M 10-301/10-601 Introduction to Machine Learning

Machine Learning Department

| —] School of Computer Science

MACHINE LEARNING ; .
EEEEEEEEEE Carnegie Mellon University

%

Foundations:
RNNs & CNNs

Matt Gormley
Lecture 17
Oct. 30, 2023



Reminders

* Homework 6: Learning Theory & Generative Models
— Out: Fri, Oct 27
— Due: Fri, Nov 3 at 11:59pm
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DISCRIMINATIVE AND GENERATIVE
CLASSIFIERS



Generative vs. Discriminative

* Generative Classifiers:

— Example: Naive Bayes
— Define a joint model of the observations x and the labels y:
— Learning maximizes (joint) likelihood

— Use Bayes’ Rule to classify based on the posterior:
p(ylx) = p(x|y)p(y)/p(x)

* Discriminative Classifiers:
— Example: Logistic Regression
— Directly model the conditional: p(y|x)
— Learning maximizes conditional likelihood

— \




Generative vs. Discriminative
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MAP Estimation and Regularization

HMAP — argmax
MAP — 0

= argmin
0

regularization — = argmin
6

Example: L2 regularization is
equivalent to a Gaussian prior

W log p(D | 9)1

W

logp(D | 0)

/

+ log p(6)

— log p(0)

\

Jp(0)

fit the data
well

+ 1r(0)

keep the
model simple
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Generative vs. Discriminative
Finite Sample Analysis (Ng & Jordan, 2001)

[Assume that we are learning from a finite training dataset]

Naive Bayes and logistic regression form a generative-
discriminative model pair:

If model assumptions are correct: as the amount of training
data increases, Gaussian Naive Bayes and logistic regression
approach the same (linear) decision boundary!

Furthermore, Gaussian Naive Bayes is a more efficient
learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has
lower asymptotic error and does better than Gaussian Naive
Bayes
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Naive Bayes makes stronger assumptions about the data
but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers: ....” Andrew Ng
and Michael Jordan, NIPS 2001.
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Naive Bayes vs. Logistic Reg.

Features



Naive Bayes vs. Logistic Reg.

Learning (Parameter Estimation)




Naive Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naive Bayes:
Parameters are probabilities = Beta prior (usually) pushes
probabilities away from zero [ one extremes

Logistic Regression:
Parameters are not probabilities > Gaussian prior
encourages parameters to be close to zero

(effectively pushes the probabilities away from zero [ one
extremes)



Naive Bayes vs. Logistic Regression

Question: ()7 )

You just started working at a Answer:

new company that manufactures .
comically large pennies. Your — an the i&?@c% Qovx miﬁ
manager asks you to build a Ly o Shater Fockore re& .
binary classifier that takes an » |
image of a penny (on the factory - h)w M 7(\(2 W} Qgemmcs o

assembly line) and predicts
whether or not it has a defect. — \,,m Llaly & o C@e& <

— 140\\, ggﬂu\/& Jﬂesjmj negd Lo \;{7

What follow-up questions would
you pose to your manager in
order to decide between using a
Naive Bayes classifier and a
Logistic Regression classifier?



THE BIG PICTURE



ML Big Picture

Theoretical Foundations:
What principles guide learning?
probabilistic
information theoretic
evolutionary search
ML as optimization




Classification and Regression: The Big Picture

Recipe for Machine Learning Decision Functions

1. Given data D = {x(® y(I}N e Perceptron: hg(x) = sign(6x)

2. (@) Choose a decision function (@ e Linear Regression: hg(x) = 87 x
(parameterized by 0)

e Discriminative Models: hg(x) = argmax X
(b) Choose an objective function Jp(0) = - - - o) gy Poly %)

(relies on data) T
o Logistic Regression: pg(y =1 | x) = 0(0" x)
3. Learnby choosing parameters that optimize the objective Jp(6)

o Neural Net (classification):
A = @2NT (D\T ) (2)
0 ~ argmin Jp(0) po(y=1[%x)+ (W) o(W) x+Db'") + b))
6

e Generative Models: hg(x) = argmax pg (X, y)
y

4. Predict on new test example Xpew Using hg(-) "

§ = ho(Xnew) o Naive Bayes: pg(x,y) = pe(y) H po(Tm | y)
m=1
Optimization Method
Objective Functi
e Gradient Descent: 8 — 6 — vV J(0) Jassh RIS
. N
e SGD:0 — 6 — Vg JD(0) o« MLE: J(8) = — 3 logp(x,y®)
fori ~ Uniform(1,..., N) i—1
N
1 .
where J(0) = =Y J@(0) N : :
N ; e MCLE: J(0) = — Zlogp(y(’) | x(®)
i=1
e mini-batch SGD
e L2 Regularized: J'(0) = J(0) + \||0]|3
e closed form (same as Gaussian prior p(@) over parameters)
1. compute partial derivatives e L1Regularized: J'(0) = J(0) + \||0)||1

2. set equal to zero and solve (same as Laplace prior p(@) over parameters)



Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) are simply fancy computation graphs (aka.
hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on
the backpropagation algorithm to compute the necessary
gradients.



