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Front Matter

� Announcements:

� HW5 released 10/9, due 10/27 (Friday) at 11:59 PM

� HW6 released 10/27 (Friday), due 11/3 at 11:59 PM

� You may only use at most 2 late days on HW6

� Exam 2 on 11/9

� All topics between Lecture 8 and Lecture 16 
(today’s lecture) are in-scope

� Exam 1 content may be referenced but will not be 
the primary focus of any question

� Exam 3 on 12/12 from 5:30 PM to 8:30 PM

� Sign up for peer tutoring! See Piazza for more details
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https://piazza.com/class/l6xoswmdxo10m/post/985


� Insight: sometimes we have prior information we want 
to incorporate into parameter estimation

� Idea: use Bayes rule to reason about the posterior 
distribution over the parameters

� MLE finds !𝜃 = argmax
!

	𝑝 𝒟 𝜃

� MAP finds !𝜃 = argmax
!

	𝑝 𝜃 𝒟

MAP finds !𝜃 = argmax
!

	𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds !𝜃 = argmax
!

	𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds !𝜃. = argmax
!

	log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Recall: 
Maximum a 
Posteriori 
(MAP) 
Estimation

10/25/23 3

likelihood prior

log-posterior



1. Specify the generative story, i.e., the data generating 
distribution, including a prior distribution 

� How on earth do we pick a prior?

2. Maximize the log-posterior of 𝒟 = 𝑥 " , … , 𝑥 #

ℓ$%& 𝜃 = log 𝑝 𝜃 +5
'("

#

log 𝑝 𝑥 ' |𝜃

3. Solve in closed form: take partial derivatives,           

set to 0 and solve
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Recall: 
Maximum a 
Posteriori 
(MAP) 
Estimation



Coin 
Flipping
MAP
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "*)

� Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙+*" 1 − 𝜙 ,*"

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = ∫-
"𝜙+*" 1 − 𝜙 ,*"𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1



Beta 
Distribution
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Beta 
Distribution
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Why use this 
strange looking 
Beta prior?
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "*)

� Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙+*" 1 − 𝜙 ,*"

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = ∫-
"𝜙+*" 1 − 𝜙 ,*"𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1

The Beta 
distribution is 
the conjugate 
prior for the 
Bernoulli 
distribution!



Coin 
Flipping
MAP
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� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-posterior is

ℓ 𝜙 = log 𝑓 𝜙 𝛼, 𝛽 +5
.("

#

log 𝑝 𝑥 . 𝜙

ℓ 𝜙 = log
𝜙+*" 1 − 𝜙 ,*"

Β 𝛼, 𝛽
+5
.("

#

log𝜙) ! 1 − 𝜙 "*) !

ℓ 𝜙 = 𝛼 − 1 log𝜙 + 𝛽 − 1 log 1 − 𝜙 − log Β 𝛼, 𝛽

ℓ 𝜙 = +5
.("

#

𝑥 . log𝜙 + 1 − 𝑥 . log 1 − 𝜙

ℓ 𝜙 = 𝛼 − 1 + 𝑁" log𝜙 + 𝛽 − 1 + 𝑁- log 1 − 𝜙
ℓ 𝜙 = − log Β 𝛼, 𝛽



Coin 
Flipping
MAP
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� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the partial derivative of 
the log-posterior is
𝜕ℓ
𝜕𝜙

=
𝛼 − 1 + 𝑁"

𝜙
−

𝛽 − 1 + 𝑁-
1 − 𝜙

	 	 ⋮

→ !𝜙$%& =
𝛼 − 1 + 𝑁"

𝛽 − 1 + 𝑁- + 𝛼 − 1 + 𝑁"
�𝛼 − 1	is a “pseudocount” of the number of 1’s (or heads) 

you’ve “observed” 

�𝛽 − 1	is a “pseudocount” of the number of 0’s (or tails) 
you’ve “observed”



