
Automatic Differentiation
&

Transformers

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley
Lecture 28

Nov. 1, 2023

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 6: Learning Theory & Generative Models
– Out: Fri, Oct 27
– Due: Fri, Nov 3 at 11:59pm

• Exam 2 Practice Problems
– Out: Fri, Nov 3

• Exam 2: Thu, Nov 9

2

MODULE-BASED AUTOMATIC
DIFFERENTIATION

3

Backpropagation

4

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order.

Let u1,…, uM denote all the nodes with vj as an input
Assuming that y = h(u) = h(u1,…, uM)
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures computing

(dui/dvj) is easy)

Backpropagation

5

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order.

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backpropagation

Why is the backpropagation algorithm efficient?
1. Reuses computation from the forward pass in the backward pass
2. Reuses partial derivatives throughout the backward pass (but

only if the algorithm reuses shared computation in the forward
pass)

(Key idea: partial derivatives in the backward pass should be
thought of as variables stored for reuse)

6

Training

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

7

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

Gradients

Backpropagation can compute this
gradient!
And it’s a special case of a more
general algorithm called reverse-
mode automatic differentiation that
can compute the gradient of any
differentiable function efficiently!

Backpropagation:
Abstract Picture

8

(F) Loss
J =

�K
k=1 y�

k HQ;(yk)

(E) Output (softmax)
yk = 2tT(bk)�K

l=1 2tT(bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Forward Backward

5. J = −yT log ŷ 6. gŷ = −y ÷ ŷ

4. ŷ = softmax(b) 7. gb = gT

ŷ
(

diag(ŷ)− ŷŷT
)

3. b = βz 8. gβ = gT

b zT

gz = βT gT

b

2. z = σ(a) 10. ga = gz " z " (1− z)

1. a = αx 11. gα = gaxT

…

…

Output

Input

Hidden Layer

…

Backpropagation:
Procedural Method

Drawbacks of
Procedural Method
1. Hard to reuse /

adapt for other
models

2. (Possibly) harder to
make individual
steps more efficient

3. Hard to find source
of error if finite-
difference check
reports an error
(since it tells you
only that there is an
error somewhere in
those 17 lines of
code)

9

Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Paramsα, β)
2: a = αx
3: z = σ(a)
4: b = βz
5: ŷ = softmax(b)
6: J = −yT log ŷ
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Paramsα, β,

Intermediates o)
2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gŷ = −y ÷ ŷ
4: gb = gT

ŷ
(

diag(ŷ)− ŷŷT
)

5: gβ = gT

b zT

6: gz = βT gT
b

7: ga = gz " z " (1− z)
8: gα = gaxT

9: return parameter gradients gα,gβ

Module-based AutoDiff
Module-based automatic differentiation (AD / Autodiff) is a technique that has
long been used to develop libraries for deep learning
• Dynamic neural network packages allow a specification of the computation

graph dynamically at runtime
– PyTorch http://pytorch.org
– Torch http://torch.ch
– DyNet https://dynet.readthedocs.io
– TensorFlow with Eager Execution https://www.tensorflow.org

• Static neural network packages require a static specification of a
computation graph which is subsequently compiled into code
– TensorFlow with Graph Execution https://www.tensorflow.org
– Aesara (and Theano) https://aesara.readthedocs.io
– (These libraries are also module-based, but herein by “module-based AD” we mean the

dynamic approach)

10

http://pytorch.org/
http://torch.ch/
https://dynet.readthedocs.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://aesara.readthedocs.io/

Module-based AutoDiff
• Key Idea:

– componentize the computation of the neural-network into layers
– each layer consolidates multiple real-valued nodes in the

computation graph (a subset of them) into one vector-valued node
(aka. a module)

• Each module is capable of two actions:

11

1. Forward computation of output b = [b1, . . . , bB] given input
a = [a1, . . . , aA] via some di昀昀erentiable function f . That is
b = f(a).