BACKGROUND: HUMAN LANGUAGE
TECHNOLOGIES



Human Language Technologies

Speech Recognition

Machine Translation
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Lorem ipsum dolor sit amet,

Vo s s e
eiu s ;
lap__ Lorem ipsum dolor sit amet,
b consectetur adipiscing elit, sed do
w eiusmod tempor incididunt ut
’“I labore et dolore magna aliqua. Id
o nibh tortor id aliquet lectus proin
qu mibh nisl- Odiout enim blandit
dia  Volutpat —maecenas  volutpat.
*Forta nibh venenatis cras sed:
S0l quam id leo in vitae. Aliquam id
B diam maecenas ultricies mi. Et
s solicitudin ac orci.phasellus
| egestas. Diam in arcu cursus
&l euismod quis viverra. Vitae auctor
:‘" au augue ut lectus arcu. Semper
;; quis lectus nulla at volutpat diam
viv ut. Sed arcu non odio euismod
o lacinia, Ve euismod —in
~ pellentesque massa. Augue lacus

viverra vitae congue eu consequat
ac. Tincidunt id afi.

ot
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Bidirectional RNN

RNNs are a now commonplace backbone in
deep learning approaches to natural language
processing

Y1 Y2 Y3 ¥4 probabilistic output
A \ A

E E E E right-to-left hidden
h, h, n h, left-to-right hidden

y / states

word embeddings



BACKGROUND:
N-GRAM LANGUAGE MODELS



n-Gram Language Mode]

* Godal: Generate realistic looking sentences in a human
language

* Key Idea: condition on the last n-1 words to sample
the nt" word
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n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e ) o e ) (e ) (oo

W, W, W; W, Wi We
T

n-Gram Model (n=2) p(wy,wa, ..., wr) = | [ p(ws | we—1) G—
t=1

p(Wv W, W37 cee W6) =
The p(W1) F—
(The ) ( bat | p(w, [w,) &—
[ bat ][ made ] p(W3 Wz)
[ made ][ noise J p(W4 W3)
[ noise ][ at ] p(W5 W4)
[ at | night | P(We WS) A4—
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n-Gram Language Mode]

Question: How can we define a probability distribution over a

sequence of length T2

e ) o e ) (e ) (oo

W, W, W; W, W Wi
T

n-Gram Model (n=3) p(wy,wa, ..., wr) = [ [ plwe | we—1,we—2)
t=1

p(Wv W, W37 cee W6) =

The p(W1)
[ The J ([ bat | p(w, | w,)
[ The ][ bat ][ made] p(W3 W,, W1) <t
[ bat ][ made ][ noise ] p(W4 W3’ WZ)
[ made ][ noise ][ at ] P(W5 W4, W3)
[ noise ][ at ][ night ] p(W6 WS’ W4) T
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n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e ) o e ) (e ) (oo

Wi W, W3 Wy Ws We
T
n-Gram Model (n=3) p(wi,wa, ..., wr) = | [ pwe | we—1, i)
=1
p(w,, 3o We) =
The p(W1)

The (=l YAYVEE RVVA
— Note: This is called a model because we

made some assumptions about how many
previous words to condition on
(i.e. only n-1 words)




Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?

P(w¢ | Wi, = The, p(W¢ | we, = made, P(W¢ | Wy, = cows,
0 Wi, = bat) 0 Wi, = NOIse) O Wy, = eat)
Wi p(- [+ ) Wi p(-[+>) Wi p(- [+
ate 0.015 at 0.020 corn 0.420
flies 0.046 pollution 0.030 grass 0.510

zebra 0.000 zebra 0.000 zebra 0.000
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Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?
Answer: From data! Just count n-gram frequencies

p(w; | Wy, = cows,
O Wi, = eat)
.the cows eat &ass...

...our cows eat hay daily... Wt p(-[+-)
... factory-farm cows eat corn...

corn 4/11 <—

...on an organic farm, cows eat hay and...
...do your cows eat grass or corn?...
...what do cows eat?t—hey have...
...cows eat corn when there is no... hay 2/11
... which cows eat which foods depends...
...if cows eat grass...

...when cows eat corn their stomachs...
...should we let cows eat corn?...

grass 311 ¢——

if 111

which 1/11
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Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2.  Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up
4

Repeat ~
P > N 2
N ) ¥ o %)
QN AN © S N °
< oy N § ¥ B

g g < > Y S
) 6 N Q S <

O O o O O O
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Sampling from a Language Model

Question: How do we sample from a Language Model?

Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2.  Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up

4.

Repeat

Training Data (Shakespeaere)

5-Gram Model

| tell you, friends, most charitable care
ave the patricians of you. For your
wants, Your suffering in this dearth,
you may as well Strike at the heaven
with your staves as lift them Against
the Roman state, whose course will on
The way it takes, cracking ten thousand
curbs Of more strong link asunder than
can ever Appear in your impediment.
For the dearth, The gods, not the
patricians, make it, and Your knees to
them, not arms, must help.