Coin 
Flipping
MAP:
Example
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� Suppose 𝒟	consists of ten 1’s or heads (𝑁" = 10) and     

two 0’s or tails (𝑁- = 2):

𝜙$/0 =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 2 and 𝛽 = 5, then

𝜙$%& =
(2 − 1 + 10)

(2 − 1 + 10) + (5 − 1 + 2)
=
11
17

<
10
12



Coin 
Flipping
MAP:
Example
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� Suppose 𝒟	consists of ten 1’s or heads (𝑁" = 10) and     

two 0’s or tails (𝑁- = 2):

𝜙$/0 =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 101 and 𝛽 = 101, then

𝜙$%& =
(101 − 1 + 10)

(101 − 1 + 10) + (101 − 1 + 2)
=
110
212

≈
1
2



Coin 
Flipping
MAP:
Example
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� Suppose 𝒟	consists of ten 1’s or heads (𝑁" = 10) and     

two 0’s or tails (𝑁- = 2):

𝜙$/0 =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 1 and 𝛽 = 1, then

𝜙$%& =
(1 − 1 + 10)

(1 − 1 + 10) + (1 − 1 + 2)
=
10
12

= 𝜙$/0



MLE/MAP 
Learning 
Objectives

You should be able to…

� Recall probability basics, including but not limited to: 
discrete and continuous random variables, probability 
mass functions, probability density functions, events vs. 
random variables, expectation and variance, joint 
probability distributions, marginal probabilities, 
conditional probabilities, independence, conditional 
independence

� State the principle of maximum likelihood estimation and 
explain what it tries to accomplish

� State the principle of maximum a posteriori estimation 
and explain why we use it

� Derive the MLE or MAP parameters of a simple model in 
closed form

1410/25/23
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Text Data



Bag-of-Words 
Model

𝑥! 
(“hat”)

𝑥" 
(“cat”)

𝑥# 
(“dog”)

𝑥$ 
(“fish”)

𝑥% 
(“mom”)

𝑥& 
(“dad”)

𝑦 
(Dr. Seuss)
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The Cat in the Hat 
(by Dr. Seuss)

Source: https://en.wikipedia.org/wiki/The_Cat_in_the_Hat#/media/File:The_Cat_in_the_Hat.png  

𝑥! 
(“hat”)

𝑥" 
(“cat”)

𝑥# 
(“dog”)

𝑥$ 
(“fish”)

𝑥% 
(“mom”)

𝑥& 
(“dad”)

𝑦 
(Dr. Seuss)

1 1 0 0 0 0 1

Bag-of-Words 
Model

https://en.wikipedia.org/wiki/The_Cat_in_the_Hat
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Go, Dog. Go! 
(by P. D. Eastman)

Source: https://en.wikipedia.org/wiki/Go,_Dog._Go!#/media/File:Go_Dog_Go.jpg 

𝑥! 
(“hat”)

𝑥" 
(“cat”)

𝑥# 
(“dog”)

𝑥$ 
(“fish”)

𝑥% 
(“mom”)

𝑥& 
(“dad”)

𝑦 
(Dr. Seuss)

1 1 0 0 0 0 1

0 0 1 0 0 0 0

Bag-of-Words 
Model

https://en.wikipedia.org/wiki/Go,_Dog._Go!


10/25/23 19Source: https://en.wikipedia.org/wiki/One_Fish,_Two_Fish,_Red_Fish,_Blue_Fish#/media/File:One_Fish_Two_Fish_Red_Fish_Blue_Fish_(cover_art).jpg 

𝑥! 
(“hat”)

𝑥" 
(“cat”)

𝑥# 
(“dog”)

𝑥$ 
(“fish”)

𝑥% 
(“mom”)

𝑥& 
(“dad”)

𝑦 
(Dr. Seuss)

1 1 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 1 0 0 1

One Fish, Two Fish, 
Red Fish, Blue Fish

(by Dr. Seuss)