2. Backward computation of the gradient of the input
ga = ∇aJ = [∂J

∂a1

, . . . , ∂J
∂aA

] given the gradient of output
gb = ∇bJ = [∂J

∂b1
, . . . , ∂J

∂bB
], where J is the 昀椀nal real‐valued

output of the entire computation graph. This is done via the
chain rule ∂J

∂ai
=

∑J
j=1

∂J
∂bj

dbj
dai

for all i ∈ {1, . . . , A}.

module

a

b gb

ga

Module-based AutoDiff

12

Dimensions: input a ∈ RA, output b ∈ RB , gradient
of output ga ! ∇aJ ∈ RA, and gradient of input gb !

∇bJ ∈ RB .

Sigmoid Module The sigmoid layer has only one input
vectora. Belowσ is the sigmoidappliedelement-
wise, and! is element-wisemultiplication s.t. u!
v = [u1v1, . . . , uMvM].
1: procedure SĎČĒĔĎĉFĔėĜĆėĉ(a)
2: b = σ(a)
3: return b
4: procedure SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gb ! b ! (1− b)
6: return ga

Softmax Module The softmax layer has only one input
vector a. For any vector v ∈ RD, we have that
diag(v) returns aD ×D diagonal matrix whose
diagonal entries arev1, v2, . . . , vD andwhosenon-
diagonal entries are zero.
1: procedure SĔċęĒĆĝFĔėĜĆėĉ(a)
2: b = softmax(a)
3: return b
4: procedure SĔċęĒĆĝBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gT

b
(

diag(b)− bbT
)

6: return ga

Linear Module The linear layer has two inputs: a vec-
tor a and parameters ω ∈ RB×A. The output b
is not used by LĎēĊĆėBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure LĎēĊĆėFĔėĜĆėĉ(a, ω)
2: b = ωa
3: return b
4: procedure LĎēĊĆėBĆĈĐĜĆėĉ(a, ω, b, gb)
5: gω = gbaT

6: ga = ω
T gb

7: return gω,ga

Cross-Entropy Module Thecross-entropy layer has two in-
puts: a gold one-hot vector a and a predicted proba-
bility distribution â. It’s output b ∈ R is a scalar. Be-
low ÷ is element-wise division. The output b is not
used by CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(a, â)
2: b = −aT log â
3: return b
4: procedure CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(a, â, b, gb)
5: gâ = −gb(a ÷ â)
6: return ga

Module-based AutoDiff

Advantages of
Module-based
AutoDiff
1. Easy to reuse /

adapt for other
models

2. Encapsulated
layers are easier
to optimize (e.g.
implement in C++
or CUDA)

3. Easier to find
bugs because we
can run a finite-
difference check
on each layer
separately

13

Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Parametersα,
β)

2: a = LĎēĊĆėFĔėĜĆėĉ(x,α)
3: z = SĎČĒĔĎĉFĔėĜĆėĉ(a)
4: b = LĎēĊĆėFĔėĜĆėĉ(z,β)
5: ŷ = SĔċęĒĆĝFĔėĜĆėĉ(b)
6: J = CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(y, ŷ)
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Parameters
α, β, Intermediates o)

2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gJ = dJ

dJ
= 1 ! Base case

4: gŷ = CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(y, ŷ, J, gJ)
5: gb = SĔċęĒĆĝBĆĈĐĜĆėĉ(b, ŷ,gŷ)
6: gβ,gz = LĎēĊĆėBĆĈĐĜĆėĉ(z,b,gb)
7: ga = SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, z,gz)
8: gα,gx = LĎēĊĆėBĆĈĐĜĆėĉ(x,a,ga) !We discard gx
9: return parameter gradients gα,gβ

Module-based AutoDiff (OOP Version)