Approacheth, denay. dungy
Thither! Julius think: grant,—-0
Yead linens, sheep's Ancient,
Agreed: Petrarch plaguy Resolved
pear! observingly honourest
adulteries wherever scabbard
guess; affirmation--his monsieur;
died. jealousy, chequins me.
Daphne building. weakness: sun-
rise, cannot stays carry't,
unpurposed. prophet-like drink;
back-return 'gainst surmise
Bridget ships? wane; interim?
She's striving wet;




RECURRENT NEURAL NETWORK (RNN)
LANGUAGE MODELS



Recurrent Neural Networks (RNNs)
/

inputs: x = (x1,29,...,27),2; € R
hidden units: h = (b1, ha, ..., hr),h; € R | It =]H KthgS_t + Whnhi—1 +@)

Definition of the RNN:

outputs: y = (y1,92,.-.,yr), ¥ € R* | yp = Why_@+_gy

S

nonlinearity:( H {




The Chain Rule of Probabilitm

Question: How can we define a probability distribution over a

sequence of length T2

e ) o e ) (e ) (oo

W, W, W3 W, W5 We
T
Chain rule of probability: p(wi,wa,...,wr) = | [ p(ws | wi_y,...,w)
t=1
p(Wv Wy cee W6) = /
— U p(w)) =
— aloas s ,
me| Note: This is called the chain rule because
(me] it is always true for every probability
The distribution KJ /
The PAYVe [ VW5 YWy VV3y VVo) W1) -

47



RNN Language Model

T
RNN Language Model: p(w1,ws, ..., wr) = | [ p(w: | fo(we-1,...,w1))
t=1

p(W1, W, W3) cee W6) =
The p(W1)
p(Wz fe(W1))

(The | (Bat ]
(e ) (oot (e P(Ws | fo(Ws, W)

[_The J(_bat ][ made ][ noise ] p(w, | fo(ws, Wy, Wy))

[_The ][ bat J[_made J( noise J[_at | p(wy | fo(w,, Wy, w,, w,))

([ The J ([ bat ] ((made ] [Cnoise J (__at ] [(night ] p(wy | fo(Ws, W,, Wy, Wy, W,))
Key Idea:

(1) convert all previous words to a fixed Iength vector = %@( >
(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on

the vector



RNN Language Model

[The ][ bat ][made][noise][ at ][night] [ END]

I A T R

»]«p(w1|h1) TP(WZIhZ) TP(WBWS) Tp(w4lh4) TP(WSIhS) TP(W6|h6)Tp(W7|h7)
. > | > > > > >

) L

ho h, h, h, h, hs he
I O e I I O e O e I I e B B e B D e

A /A N A

[STARTJ [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

The

T

p(wilh,)

ho
[TT]
/]

START

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

bat

T
o[p(wzlhz)

ho h,

e W

T /

(START ] [ The |
W\,

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

‘[ p(wslhs)

h, h, h,
HE N e BN

L1

(START] [ The | [ bat |

J\»b
Key Idea:

(1) convert all previous words to a fixed length vector
(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

noise

e

,[p(w4|h4)

ho h, h, h,
(ITT——l Il 11]

I

(START ] [ The ] [ bat ) [ made |
\/\)\ \")’L \/33

7z

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

T
'[P(Wslhs)

ho h, h, h, h,
(ITTH+—lIlIl >+l 1]

[ 1 1 1

(START] | The | [ bat | [ made | [ noise ]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




Qﬁ RNN Language Model [’),5 é/%j

Question: How can we create a distribution

p(wi|h;) from h;? - ' ¢ st =
Answer: et as SOk wwh-clss (lee ok T - /%@k
F wal l"{_\ = Sf)? WKX(L\J , I/"l: + b/> '[P(W6|h6)
ho h, h, h; h, hs

(ITF—lI T Il > 11

L 1t 1 1 1

[START] [ The ] [ bat ][made] [noise][ at ]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

END

T
Ip(w7lh7)

ho h, h, h, h, hs he
I O e I I O e O e I I e B B e B D e

r -t t 1 1 °

[START] [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




RNN Language Model

[The ][ bat ][made][noise][ at ][night] [ END]
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P(W,, Wy, Wy, oo, Wr) = p(W, | hy) p(w, | hy) ... p(Wy | hy)



Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2.  Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up
4

Repeat ~ . .@Q/\
N ) ¥ S )
QN AN © S N °
< <& N § ¥ B
g g < > Y S
) 6 N Q S <
O O O O O O
Q Q Q Q Q
— — —
) @ The same approach to

[ e || bt | sampling we used for an n-

Gram Language Model also
works here for an RNN
Language Model




Sampling from an RNN-LM

44
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hour
council | am great, Murdered and by thy
there My power to give thee but so much
service in the noble bondman here, Woul
her wine.

h me brok
Which is the real
Shakespeare?!

44

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without

n limb shall acquit him well. Your brother is
ender; and, for your love, | would be

as | must, for my own honour, if he

re, out of my love to you, | came hither

KING LEAR: O, if you were a feeble , the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

{thal, that either you might stay him
from his intend brook such disgrace well as he
shall runinto, in t is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

Shakespeare’s As You Like It

VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

RNN-LM Sample

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, | would be
loath to foil him, as | must, for my own honour, if he
come in: therefore, out of my love to you, | came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

RNN-LM Sample

VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

Shakespeare’s As You Like It

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, | would be
loath to foil him, as | must, for my own honour, if he
come in: therefore, out of my love to you, | came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

44
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hour
council | am great, Murdered and by thy
there My power to give thee but so much
service in the noble bondman here, Woul
her wine.

h me brok
Which is the real
Shakespeare?!

