarce but logistic regression has lower asymptotic error.

Source: http://robotics.stanford.edu/~ang/papers/nipsoi-discriminativegenerative.pdf

48


http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf

Logistic
Regression vs.

Naive Bayes
(Ng and
Jordan, 2001)

10/25/23

pima (continuous) adult (continuous) boston (predict if > median price, continuous)
X 04

04 %

* Dotted line: logistic regression

* Solid line: Naive Bayes

Source: http://robotics.stanford.edu/~ang/papers/nipsoi-discriminativegenerative.pdf 49



http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf

Naive Bayes

Learning
Objectives

10/25/23

You should be able to...
- Write the generative story for Naive Bayes

* Create a new naive Bayes classifier using your favorite

probability distribution as the event model

* Apply the principle of maximum likelihood estimation (MLE)

to learn the parameters of Bernoulli naive Bayes

- Motivate the need for MAP estimation through the

deficiencies of MLE

* Apply the principle of maximum a posteriori (MAP) estimation

to learn the parameters of Bernoulli naive Bayes

* Select a suitable prior for a model parameter
* Describe the tradeoffs of generative vs. discriminative models
* Implement Bernoulli naive Bayes

* Describe how the variance affects whether a Gaussian naive

Bayes model will have a linear or nonlinear decision boundary
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