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Reminders

• Homework 6: Learning Theory & Generative Models
– Out: Fri, Oct 27
– Due: Fri, Nov 3 at 11:59pm
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Peer Tutoring
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Tutor Tutee

better grades

deeper 
understanding

personal 
attention

better grades

mastery

Improved course for everyone



DISCRIMINATIVE AND GENERATIVE 
CLASSIFIERS
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Generative vs. Discriminative
• Generative Classifiers:
– Example: Naïve Bayes
– Define a joint model of the observations x and the labels y:
– Learning maximizes (joint) likelihood
– Use Bayes’ Rule to classify based on the posterior:

• Discriminative Classifiers:
– Example: Logistic Regression
– Directly model the conditional:  
– Learning maximizes conditional likelihood
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p(x, y)

p(y|x)

p(y|x) = p(x|y)p(y)/p(x)



Generative vs. Discriminative
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MAP Estimation and Regularization
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θMAP = argmax
θ

log p(D | θ) + log p(θ)

= argmin
θ

− log p(D | θ) − log p(θ)

= argmin
θ

JD(θ) + r(θ)

MAP

regularization

fit the data 
well

keep the 
model simple

Example: L2 regularization is 
equivalent to a Gaussian prior



Generative vs. Discriminative
Finite Sample Analysis (Ng & Jordan, 2001)
[Assume that we are learning from a finite training dataset]

Naïve Bayes and logistic regression form a generative-
discriminative model pair: 
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If model assumptions are correct: as the amount of training 
data increases, Gaussian Naïve Bayes and logistic regression 
approach the same (linear) decision boundary!

Furthermore, Gaussian Naïve Bayes is a more efficient 
learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has 
lower asymptotic error and does better than Gaussian Naïve 
Bayes



solid: NB 
dashed: LR
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Slide courtesy of William Cohen



Naïve Bayes makes stronger assumptions about the data
but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers: ….” Andrew Ng 
and Michael Jordan, NIPS 2001.
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solid: NB 
dashed: LR

Slide courtesy of William Cohen



Naïve Bayes vs. Logistic Reg.

Features
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Naïve Bayes: 
Features x are assumed to be conditionally independent 
given y. (i.e. Naïve Bayes Assumption)

Logistic Regression: 
No assumptions are made about the form of the features x.  
They can be dependent and correlated in any fashion. 



Naïve Bayes vs. Logistic Reg.

Learning (Parameter Estimation)

22

Naïve Bayes: 
Parameters are decoupled à Closed form solution for MLE

Logistic Regression: 
Parameters are coupled à No closed form solution – must 
use iterative optimization techniques instead



Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)
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Bernoulli Naïve Bayes: 
Parameters are probabilities à Beta prior (usually) pushes 
probabilities away from zero / one extremes

Logistic Regression: 
Parameters are not probabilities à Gaussian prior 
encourages parameters to be close to zero 

(effectively pushes the probabilities away from zero / one 
extremes)



Naïve Bayes vs. Logistic Regression
Question:
You just started working at a 
new company that manufactures  
comically large pennies. Your 
manager asks you to build a 
binary classifier that takes an 
image of a penny (on the factory 
assembly line) and predicts 
whether or not it has a defect. 

What follow-up questions would 
you pose to your manager in 
order to decide between using a 
Naïve Bayes classifier and a 
Logistic Regression classifier?
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Answer:



THE BIG PICTURE
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ML Big Picture
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Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?

 

boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete & 
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards

A
pp

lic
at

io
n 

A
re

as
Ke

y 
ch

al
le

ng
es

?
N

LP
, S

pe
ec

h,
 C

om
pu

te
r 

Vi
si

on
, R

ob
ot

ic
s,

 M
ed

ic
in

e,
 

Se
ar

ch



Classification and Regression: The Big Picture
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Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs) are simply fancy computation graphs (aka. 

hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on 
the backpropagation algorithm to compute the necessary 

gradients.
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BACKGROUND: HUMAN LANGUAGE 
TECHNOLOGIES

31



Human Language Technologies
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Speech Recognition

Machine Translation

Summarization

기계번역은특히영어와한국어와같은언어쌍의경우매우어렵습니다.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.