44

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without

n limb shall acquit him well. Your brother is
ender; and, for your love, | would be

as | must, for my own honour, if he

re, out of my love to you, | came hither

KING LEAR: O, if you were a feeble , the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

{thal, that either you might stay him
from his intend brook such disgrace well as he
shall runinto, in t is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Sequence to Sequence Model

Speech Recognition

Machine Translation
714 HY =2 E5| GO{et ot QL2 90| Aol AF O

1 - —

Summarization

Lorem  ipsum dolor st amet,

A e et

lab

nit

nit

vol

Po iu

Qu Mt pp  Lorem ipsum dolor sit amet,

A LB S s e

sol g mb |y,  Lorem ipsum dolor sit amet,

eg g, VOl .y,  comsectetur adipiscing elit, sed do
eui Po eiusmod tempor incididunt ut

e qu ™ jabore et dolore magna aliqua. Id
qu % dia ¥ nibh tortor id aliquet lectus proin
ut—g sol Gy nibh sl Odio ut enim biandit
ac g 4o volutpat maecenas  volutpat.
pel U eqi 12 porta nibh- venenatis cras sed.
viv U ey %00 Guam id leo in vitae. Aliquam id
ac. ';e“ qu % diam maecenas ultricies mi. Et
Pt g solictudin ac orci phasellus

o lac gy egestas Diam in arcu cursus

pel euismod quis viverra. Vitae auctor

viv Y% au augue ut lectus arcu. Semper

ac. ';; Guis Tectus nulla at volutpat diam

viv ut. Sed arcu non odio euismod

" ladnia. Velit euismod in

pellentesque massa. Augue lacus

viverra vitae congue eu consequat
ac. Tincidunt id afi.



Sequence to Sequence Model

Now suppose you want generate  Applications:

e * translation:
a sequence conditioned on Spanish = English
another Input * summarization:

Kev Idea: article 2 summary
? )  speech recognition:
1. Use an encoder model to speech signal - transcription
generate a vector
representation of the input I.---PE??.‘Q?':-%AJN:%:M __________
2. Feed the output of the | L@ | i
encoder to a decoder which i i
will generate the output | T |
E p(wslh;) !
Encoder RNA/ S
s | Lis, s
i e, e, e; 7 i E d, d, d, :

[ 1

(START] [ Lets | [ go |




BACKGROUND: COMPUTER VISION



Example: Image Classification
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IM&GENET

Bird

Home  Explore
About Download

Not logged in. Login | Signup

C=
2126 92.85% B

Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings pictures  Popularity ~ Wordnet

- chordate

;- marine animal, marine creature, sea animal, sea creature (1)
i scavenger (1)

- biped (0)

I;~ predator, predatory animal (1)

i larva (49)

- acrodont (0)

- feeder (0)

- stunt (0)

(3087)

| tunicate, urochordate, urochord (6)
- cephalochordate (1)
. vertebrate, craniate (3077)
#- mammal, mammalian (1169)
- bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)

cock (1)

- hen (0)

- nester (0)

- night bird (1)

- bird of passage (0)

- protoavis (0)

- archaeopteryx, archeopteryx, Archaeopteryx lithographi
- Sinornis (0)

- |bero-mesornis (0)

- archaeornis (0)

- ratite, ratite bird, flightless bird (10)
- carinate, carinate bird, flying bird (0)
- passerine, passeriform bird (279)

- nonpasserine bird (0)

- bird of prey, raptor, raptorial bird (80)
- gallinaceous bird, gallinacean (114)

Percentile IDs

Treemap Visualization Images of the Synset Downloads
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IM&GENET | v
- - = e About Download

Not logged in. Login | Signup

German iris, Iris kochii 469 49.6%
Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica pictures ggfcu;ﬁ;litlg

i~ halophyte (0)
. succulent (39) Treemap Visualization Images of the Synset Downloads
- cultivar (0)

- cultivated plant (0)

- weed (54)

- evergreen, evergreen plant (0)

- deciduous plant (0)

- vine (272)

- creeper (0)

- woody plant, ligneous plant (1868)

- geophyte (0)

- desert plant, xerophyte, xerophytic plant, xerophile, xerophilc
- mesophyte, mesophytic plant (0)

- aquatic plant, water plant, hydrophyte, hydrophytic plant (11
- tuberous plant (0)

* bulbous plant (179)

*. iridaceous plant (27)
+. iris, flag, fleur-de-lis, sword lily (19)

. bearded iris (4)

Florentine iris, orris, Iris germanica florentina, Iris
- German iris, Iris germanica (0)

- German iris, Iris kochii (0)

... Dalmatian iris, Iris pallida (0)

i~ beardless iris (4)

- bulbous iris (0)

- dwarf iris, Iris cristata (0)

-- stinking iris, gladdon, gladdon iris, stinking gladwyn,
- Persian iris, Iris persica (0)

- yellow iris, yellow flag, yellow water flag, Iris pseuda
- dwarf iris, vernal iris, Iris verna (0)

- blue flag, Iris versicolor (0)

)

Wordnet
IDs
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IMAGENET I o

Not logged in. Login | Signup

C=
Court, courtyard 165 92.61% B

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court" pictures ngcu;ﬁftiﬁg }ggfdnet