Object-Oriented Implementation:
– Let each module be an object
– Then allow the control flow dictate the creation of the computation graph
– No longer need to implement NNBackward(·), just follow the computation

graph in reverse topological order

14

1 class Sigmoid(Module)
2 method forward(a)
3 b = σ(a)
4 return b
5 method backward(a , b , gb)
6 ga = gb ! b ! (1− b)
7 return ga

1 class Softmax(Module)
2 method forward(a)
3 b = softmax(a)
4 return b
5 method backward(a , b , gb)
6 ga = gT

b
(

diag(b)− bbT
)

7 return ga

1 class Linear(Module)
2 method forward(a , ω)
3 b = ωa
4 return b
5 method backward(a , ω , b , gb)
6 gω = gbaT

7 ga = ω
T gb

8 return gω,ga

1 class CrossEntropy(Module)
2 method forward(a , â)
3 b = −aT log â
4 return b
5 method backward(a , â , b , gb)
6 gâ = −gb(a ÷ â)
7 return ga

Module-based AutoDiff (OOP Version)

15

1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin1_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

Module-based AutoDiff (OOP Version)

16

1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin1_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()

Module-based AutoDiff (OOP Version)

17

1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()

PyTorch
The same simple
neural network
we defined in
pseudocode can
also be defined
in PyTorch.

18
Example adapted from https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

PyTorch

19

Q: Why don’t we call linear.forward() in PyTorch?

A: This is just syntactic sugar. There’s a special method in Python
__call__ that allows you to define what happens when you treat
an object as if it were a function.

In other words, running the following:
 linear(x)
is equivalent to running:
 linear.__call__(x)
which in PyTorch is (nearly) the same as running:
 linear.forward(x)

This is because PyTorch defines every Module’s __call__ method
to be something like this:
 def __call__(self):
 self.forward()

PyTorch

20

Q: Why don’t we pass in the parameters to a PyTorch Module?

A: This just makes your code cleaner.

In PyTorch, you store the parameters inside the Module and “mark”
them as parameters that should contribute to the eventual gradient
used by an optimizer

LARGE LANGUAGE MODELS

21

What is ChatGPT?

• ChatGPT is a large (in the sense of having many parameters)
language model, fine-tuned to be a dialogue agent

• The base language model is GPT-3.5 which was trained on a
large quantity of text

22

TASK: LANGUAGE MODELING

24

n-Gram Language Model
Question: How can we define a probability distribution over a
sequence of length T?

25

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) =
 p(w1)
 p(w2 | w1)
 p(w3 | w2, w1)
 p(w4 | w3, w2)
 p(w5 | w4, w3)
 p(w6 | w5, w4)

Recall…

n-Gram Language Model
Question: How can we define a probability distribution over a
sequence of length T?

26

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) =
 p(w1)
 p(w2 | w1)
 p(w3 | w2, w1)
 p(w4 | w3, w2)
 p(w5 | w4, w3)
 p(w6 | w5, w4)

Note: This is called a model because we
made some assumptions about how many

previous words to condition on
(i.e. only n-1 words)

Recall…

Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram
Model?

27

p(wt | wt-2 = made,
 wt-1 = noise)

wt p(· | ·, ·)

at 0.020

…

pollution 0.030

…

zebra 0.000

p(wt | wt-2 = The,
 wt-1 = bat)

wt p(· | ·, ·)

ate 0.015

…

flies 0.046

…

zebra 0.000

p(wt | wt-2 = cows,
 wt-1 = eat)

wt p(· | ·, ·)

corn 0.420

…

grass 0.510

…

zebra 0.000

Recall…

Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram
Model?