Bidirectional RNN

RNNs are a now commonplace backbone in 
deep learning approaches to natural language 
processing

33

x1

h1

y1

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

word embeddings

left-to-right hidden 
states

right-to-left hidden 
states

probabilistic output



BACKGROUND:
N-GRAM LANGUAGE MODELS
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n-Gram Language Model
• Goal: Generate realistic looking sentences in a human 

language
• Key Idea: condition on the last n-1 words to sample 

the nth word
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n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?

38

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2)
      p(w4 | w3)
      p(w5 | w4)
      p(w6 | w5)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightat

noise at

made noise

bat made

The bat

The

n-Gram Model (n=2)



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?

39

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?

40

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)

Note: This is called a model because we 
made some assumptions about how many 

previous words to condition on 
(i.e. only n-1 words)



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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p(wt | wt-2 = made, 
    wt-1 = noise)

wt p(· | ·, ·)

at 0.020

…

pollution 0.030

…

zebra 0.000

p(wt | wt-2 = The, 
    wt-1 = bat)

wt p(· | ·, ·)

ate 0.015

…

flies 0.046

…

zebra 0.000

p(wt | wt-2 = cows, 
    wt-1 = eat)

wt p(· | ·, ·)

corn 0.420

…

grass 0.510

…

zebra 0.000



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat

44

Approacheth, denay. dungy 
Thither! Julius think: grant,--O 
Yead linens, sheep's Ancient, 
Agreed: Petrarch plaguy Resolved 
pear! observingly honourest 
adulteries wherever scabbard 
guess; affirmation--his monsieur; 
died. jealousy, chequins me. 
Daphne building. weakness: sun-
rise, cannot stays carry't, 
unpurposed. prophet-like drink; 
back-return 'gainst surmise 
Bridget ships? wane; interim? 
She's striving wet;

5-Gram Model
I tell you, friends, most charitable care
ave the patricians of you. For your 
wants,  Your suffering in this dearth, 
you may as well Strike at the heaven 
with your staves as lift them Against 
the Roman state, whose course will on
The way it takes, cracking ten thousand 
curbs Of more strong link asunder than 
can ever Appear in your impediment. 
For the dearth,  The gods, not the 
patricians, make it, and Your knees to 
them, not arms, must help. 

Training Data (Shakespeaere)



RECURRENT NEURAL NETWORK (RNN) 
LANGUAGE MODELS
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Recurrent Neural Networks (RNNs)
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x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h t = H

⇣
W

x
�!
h
xt +W�!

h
�!
h

�!
h t�1 + b�!

h

⌘
(8)

 �
h t = H

⇣
W

x
 �
h
xt +W �

h
 �
h

 �
h t+1 + b �

h

⌘
(9)

yt = W�!
h y

�!
h t +W �

h y

 �
h t + by (10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5



The Chain Rule of Probability
Question: How can we define a probability distribution over a 
sequence of length T?

47

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2, w1)
      p(w5 | w4, w3, w2, w1)
      p(w6 | w5, w4, w3, w2, w1)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

Chain rule of probability:

Note: This is called the chain rule because 
it is always true for every probability 

distribution

Recall…



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector

48

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | fθ(w1))
      p(w3 | fθ(w2, w1))
      p(w4 | fθ(w3, w2, w1))
      p(w5 | fθ(w4, w3, w2, w1))
      p(w6 | fθ(w5, w4, w3, w2, w1))The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

RNN Language Model:



RNN Language Model
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The bat made nightnoise atSTART

p(w1|h1) 

h0

p(w2|h2) 

h1

p(w3|h3) 

h2

p(w4|h4) 

h3

p(w5|h5) 

h4

p(w6|h6) 

h5

p(w7|h7) 

h6

The bat made nightnoise at END

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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START

p(w1|h1) 

h0

The

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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TheSTART

h0

p(w2|h2) 

h1

bat

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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The batSTART

h0 h1

p(w3|h3) 

h2

made

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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The bat madeSTART

h0 h1 h2

p(w4|h4) 

h3

noise

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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The bat made noiseSTART

h0 h1 h2 h3

p(w5|h5) 

h4

at

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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The bat made noise atSTART

h0 h1 h2 h3 h4

p(w6|h6) 

h5

night

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

Answer:

Question: How can we create a distribution 
p(wt|ht) from ht?