U Numbers in brackets: (the number of synsets in the subtree ). Treemap Visualization Images of the Synset Downloads

¥ ImageNet 2011 Fall Release (32326)
i plant, flora, plant life (4486)
| geological formation, formation (175)
- natural object (1112)
- sport, athletics (176)
+. artifact, artefact (10504)
x instrumentality, instrumentation (5494)
+. structure, construction (1405)
airdock, hangar, repair shed (0)
- altar (1)
- arcade, colonnade (1)
e arch (31)
. area (344)
- aisle (0)
- auditorium (1)
- baggage claim (0)
- box (1)
- breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
- choir (0)
+- corner, nook (2)

" court, courtyard (6)
- atrium (0)

- bailey (0)

- cloister (0)

- food court (0)

- forecourt (0)

L. narvie (NN
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Feature Engineering for CV

Edge detection (Canny)

Original Image Edge Image

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

= 3 >
Scale ﬁ? ﬁ

(next

octave) ﬁ
= =
— 2=

Scale
(first
octave)

Gaussian Gaussian (DOG)

.

: Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to

> igu f planar objects are shown in the produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted

Ce— »prow. Recognition results below show model outlinesand to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
T T

Anwm_camnlad hu a fantar nf ) and tha nracace ranaatad

Figures from http://opencv.org Figure from Lowe (1999) and Lowe (2004)
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Example: Image Classification




CNNs for Image Recognition

=ICCVID

Forrennne, Condrrur m o mrmgey oo

Revolution of Depth 2.2

' 152 layers

[" 22 layers l I 19 layers -
A

LY E-? 13

I 8 layers ‘| 8 layers

- e L o
i
—
- - e
— SRR

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

‘Research

Kaiming He, Xiangyu Zhang, Shaoging Ren, & lian Sun. "Deep Residual Learning for Image Recognition”. arkiv 2015.

Slide from Kaiming He
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Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) are simply fancy computation graphs (aka.
hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on
the backpropagation algorithm to compute the necessary
gradients.



CONVOLUTION



What’s a convolution?

* Basicidea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the

inner product operation
* Key point:

— Different convolutions extract different types of low-level

“features” from an image

— All that we need to vary to generate these different features is the

weights of F

\__\

;/\?\)(' Cluww.‘ y i OU“TJ" CLavml.l

Slide adapted from William Cohen

)/” = Ky Xn + K‘qu- 40&;&‘ 4 “22\‘17_ +N°
)’.z = KnXg * Kigxy + 091Xz 4 O(\zzxzs ol
)‘Ll » “n)(z‘ + K.LXZZ + DQIX3| 4 “zz st R

)’22 = Ky Xgp * Kiphay +0Qi Xsy 4 Kzz Xg3 +a,



Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

3
o|lo|oO >
O | 1 1 p)
0] 1 0] 3
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Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

3
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Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

3| 2
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Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

31212
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Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution

312123
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for

tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Convolution
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

|dentity

Convolution 1 1 1 1 1
0] 0] 0] 1

0] 1 0] 1
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Background: Image Processing

A convolution matrix is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

Blurring
Convolution

90



Convolution Examples

Original
Image

100



Smoothing
Convolution

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

Convolution Examples

—
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Gaussian

Blur

.01

.04

.06

.04

.01

.04

19

.25

19

.04

.06

.25

-37

.25

.06

.04

19

.25

19

.04

.01

.04

.06

.04

.01

Convolution Examples
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Convolution Examples

Sharpening E.. T . B

Kernel

103



Convolution Examples

Edge
Detector

11 -1 -1

1| 8 | 1

11 -1 -1




Ex

Lot

Lot

What’s a convolution?

Basic idea:
— Pick a 3x3 matrix F of weights

— Slide this over an image and compute the “inner product”
(similarity) of F and the corresponding field of the image, and
replace the pixel in the center of the field with the output of the

inner product operation

Key point:

— Different convolutions extract different types of low-level
“features” from an image
— All that we need to vary to generate these different features is the
weights of F

), |

Xiz

X3

%

X2

X

&2

X3

X3z

—

g_.k_l

Slide adapted from William Cohen

:L ;/\?\)(' clu.ww.‘ y i OU“T)‘" CLavml.l

ot

Yz

721.

Yi = KaXu * KX +091% 4 0z %2 4,
)"z = KaXg * Koxg +0Q1 Xz 4 0z X2z oL,
Yoo = K)o, * KipXz + 091X + X3z X2 4,
Y2z = Kuxgy * KXoy + 01Xy 4 0z Xg3 +a1,



DOWNSAMPLING



Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

1
Convolution
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image
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Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image
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Downsampling by Averaging

* Downsampling by averaging is a special case of convolution
where the weights are fixed to a uniform distribution

* The example below uses a stride of 2

Input Image

Convolved Image

Convolution

117



Max-Pooling

Max-pooling with a stride > 1is another form of downsampling

Instead of averaging, we take the max value within the same range as
the equivalently-sized convolution

The example below uses a stride of 2

Input Image

Max-Pooled
Image

Max-
pooling

Yij = max(zij,

Li 41,
Lit1,55

33z‘+1,j+1)

118



CONVOLUTIONAL NEURAL NETS



A Recipe for

Background : :
5 Machine Learning

1. Given training data: 3. Define goal:

(s, y N X

iy Yifi=1 0" = arg mein;é(fe(wi)ayi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (337,) (take small steps

opposite the gradient)
— Loss function

((9.y;) €ER 00D = 00 — VU fo(w:), ;)



B

- neVE(fo(xi), y;)
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Convolutional Layer

CNN key idea:
Treat convolution matrix as
parameters and learn them!