28

wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows,
 wt-1 = eat)

Recall…

Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer:
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat

29

The bat made nightnoise at

p(
· |

ST
ART)

START

p(
· |

ST
ART,

 Th
e)

p(
· |

Th
e,

 b
at

)

p(
· |

ba
t,

m
ad

e)
p(

· |
m

ad
e,

 n
oi

se
)

p(
· |

no
ise

, a
t)

Recall…

Noisy Channel Models
• Prior to 2017, two tasks relied heavily on language models:

– speech recognition
– machine translation

• Definition: a noisy channel model combines a transduction model (probability of
converting y to x) with a language model (probability of y)

• Goal: to recover y from x
– For speech: x is acoustic signal, y is transcription
– For machine translation: x is sentence in source language, y is sentence in target language

30

ŷ = argmax
y

p(y | x) = argmax
y

p(x | y)p(y)

transduction
model

language
model

Large (n-Gram) Language Models
• The earliest (truly) large language models

were n-gram models
• Google n-Grams:

– 2006: first release, English n-grams
• trained on 1 trillion tokens of web text (95 billion

sentences)
• included 1-grams, 2-grams, 3-grams, 4-grams, and 5-

grams

– 2009 – 2010: n-grams in Japanese, Chinese,
Swedish, Spanish, Romanian, Portuguese,
Polish, Dutch, Italian, French, German, Czech

31

serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234
serve as the industrial 52
serve as the industry 607
serve as the info 42

accessoire Accessoires </S> 515
accessoire Accord i-CTDi 65
accessoire Accra accu 312
accessoire Acheter cet 1402
accessoire Ajouter au 160
accessoire Amour Beauté 112
accessoire Annuaire LOEIL 49
accessoire Architecture artiste 531
accessoire Attention : 44

Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: 977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

English n-gram
model is ~3 billion

parameters

Large (n-Gram) Language Models
• The earliest (truly) large language models

were n-gram models
• Google n-Grams:

– 2006: first release, English n-grams
• trained on 1 trillion tokens of web text (95 billion

sentences)
• included 1-grams, 2-grams, 3-grams, 4-grams, and 5-

grams

– 2009 – 2010: n-grams in Japanese, Chinese,
Swedish, Spanish, Romanian, Portuguese,
Polish, Dutch, Italian, French, German, Czech

32

serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234
serve as the industrial 52
serve as the industry 607
serve as the info 42

accessoire Accessoires </S> 515
accessoire Accord i-CTDi 65
accessoire Accra accu 312
accessoire Acheter cet 1402
accessoire Ajouter au 160
accessoire Amour Beauté 112
accessoire Annuaire LOEIL 49
accessoire Architecture artiste 531
accessoire Attention : 44

Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: 977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

English n-gram
model is ~3 billion

parameters

Q: Is this a large model?
A: Yes!

Q: Is this a large training set?
A: Yes!

How large are LLMs?

33

Model Creators Year of
release

Training Data (#
tokens)

Model Size (#
parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3
(cf. ChatGPT)

OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

GPT-4 OpenAI 2023 ? ?

Comparison of some recent large language models (LLMs)

MODEL: GPT
Transformer Language Models

36

Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable

corresponding to the hidden unit
• For a fully connected feed-forward neural

network, a hidden unit is a nonlinear
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side

note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the

intercept term is NOT shown as a node, but
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e.
its weight does NOT appear in the picture
anywhere)

– The diagram does NOT include any nodes
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the

algorithm
• Node is labeled with the function that it

computes (inside the box) and also the
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature

vector should appear in the graph
– It’s perfectly fine to include the loss

37

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

(C’) Parameters

Given βj , ∀j

(A’) Parameters

Given αij , ∀i, j

(E’) Label

Given y
∗

Recall…

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 38

The bat made nightnoise atSTART

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

p(w5|h5)

h5

p(w6|h6)

h6

p(w7|h7)