Bag-of-Words 
Model

https://en.wikipedia.org/wiki/One_Fish,_Two_Fish,_Red_Fish,_Blue_Fish
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𝑥! 
(“hat”)

𝑥" 
(“cat”)

𝑥# 
(“dog”)

𝑥$ 
(“fish”)

𝑥% 
(“mom”)

𝑥& 
(“dad”)

𝑦 
(Dr. Seuss)

1 1 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 1 0 0 1

0 0 0 0 1 0 0

Are You My Mother?
(by P. D. Eastman)

Source: https://en.wikipedia.org/wiki/Are_You_My_Mother%3F#/media/File:Areyoumymother.gif 

Bag-of-Words 
Model

https://en.wikipedia.org/wiki/Are_You_My_Mother%3F


Building a 
Probabilistic 
Classifier
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� Define a decision rule
� Given a test data point 𝒙3, predict its label M𝑦 using 

the posterior distribution 𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Common choice: M𝑦 = argmax
4

𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Model the posterior distribution
� Option 1 - Model 𝑃 𝑌 𝑋  directly as some function 

of 𝑋 (recall: logistic regression) 

� Option 2 - Use Bayes’ rule:

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 	𝑃 𝑌

𝑃 𝑋
∝ 𝑃 𝑋 𝑌 	𝑃 𝑌
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How hard is 
modelling 
𝑃 𝑋 𝑌 ?

� Define a decision rule
� Given a test data point 𝒙3, predict its label M𝑦 using 

the posterior distribution 𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Common choice: M𝑦 = argmax
4

𝑃 𝑌 = 𝑦 𝑋 = 𝒙′

� Model the posterior distribution
� Option 1 - Model 𝑃 𝑌 𝑋  directly as some function 

of 𝑋 (recall: logistic regression) 

� Option 2 - Use Bayes’ rule:

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 	𝑃 𝑌

𝑃 𝑋
∝ 𝑃 𝑋 𝑌 	𝑃 𝑌



𝑥! 
(“hat”)

𝑥" 
(“cat”)

𝑥# 
(“dog”)

𝑥$ 
(“fish”)

𝑥% 
(“mom”)

𝑥& 
(“dad”) 𝑃(𝑋|𝑌 = 1) 𝑃 𝑋 𝑌 = 0

0 0 0 0 0 0 𝜃! 𝜃"#
1 0 0 0 0 0 𝜃$ 𝜃"%
1 1 0 0 0 0 𝜃& 𝜃""
1 0 1 0 0 0 𝜃# 𝜃"'

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 1 1 1 1 1 1 −%
()!

"&

𝜃( 1 − %
()"#

!$"

𝜃(
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How hard is 
modelling 
𝑃 𝑋 𝑌 ?



Naïve Bayes 
Assumption

� Assume features are conditionally independent given 
the label:

𝑃 𝑋 𝑌 =T
>("

?

𝑃 𝑋> 𝑌

� Pros:
� Significantly reduces computational complexity 

� Also reduces model complexity, combats overfitting

� Cons:

� Is a strong, often illogical assumption 

� We’ll see a relaxed version of this later in the 
semester when we discuss Bayesian networks
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Recipe for 
Naïve Bayes

� Define a model and model parameters
� Make the naïve Bayes assumption
� Assume independent, identically distributed (iid) data
� Parameters: 𝜋 = 𝑃 𝑌 = 1 , 𝜃>,4 = 𝑃 𝑋> = 1 𝑌 = 𝑦

� Write down an objective function
� Maximize the log-likelihood

� Optimize the objective w.r.t. the model parameters
� Solve in closed form: take partial derivatives, set to 0 

and solve
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ℓ𝒟 𝜋, 𝜽 = log𝑃 𝒟 = 𝒙 ! , 𝑦 ! , … , 𝒙 + , 𝑦 + 𝜋, 𝜽

ℓ𝒟 𝜋, 𝜽 = log3
,)!

+

𝑃 𝒙 , , 𝑦 , 	𝜋, 𝜽 = log3
,)!