Input Image @
Convolved Image

Learned
Convolution

e11 e12 e13
e21 ezz e23
631 632 633

123



Convolutional Neural Network (CNN)

* Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

* These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2: f. maps
6@14x14

I
| Full conflection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical. 124



TRAINING CNNS



A Recipe for

Background : :
5 Machine Learning

1. Given training data: 3. Define goal:

(s, y N X

iy Yifi=1 0" = arg mein;é(fe(wi)ayi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (337,) (take small steps

opposite the gradient)
— Loss function

((9.y;) €ER 00D = 00 — VU fo(w:), ;)



Be
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SGD for CNNs

[5@\) . CA)/U«,/
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LAYERS OF A CNN



RelLU Layer
fReLU L‘*F/ I«‘,A:‘)'Zeﬁik' Otput - 76(‘(

: e,we*"l"“‘)“ c]Lb"“SL

! dx,  dy Tﬁf o
Wt RyNT 7 i ko vo
X¢ (O ol'l«uM":Q
S\f;
éx — O ¥ L i‘d
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Softmax Layer
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Fully-Connected Layer
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\__\

X2 \Xs

X2 [Xs

Convolutional Layer
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N2 = Kuxe * Kpxg + 091X + K3z Xpy ot
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Convolutional Layer
lice
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Max-Pooling Layer
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Max-Pooling Layer
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Convolutional Neural Network (CNN)

* Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

* These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 1@10x10
INPUT C1: feature maps - o4: f. maps 16@5x5

30x32 6@28x28

S2: f. maps
6@14x14

— N
| | Full connection Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

e

——— e,

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical. 137



Architecture #2: AlexNet
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CNNs for Image Recognition

‘Research

Revolution of Depth 2.2
' 152 layers '

\I\.
\
[ 22 layers l I 19 Iayers
\ 6.7 I

I_____I I 8 layers ‘| 8 layers |

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

=ICCVID

Forrennne, Condrrur m o mrmgey oo

Kaiming He, Xiangyu Zhang, Shaoging Ren, & lian Sun. "Deep Residual Learning for Image Recognition”. arkiv 2015.

. . 139
Slide from Kaiming He



Convolutional Neural Network (CNN)

L Typical Architectures

t
Fully connected Jaye

t
Fully connected|layer

t

Fully con

Fully connected laver

}

Fully connected laver

¢
>

Fully connected laver

s i

Fully connected layer —

l ~ c. Fastar R-CNN
Fully connected layer -

a. AlexNet

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/
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Convolutional Neural Network (CNN)

Typical Architectures

e, FCN f. U-Net

141
Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/



Convolutional Neural Network (CNN)

Typical Architectures

icrosoft

AlexNet, 8 layers % VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)

%1CCV = 142
S Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Ilage Recognition”. arXiv 2015.



In-Class Poll

Question: 0% 9%

Why do many layers
used in computer
vision not have
location specific
parameters?

Answer:

\®

\QO

|00

|0




Convolutional Layer

Input Image

For a convolutional layer, how do we pick the kernel size
(aka. the size of the convolution)?

2X2 3x3 4X4
Convolution Convolution Convolution
0. |6, 0,0, |0; 0, (0,00,
0,,|6,, 0,,|06,, 6,5 0,,|6,,(6,5(6,,
0|05, |6;; 05:]95,|0556;,
041/942|045|044

* Asmall kernel can only see a very small part of the image,
but is fast to compute

* Alarge kernel can see more of the image, but at the
expense of speed

144



COMPUTER VISION



N oV osw

Common Tasks in Computer Vision

Image Classification

Image Classification +
Localization

Human Pose Estimation
Semantic Segmentation
Object Detection
Instance Segmentation
Image Captioning

Figure from https://arxiv.org/pdf/1704.06857.pdf

bottle, cup, cube

(a) Image classification

bottle

= '

(c) Semantic segmentation

bottle
cup

cube

cube

< lbel

(b) Object localization

L g

(d) Instance segmentation

146



e Given an
image, predict
a single label -

bumper car
golfcart

A multi-class
classification
problem

\J
vertible agaric dalmatian monkey
grille mushroom grape spider monkey
pickup [ jelly fungus elderberry titi
beach wagon gill fungus rdshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

dead-man's-fingers

@ 147
Figure from https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436€924a68c45b-Paper.pdf



Image Classification + Localization

Car

Chair

* Given animage,
predict a single
abel and a
bounding box

for the object

* Bounding box is
represented as

(X’ y’ h) W)’
bosition (x,Y)

and
height/width
(h,w)

(c) Missed objects

Figure from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257
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Human Pose Estimation

* Given animage of a human,
predict the position of
several keypoints (left
hand, right hand, left
elbow, ..., right foot)

* This is a multiple regression
problem, where each
keypoint has a
corresponding position

(Xi)yi)