RNN Language Model
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The bat made nightnoise atSTART

h0 h1 h2 h3 h4 h5

p(w7|h7) 

h6

END

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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The bat made nightnoise atSTART

p(w1|h1) 

h0

p(w2|h2) 

h1

p(w3|h3) 

h2

p(w4|h4) 

h3

p(w5|h5) 

h4

p(w6|h6) 

h5

p(w7|h7) 

h6

The bat made nightnoise at END

p(w1, w2, w3, … , wT) = p(w1 | h1) p(w2 | h2) … p(w2 | hT)



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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The same approach to 
sampling we used for an n-
Gram Language Model also 

works here for an RNN 
Language Model



Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

?? 
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.

59
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Which is the real 
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

Shakespeare’s As You Like It
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

RNN-LM Sample
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.
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Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

RNN-LM Sample
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

Shakespeare’s As You Like It
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

?? 
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.
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Which is the real 
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


SEQUENCE TO SEQUENCE MODELS
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Sequence to Sequence Model
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Speech Recognition

Machine Translation

Summarization

기계번역은특히영어와한국어와같은언어쌍의경우매우어렵습니다.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.



Sequence to Sequence Model
Now suppose you want generate 
a sequence conditioned on 
another input
Key Idea: 

1. Use an encoder model to 
generate a vector 
representation of the input

2. Feed the output of the 
encoder to a decoder which 
will generate the output

65

Let’s goSTART

d1 d2

p(w3|h3) 

d3

to

al cafe ahoraVamos

e1 e2 e3 e4

Encoder

Decoder

Applications: 
• translation: 

Spanish à English
• summarization: 

article à summary
• speech recognition: 

speech signal à transcription



BACKGROUND: COMPUTER VISION
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Example: Image Classification
• ImageNet LSVRC-2011 contest: 
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/

67



68



69



70



Feature Engineering for CV
Edge detection (Canny)

71
Figures from http://opencv.org

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

Figure from Lowe (1999) and Lowe (2004)



Example: Image Classification
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax



CNNs for Image Recognition
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Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)
Slide from Kaiming He



Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs) are simply fancy computation graphs (aka. 

hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on 
the backpropagation algorithm to compute the necessary 

gradients.
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CONVOLUTION
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What’s a convolution?
• Basic idea:

– Pick a 3x3 matrix F of weights
– Slide this over an image and compute the “inner product” 

(similarity) of F and the corresponding field of the image, and 
replace the pixel in the center of the field with the output of the 
inner product operation

• Key point:
– Different convolutions extract different types of low-level 

“features” from an image
– All that we need to vary to generate these different features is the 

weights of F

Slide adapted from William Cohen



Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.

82

Convolution

Input Image

Convolved Image0 0 0 0 0 0 0
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution

Input Image

Convolved Image0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

3 2 2 3 1

2 0 2 1 0

2 2 1 0 0

3 1 0 0 0

1 0 0 0 0



Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Background: Image Processing
A convolution matrix is used in image processing for 
tasks such as edge detection, blurring, sharpening, etc.
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Convolution Examples
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Original 
Image



Convolution Examples

101

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Smoothing 
Convolution



Convolution Examples
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Convolution Examples
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Convolution Examples
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What’s a convolution?
• Basic idea:

– Pick a 3x3 matrix F of weights
– Slide this over an image and compute the “inner product” 

(similarity) of F and the corresponding field of the image, and 
replace the pixel in the center of the field with the output of the 
inner product operation

• Key point:
– Different convolutions extract different types of low-level 

“features” from an image
– All that we need to vary to generate these different features is the 

weights of F

Slide adapted from William Cohen



DOWNSAMPLING
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

107

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0
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1 1
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1
1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0
1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output

114

Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1

1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1 0

1 1

1 1



Downsampling
• Suppose we use a convolution with stride 2
• Only 9 patches visited in input, so only 9 pixels in output
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3 3 1