+

𝑃 𝒙 , 𝑦 , , 𝜽 	𝑃 𝑦 , 𝜋

ℓ𝒟 𝜋, 𝜽 = log3
,)!

+

3
-)!

.

𝑃 𝑥-
, 𝑦 , , 𝜃-,!, 𝜃-,0 𝑃 𝑦 , 𝜋

ℓ𝒟 𝜋, 𝜽 = %
,)!

+

%
-)!

.

log 𝑃 𝑥-
, 𝑦 , , 𝜃-,!, 𝜃-,0 + log𝑃 𝑦 , 𝜋

ℓ𝒟 𝜋, 𝜽 = %
,:2 ! )!

%
-)!

.

log 𝑃 𝑥-
, 𝜃-,!

ℓ𝒟 𝜋, 𝜽 + %
,:2 ! )0

%
-)!

.

log 𝑃 𝑥-
, 𝜃-,0 +%

,)!

+

log 𝑃 𝑦 , 𝜋
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Setting the 
Parameters
via MLE



Setting the 
Parameters
via MLE
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� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� M𝜋 = \#"#$

# 
� 𝑁 = # of data points
� 𝑁A(" = # of data points with label 1

� Binary features
� 𝑋>|𝑌 = 𝑦 ∼ Bernoulli 𝜃>,4
� !𝜃>,4 = \#"#%,	()#$

#"#% 

� 𝑁A(4 = # of data points with label 𝑦
� 𝑁A(4,	C)(" = # of data points with label 𝑦 and 

feature 𝑋> = 1



Poll Question 1:
Given this 
dataset, what is 
the MLE of 𝜋?

Poll Question 2:
Given this 
dataset, what is 
the MLE of 𝜃!,#?

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒚

1 0 1 0

0 1 0 1

0 1 1 1

0 0 1 0

1 0 1 0

1 0 1 1

10/25/23 28

A. 0/6

B. 1/6
C. 2/6
D. 3/6
E. 4/6
F. 5/6

G. 6/6
H. 7/6 (TOXIC)



Bernoulli
Naïve 
Bayes
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� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� M𝜋 = \#"#$

# 
� 𝑁 = # of data points
� 𝑁A(" = # of data points with label 1

� Binary features
� 𝑋>|𝑌 = 𝑦 ∼ Bernoulli 𝜃>,4
� !𝜃>,4 = \#"#%,	()#$

#"#% 

� 𝑁A(4 = # of data points with label 𝑦
� 𝑁A(4,	C)(" = # of data points with label 𝑦 and 

feature 𝑋> = 1



Multinomial
Naïve 
Bayes
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� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� M𝜋 = \#"#$

# 
� 𝑁 = # of data points
� 𝑁A(" = # of data points with label 1

� Discrete features (𝑋> can take on one of 𝐾 possible values)
� 𝑋>|𝑌 = 𝑦 ∼ Categorical 𝜃>,",4, … , 𝜃>,G*",4
� !𝜃>,H,4 = \#"#%,	()#*

#"#% 

� 𝑁A(4 = # of data points with label 𝑦
� 𝑁A(4,	C)(H = # of data points with label 𝑦 and 

feature 𝑋> = 𝑘



Gaussian
Naïve 
Bayes
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� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� M𝜋 = \#"#$

# 
� 𝑁 = # of data points
� 𝑁A(" = # of data points with label 1

� Real-valued features 
� 𝑋>|𝑌 = 𝑦 ∼ Gaussian 𝜇>,4, 𝜎>,4I

� 𝜇̂>,4 =
"

#"#%
∑.:4 ! (4	 𝑥>

.