Initial stage
220 x 220

DNN-based refiner
DNN-based regressor

(6D, y 1))

send refined values
to next stage

Figure from
https://openaccess.thecvf.com/content _cvpr 2014/papers/Toshev_DeepPose Human Pose 2014 CVPR_paper.pdf

149



Semantic Segmentation

Input image Ground-truth

* Given animage,
predict a [abel for
every pixel in the
image

* Notmerelya
classification
problem, because
there are strong
correlations between
pixel-specific labels

{ 224x224 224x224

B

Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning Deconvolution_Network ICCV 2015 paper.pdf 150



Object Detection

* Given animage, for each object predict a bounding box
and a label (x,y,w,h,I)
* Example: R-CNN
— (x=110, y=13, w=50, h=72, I=person)
— (x=90, y=55, w=81, h=87, I=horse)
— (x=421, y=533, w=24, h=30, I=chair)
— (x=2, y=25, w=51, h=121, |=gate)

R-CNN: Regions with CNN features

N ", i
. i -
. ..
r‘ "( - S—
MIT TP \& i .

T T, L -~
y & i Nl

| 8 1Y %

Wz NS 9

b LS <)

/ |

warped region 5 aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Figure from 151
https://openaccess.thecvf.com/content_cvpr 2014/papers/Girshick_Rich Feature Hierarchies 2014 _CVPR_paper.pdf




* Predict per-pixel labels as
in semantic segmentation,
but differentiate between
different instances of the
same label

* Example: if there are two
people in the image, one
person should be labeled
person-1 and one should
be labeled person-2

Figure 1. The Mask R-CNN framework for instance segmentation.
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Figure from https://openaccess.thecvf.com/content ICCV _2017/papers/He_Mask R-CNN_ICCV_2017_paper.pdf



Image Captioning

=  Ground Truth Caption: A little boy runs away from the ° Ta ke an im a ge as
approaching waves of the ocean. .
input, and generate
Generated Caption: A young boy is running on the beach.
a sentence
describing it as
. output (i.e. the
Ground Truth Caption: A brunette girl wearing sunglasses Cd ptl O n)

and a yellow shirt.

* Typical methods
Ge.lllerated Caption: A woman in a black shirt and sunglasses in CI u d ea d ee p
CNN/transformer
and a RNN-like

¥
| g% B = language model
[Log 2151 | [ 5] Captions
| | | s * (The task of Dense

Crbrmtes P Captioning is to
generate one

cri caption per

bounding box)

Random Vector
Input Image (o> (Diversity)

Generator (G)

Fig. 3. A block diagram of other deep-learning-based captioning.
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Figure from https://dl.acm.org/doi/pdf/10.1145/3295748



Image Captioning

Table 1. An Overview of the Deep-Learning-Based Approaches for Image Captioning

Reference Image Encoder | Language Model Category
Kiros et al. 2014 [69] AlexNet LBL MS, SL, WS, EDA
Kiros et al. 2014 [70] AlexNet, VGGNet | 1. LSTM MS, SL, WS, EDA

2. SC-NLM
Mao et al. 2014 [95] AlexNet RNN MS, SL, WS
Karpathy et al. 2014 [66] | AlexNet DTR MS, SL, WS, EDA
Mao et al. 2015 [94] AlexNet, VGGNet | RNN MS, SL, WS
Chen et al. 2015 [23] VGGNet RNN VS, SL, WS, EDA
Fang et al. 2015 [33] AlexNet, VGGNet | MELM VS, SL, WS, CA
Jia et al. 2015 [59] VGGNet LSTM VS, SL, WS, EDA
Karpathy et al. 2015 [65] | VGGNet RNN MS, SL, WS, EDA
Vinyals et al. 2015 [142] | GoogLeNet LSTM VS, SL, WS, EDA
Xu et al. 2015 [152] AlexNet LSTM VS, SL, WS, EDA, AB
Jin et al. 2015 [61] VGGNet LSTM VS, SL, WS, EDA, AB
Wu et al. 2016 [151] VGGNet LSTM VS, SL, WS, EDA, AB
Sugano et at. 2016 [129] [VGGNet LSTM VS, SL, WS, EDA, AB
Mathews et al. 2016 [97] |GoogLeNet LSTM VS, SL, WS, EDA, SC
Wang et al. 2016 [144] AlexNet, VGGNet | LSTM VS, SL, WS, EDA
Johnson et al. 2016 [62] | VGGNet LSTM VS, SL, DC, EDA
Mao et al. 2016 [92] VGGNet LSTM VS, SL, WS, EDA
Wang et al. 2016 [146] | VGGNet LSTM VS, SL, WS, CA
Tran et al. 2016 [135] ResNet MELM VS, SL, WS, CA
Ma et al. 2016 [90] AlexNet LSTM VS, SL, WS, CA
You et al. 2016 [156] GoogLeNet RNN VS, SL, WS, EDA, SCB
Yang et al. 2016 [153] VGGNet LSTM VS, SL, DC, EDA
Anne et al. 2016 [6] VGGNet LSTM VS, SL, WS, CA, NOB
Yao et al. 2017 [155] GoogLeNet LSTM VS, SL, WS, EDA, SCB
Lu et al. 2017 [83] ResNet LSTM VS, SL, WS, EDA, AB
Chen et al. 2017 [21] VGGNet, ResNet |LSTM VS, SL, WS, EDA, AB
Gan et al. 2017 [41] ResNet LSTM VS, SL, WS, CA, SCB
Pedersoli et al. 2017 [112] | VGGNet RNN VS, SL, WS, EDA, AB
Ren et al. 2017 [119] VGGNet LSTM VS, ODL, WS, EDA
Park et al. 2017 [111] ResNet LST™M VS, SL, WS, EDA, AB
Wang et al. 2017 [148] ResNet LSTM VS, SL, WS, EDA
Tavakoli et al. 2017 [134] | VGGNet LSTM VS, SL, WS, EDA, AB
Liu et al. 2017 [84] VGGNet LSTM VS, SL, WS, EDA, AB
Gan et al. 2017 [39] ResNet LSTM VS, SL, WS, EDA, SC
Dai et al. 2017 [26] VGGNet LSTM VS, ODL, WS, EDA
Shetty et al. 2017 [126] [ GoogLeNet LSTM VS, ODL, WS, EDA
Liu et al. 2017 [85) Inception-V3 LSTM VS, ODL, WS, EDA
Gu et al. 2017 [51] VGGNet 1. Language CNN VS, SL, WS, EDA