3 1 0

1 0 0

1 1

1 1



Downsampling by Averaging
• Downsampling by averaging is a special case of convolution 

where the weights are fixed to a uniform distribution
• The example below uses a stride of 2
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Convolution

Input Image

Convolved Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

3/4 3/4 1/4

3/4 1/4 0

1/4 0 0

1/4 1/4

1/4 1/4



Max-Pooling
• Max-pooling with a stride > 1 is another form of downsampling
• Instead of averaging, we take the max value within the same range as 

the equivalently-sized convolution
• The example below uses a stride of 2
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Max-
pooling

Input Image
Max-Pooled 

Image1 1 1 1 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

1 1 1

1 1 0

1 0 0

xi,j xi,j+1

xi+1,j xi+1,j+1



CONVOLUTIONAL NEURAL NETS
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

121

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

122

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

• Convolutional Neural Networks (CNNs) provide 
another form of decision function

• Let’s see what they look like…



Convolutional Layer
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0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

.4 .5 .5 .5 .4

.4 .2 .3 .6 .3

.5 .4 .4 .2 .1

.5 .6 .2 .1 0

.4 .3 .1 0 0

θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

Learned
Convolution

Input Image

Convolved Image

CNN key idea: 
Treat convolution matrix as 
parameters and learn them!



Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

124

Architecture #1: LeNet-5



TRAINING CNNS
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

126

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

127

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

• Q: Now that we have the CNN 
as a decision function, how do 
we compute the gradient?

• A: Backpropagation of course!



SGD for CNNs
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LAYERS OF A CNN
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ReLU Layer
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Softmax Layer
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Fully-Connected Layer
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Convolutional Layer
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Convolutional Layer
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Max-Pooling Layer
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Max-Pooling Layer
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Convolutional Neural Network (CNN)
• Typical layers include:

– Convolutional layer
– Max-pooling layer
– Fully-connected (Linear) layer
– ReLU layer (or some other nonlinear activation function)
– Softmax

• These can be arranged into arbitrarily deep topologies

137

Architecture #1: LeNet-5



Architecture #2: AlexNet
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax



CNNs for Image Recognition
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(slide from Kaiming He’s recent presentation)
Slide from Kaiming He



Convolutional Neural Network (CNN)
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Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/ 



Convolutional Neural Network (CNN)

141

Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/ 



Convolutional Neural Network (CNN)
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Typical Architectures
1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 64

3x3 conv, 64

1x1 conv, 256

1x1 conv, 128, /2

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 128

3x3 conv, 128

1x1 conv, 512

1x1 conv, 256, /2

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 256

3x3 conv, 256

1x1 conv, 1024

1x1 conv, 512, /2

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

1x1 conv, 512

3x3 conv, 512

1x1 conv, 2048

ave pool, fc 1000

7x7 conv, 64, /2, pool/2

AlexNet, 8 layers
(ILSVRC 2012)

Revolution of Depth
ResNet, 152 layers

(ILSVRC 2015)

3x3 conv, 64

3x3 conv, 64, pool/2

3x3 conv, 128

3x3 conv, 128, pool/2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, pool/2

fc, 4096

fc, 4096

fc, 1000

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

VGG, 19 layers
(ILSVRC 2014)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.



In-Class Poll

Question:
Why do many layers 
used in computer 
vision not have 
location specific 
parameters?

143

Answer:



Convolutional Layer

144

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

θ11 θ12

θ21 θ22

2x2 
Convolution

Input Image
θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

3x3 
Convolution

θ11 θ12 θ13 θ14

θ21 θ22 θ23 θ24

θ31 θ32 θ33 θ34

θ41 θ42 θ43 θ44

4x4 
Convolution

For a convolutional layer, how do we pick the kernel size 
(aka. the size of the convolution)?