� ̂𝜎>,4I  = "
#"#%

∑.:4 ! (4 𝑥>
. − 𝜇̂>,4

I

� 𝑁A(4 = # of data points with label 𝑦



Multiclass
Gaussian
Naïve 
Bayes
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� Discrete label (𝑌 can take on one of 𝑀 possible values)
� 𝑌 ∼ Categorical 𝜋", … , 𝜋$
� M𝜋K = \#"#+

# 
� 𝑁 = # of data points
� 𝑁A(K = # of data points with label 𝑚

� Real-valued features 
� 𝑋>|𝑌 = 𝑦 ∼ Gaussian 𝜇>,4, 𝜎>,4I

� 𝜇̂>,4 =
"

#"#%
∑.:4 ! (4	 𝑥>

.

� ̂𝜎>,4I  = "
#"#%

∑.:4 ! (4 𝑥>
. − 𝜇̂>,4

I

� 𝑁A(4 = # of data points with label 𝑦



Visualizing
Gaussian
Naïve 
Bayes

� Fisher (1936) used 150 measurements of flowers from 3 

different species: Iris setosa (0), Iris virginica (1), Iris 
versicolor (2) collected by Anderson (1936)

10/25/23 33

Species Sepal Length Sepal Width
0 4.3 3.0
0 4.9 3.6
0 5.3 3.7
1 4.9 2.4
1 5.7 2.8
1 6.3 3.3
1 6.7 3.0

Deleted two of the 
four features, so that 

input space is 2D



Visualizing
Gaussian
Naïve 
Bayes
(2 classes)

Figure courtesy of William Cohen 3410/25/23



Visualizing
Gaussian
Naïve 
Bayes
(2 classes)

Figure courtesy of William Cohen 3510/25/23



Visualizing
Gaussian
Naïve 
Bayes
(2 classes, 
equal 
variances)

Figure courtesy of Matt Gormley 3610/25/23



Visualizing
Gaussian
Naïve 
Bayes
(2 classes, 
learned 
variances)

Figure courtesy of Matt Gormley 3710/25/23



Visualizing
Gaussian
Naïve 
Bayes
(3 classes, 
equal 
variances)

Figure courtesy of Matt Gormley 3810/25/23



Visualizing
Gaussian
Naïve 
Bayes
(3 classes, 
learned 
variances)

Figure courtesy of Matt Gormley 3910/25/23



Visualizing
Gaussian
Naïve 
Bayes
(2 classes, 
learned 
variances)

Figure courtesy of Matt Gormley 4010/25/23



Visualizing
Gaussian
Naïve 
Bayes
(2 classes, 
learned 
variances)

Figure courtesy of Matt Gormley 4110/25/23



Bernoulli
Naïve 
Bayes:
Making 
Predictions
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� Given a test data point 𝒙3 = 𝑥"3 , … , 𝑥?3 L

𝑃 𝑌 = 1 𝒙3 ∝ 𝑃 𝑌 = 1 𝑃 𝒙3 𝑌 = 1

𝑃 𝑌 = 1 𝑥3 = M𝜋T
>("

?

!𝜃>,"
))
,
1 − !𝜃>,"

"*))
,

𝑃 𝑌 = 0 𝒙3 ∝ 1 − M𝜋 T
>("

?

!𝜃>,-
))
,
1 − !𝜃>,-

"*))
,

M𝑦 =

1	if	 M𝜋T
>("

?

!𝜃>,"
))
,
1 − !𝜃>,"

"*))
,

>	

1 − M𝜋 T
>("

?

!𝜃>,-
))
,
1 − !𝜃>,-

"*))
,

0	otherwise	



What if some 
Word-Label 
pair never 
appears in our 
training data?
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M𝑦 =

1	if	 M𝜋T
>("

?

!𝜃>,"
))
,
1 − !𝜃>,"

"*))
,

>	

1 − M𝜋 T
>("

?

!𝜃>,-
))
,
1 − !𝜃>,-

"*))
,

0	otherwise	

� Given a test data point 𝒙3 = 𝑥"3 , … , 𝑥?3 L

𝑃 𝑌 = 1 𝒙3 ∝ 𝑃 𝑌 = 1 𝑃 𝒙3 𝑌 = 1

𝑃 𝑌 = 1 𝑥3 = M𝜋T
>("

?