2. LSTM
Yao et al. 2017 [154] VGGNet LSTM VS, SL, WS, CA, NOB

(Continued)

Table from https://dl.acm.org/doi/pdf/10.1145/3295748

Take an image as
input, and generate
a sentence
describing it as
output (i.e. the
caption)

Typical methods
include a deep
CNN/transformer
and a RNN-like
language model

(The task of Dense
Captioning is to
generate one
caption per
bounding box)
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Medical Image Analysis

Notice that most of
these tasks are
structured prediction
problems, not
merely classification

Figure 2 Deep learning application in medical image analysis. (A) Fundus detection; (B,C) hippocampus segmentation; (D) left ventricular

segmentation; (E) pulmonary nodule classification; (F,G,H,I) gastric cancer pathology segmentation. The staining method is H&E, and the

magnification is x40.
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Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/



CNN VISUALIZATIONS



Visualization of CNN

our number here it Layer visibility



https://adamharley.com/nn_vis/cnn/2d.html

Convolution of a Color Image

* Colorimages consist of 3 floats per pixel for
RGB (red, green blue) color values

* Convolution must also be 3-dimensional

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ *

convolve (slide) over all

spatial locations
32 28

3 1
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)
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Animation of 3D Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[:,:,0] wO[:,:,0] wl[:,:,0] o[:,:,0]
0 0 0 0 0 0 O -1 1 T ([ 1 5 -3 -3
0 2 0 W/ll/ 11 [ 3 .10 7
0 0 |21 ff2]0 O 1 0 -1 11 (-1 1 -3 -2
0 1 |20 |0 o[:,:,1]
0 2 [0 L] 2 -1 1
0 2 1 0 O = n
00000 o i
x[:,:,1]

0 0 0 0 O

0 1 1 2

0 2 |2 (2 |2 0

0 0 2o j2 0 Bjasb0 (1x1x Bias b1 (1x1x1)

0 210 21?1 O[:,:, [:,:,0]
001000 O L 0

0 0 0 0 0 O

X[:,:,2] toggle movement

0 0 0 O 0 0

0 0 00 2 070

0 2 |1 |1 ff1 0

0o 2 [of2l0]0 O

0o o 241 |2 0

01 2 0 0 2 O

0 0 0 0 0 0 O
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Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)


http://cs231n.github.io/convolutional-networks/

MNIST Digit Recognition with CNNs
(in your browser

Network Visualization

input (24x24x1) Activations:

max activation: 1, min: 0
max gradient: 0.00015, min: -0.00014

Activation Gradients:

o

L]

conv (24x24x8) Activations:
filter size 5x5x1, stride 1 - -
s e IHEREEE
max gradient: 0.00005, min: -0.00006
parameters: 8x5x5x1+8 = 208 Activation Gradients:
Weights:
(B (E ) (2 ) (=) (ke ) (= ) () (=)
Weight Gradients:
(o) (i ) (M) (=) () () (=)()
softmax (1x1x10) Activations:
max activation: 0.99768, min: 0 H EEEEEEEE

max gradient: 0, min: 0

Example predictions on Test set

Bl B B RB=E
M~ B 0 B
4 ft 4 4 160

Figure from Andrej Karpathy



https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

CNN Summary

CNNs

— Are used for all aspects of computer vision, and have won
numerous pattern recognition competitions

— Able learn interpretable features at different levels of abstraction

— Typically, consist of convolution layers, pooling layers,
nonlinearities, and fully connected layers



Deep Learning Objectives

You should be able to...

Implement the common layers found in Convolutional Neural
Networks (CNNs) such as linear layers, convolution layers, max-
pooling layers, and rectified linear units (ReLU)

Explain how the shared parameters of a convolutional layer
could learn to detect spatial patterns in an image

Describe the backpropagation algorithm for a CNN

|dentify the parameter sharing used in a basic recurrent neural
network, e.g. an Elman network

Apply a recurrent neural network to model sequence data
Differentiate between an RNN and an RNN-LM



ML Big Picture

Theoretical Foundations:
What principles guide learning?
probabilistic
information theoretic
evolutionary search
ML as optimization