• A small kernel can only see a very small part of the image, 
but is fast to compute

• A large kernel can see more of the image, but at the 
expense of speed



COMPUTER VISION
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Common Tasks in Computer Vision
1. Image Classification
2. Image Classification + 

Localization
3. Human Pose Estimation
4. Semantic Segmentation
5. Object Detection
6. Instance Segmentation
7. Image Captioning

146
Figure from https://arxiv.org/pdf/1704.06857.pdf



Image Classification

• Given an 
image, predict 
a single label

• A multi-class 
classification 
problem

147
Figure from https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdfFigure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities

between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Image Classification + Localization
• Given an image, 

predict a single 
label and a 
bounding box 
for the object

• Bounding box is 
represented as 
(x, y, h, w), 
position (x,y) 
and 
height/width 
(h,w)

148
Figure from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459257



Human Pose Estimation
• Given an image of a human, 

predict the position of 
several keypoints (left 
hand, right hand, left 
elbow, …, right foot)

• This is a multiple regression 
problem, where each 
keypoint has a 
corresponding position 
(xi,yi)

149Figure from 
https://openaccess.thecvf.com/content_cvpr_2014/papers/Toshev_DeepPose_Human_Pose_2014_CVPR_paper.pdf



Semantic Segmentation
• Given an image, 

predict a label for 
every pixel in the 
image

• Not merely a 
classification 
problem, because 
there are strong 
correlations between 
pixel-specific labels

150Figure from https://openaccess.thecvf.com/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf



Object Detection
• Given an image, for each object predict a bounding box 

and a label (x,y,w,h,l)
• Example: R-CNN

– (x=110, y=13, w=50, h=72, l=person)
– (x=90, y=55, w=81, h=87, l=horse)
– (x=421, y=533, w=24, h=30, l=chair)
– (x=2, y=25, w=51, h=121, l=gate)

151Figure from 
https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf



Instance Segmentation
• Predict per-pixel labels as 

in semantic segmentation, 
but differentiate between 
different instances of the 
same label

• Example: if there are two 
people in the image, one 
person should be labeled 
person-1 and one should 
be labeled person-2

152
Figure from https://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf 



Image Captioning
• Take an image as 

input, and generate 
a sentence 
describing it as 
output (i.e. the 
caption)

• Typical methods 
include a deep 
CNN/transformer 
and a RNN-like 
language model

• (The task of Dense 
Captioning is to 
generate one 
caption per 
bounding box) 

153
Figure from https://dl.acm.org/doi/pdf/10.1145/3295748



Image Captioning
• Take an image as 

input, and generate 
a sentence 
describing it as 
output (i.e. the 
caption)

• Typical methods 
include a deep 
CNN/transformer 
and a RNN-like 
language model

• (The task of Dense 
Captioning is to 
generate one 
caption per 
bounding box) 
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Table from https://dl.acm.org/doi/pdf/10.1145/3295748 



Medical Image Analysis

Notice that most of 
these tasks are 
structured prediction 
problems, not 
merely classification

155
Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/ 



CNN VISUALIZATIONS
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Visualization of CNN
https://adamharley.com/nn_vis/cnn/2d.html 

https://adamharley.com/nn_vis/cnn/2d.html


Convolution of a Color Image
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A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

• Color images consist of 3 floats per pixel for 
RGB (red, green blue) color values

• Convolution must also be 3-dimensional



Animation of 3D Convolution

159
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

http://cs231n.github.io/convolutional-networks/ 

http://cs231n.github.io/convolutional-networks/


MNIST Digit Recognition with CNNs 
(in your browser)

160

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html 

Figure from Andrej Karpathy

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html


CNN Summary

CNNs
– Are used for all aspects of computer vision, and have won 

numerous pattern recognition competitions
– Able learn interpretable features at different levels of abstraction
– Typically, consist of convolution layers, pooling layers, 

nonlinearities, and fully connected layers
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Deep Learning Objectives
You should be able to…
• Implement the common layers found in Convolutional Neural 

Networks (CNNs) such as linear layers, convolution layers, max-
pooling layers, and rectified linear units (ReLU)

• Explain how the shared parameters of a convolutional layer 
could learn to detect spatial patterns in an image

• Describe the backpropagation algorithm for a CNN
• Identify the parameter sharing used in a basic recurrent neural 

network, e.g. an Elman network
• Apply a recurrent neural network to model sequence data
• Differentiate between an RNN and an RNN-LM
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ML Big Picture
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Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?

 

boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete & 
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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