!𝜃>,"
))
,
1 − !𝜃>,"

"*))
,

𝑃 𝑌 = 0 𝒙3 ∝ 1 − M𝜋 T
>("

?

!𝜃>,-
))
,
1 − !𝜃>,-

"*))
,



What if some 
Word-Label 
pair never 
appears in our 
training data?
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� If some !𝜃>,4 = 0 and that word appears in our test data 
𝒙3, then 𝑃 𝑌 = 𝑦 𝒙3 = 0 even if all the other features 
in 𝒙3 point to the label being 𝑦!

� The model has been overfit to the training data

� We can address this with a prior over the parameters!

𝑥! 
(“hat”)

𝑥" 
(“cat”)

𝑥# 
(“dog”)

𝑥$ 
(“fish”)

𝑥% 
(“mom”)

𝑥& 
(“dad”)

𝑦 
(Dr. Seuss)

1 1 0 0 0 0 1

0 0 1 0 0 0 0

0 0 0 1 0 0 1

0 0 0 0 1 0 0

The Cat in the Hat gets a Dog (by ???)



Setting the 
Parameters
via MAP
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� Binary label
� 𝑌 ∼ Bernoulli 𝜋
� M𝜋 = \#"#$

# 
� 𝑁 = # of data points
� 𝑁A(" = # of data points with label 1

� Binary features
� 𝑋>|𝑌 = 𝑦 ∼ Bernoulli 𝜃>,4 	and 𝜃>,4 ∼ Beta 𝛼, 𝛽

� !𝜃>,4 = \#"#%,	()#$M +*"
#"#%M +*" M ,*"  

� 𝑁A(4 = # of data points with label 𝑦
� 𝑁A(4,	C)(" = # of data points with label 𝑦 and 

feature 𝑋> = 1
� Common choice: 𝛼 = 2, 𝛽 = 2	



Logistic 
Regression vs. 
Naïve Bayes

� Naïve Bayes is a generative model

� By modelling 𝑃 𝑋 𝑌  and 𝑃 𝑌 , we can generate 
new data points:

1. Sample a label 𝑦 ∼ 𝑃 𝑌

2. Sample features 𝑥> ∼ 𝑃 𝑋> 𝑌 = 𝑦  

� Logistic regression is a discriminative model

� By modelling 𝑃 𝑌 𝑋 , we can only discriminate (or 
distinguish) between classes.
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Logistic 
Regression vs. 
Naïve Bayes
(Ng and 
Jordan, 2001)

� Naïve Bayes and logistic regression form a generative-

discriminative model pair

� Recall that under certain conditions, the Gaussian Naïve 
Bayes (GNB) decision boundary is linear 

� If the Naïve Bayes assumption holds, then in the limit of 
infinite training data, GNB and logistic regression learn 
the same (linear) decision boundary!

� In general, Naïve Bayes performs well when data is 

scarce but logistic regression has lower asymptotic error.
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http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf


Logistic 
Regression vs. 
Naïve Bayes
(Ng and 
Jordan, 2001)
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� Dotted line: logistic regression

� Solid line: Naïve Bayes

http://robotics.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf


Naïve Bayes 
Learning 
Objectives

You should be able to…

� Write the generative story for Naive Bayes

� Create a new naïve Bayes classifier using your favorite 
probability distribution as the event model

� Apply the principle of maximum likelihood estimation (MLE) 
to learn the parameters of Bernoulli naïve Bayes

� Motivate the need for MAP estimation through the 
deficiencies of MLE

� Apply the principle of maximum a posteriori (MAP) estimation 
to learn the parameters of Bernoulli naïve Bayes

� Select a suitable prior for a model parameter

� Describe the tradeoffs of generative vs. discriminative models

� Implement Bernoulli naïve Bayes
� Describe how the variance affects whether a Gaussian naïve 

Bayes model will have a linear or nonlinear decision boundary 5010/25/23