h7

The bat made nightnoise at END

Recall…

RNNs and Forgetting

39

Attention

40

v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Attention

41

v1

a1,1

s1,1

softmax

x′

1 =

1∑

j=1

a1,jvj

Attention

42

v1 v2

a2,1

s2,1 s2,2

softmax

x′

2 =

2∑

j=1

a2,jvj

a2,2

Attention

43

v1 v2 v3

a3,1 a3,1 a3,1

s3,1 s3,2 s3,3

softmax

x′

3 =

3∑

j=1

a3,jvj

Attention

44

v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Attention

45

v1 v2 v3 v4

a4,1 a4,2 a4,3

s4,1 s4,2 s4,3 s4,4

softmax

x′

t =

t∑

j=1

at,jvj

values

scores

attention weights

x1’ x2’ x3’ x4’

a4,4

v1 v2 v3 v4

softmax

Scaled Dot-Product Attention

46

x1 x2 x3 x4

vj = WT
v xj

Wv values

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

47

x1 x2 x3 x4

Wk

vj = WT
v xj

kj = WT
k xj

Wv values

keys

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

48

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

49

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

scoress4,j = kT
j q4/

√

dk

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

50

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

51

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

attention

qj = WT
q xj

Scaled Dot-Product Attention

52

x′

t =

t∑

j=1

at,jvj

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

st,j = kT
j qt/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsat = softmax(st)

attention

x1’ x2’ x3’ x4’

Animation of 3D Convolution

53
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

Recall…

http://cs231n.github.io/convolutional-networks/

Multi-headed Attention

54

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer

• Each head gets its own
parameters

• We can concatenate all
the outputs to get a
single vector for each
time step

Multi-headed Attention

55

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer

• Each head gets its own
parameters

• We can concatenate all
the outputs to get a
single vector for each
time step

• To ensure the dimension of the
input embedding xt is the same
as the output embedding xt’,
Transformers usually choose
the embedding sizes and
number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

• Then concatenate the outputs

Multi-headed Attention

56

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer

• Each head gets its own
parameters

• We can concatenate all
the outputs to get a
single vector for each
time step

• To ensure the dimension of the
input embedding xt is the same
as the output embedding xt’,
Transformers usually choose
the embedding sizes and
number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

• Then concatenate the outputs

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 57

The bat made nightnoise atSTART

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

p(w5|h5)

h5

p(w6|h6)

h6

p(w7|h7)

h7

The bat made nightnoise at END

Recall…

Transformer Language Model

58

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

Important!
• RNN computation

graph grows
linearly with the
number of input
tokens

• Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

Transformer Language Model

59

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

Important!
• RNN computation

graph grows
linearly with the
number of input
tokens

• Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

Layer Normalization
• The Problem: internal

covariate shift occurs
during training of a deep
network when a small
change in the low layers
amplifies into a large
change in the high layers

• One Solution: Layer
normalization normalizes
each layer and learns
elementwise gain/bias

• Such normalization allows
for higher learning rates
(for faster convergence)
without issues of
diverging gradients

61
Figure from https://arxiv.org/pdf/1607.06450.pdf

Given input a ∈ R
K , LayerNorm computes output b ∈ R

K :

b = γ "
a − µ

σ
⊕ β

where we have mean µ = 1

K

∑

K

k=1
ak,

standard deviation σ =
√

1

K

∑

K

k=1
(ak − µ)2,

and parameters γ ∈ R
K , β ∈ R

K .
" and⊕ denote elementwise multiplication and addition.

Residual Connections
• The Problem: as network

depth grows very large, a
performance degradation
occurs that is not
explained by overfitting
(i.e. train / test error both
worsen)

• One Solution: Residual
connections pass a copy
of the input alongsidethe

• These residual
connections allow for
effective training of very
deep networks that
perform better than their
shallower (though still
deep) counterparts

62
Figure from https://arxiv.org/pdf/1512.03385.pdf

a

b

b = f(a)

Plain Connection

a

b

b = b′
+ a

Residual Connection

b′ = f(a)

Residual Connections
• The Problem: as network

depth grows very large, a
performance degradation
occurs that is not
explained by overfitting
(i.e. train / test error both
worsen)

• One Solution: Residual
connections pass a copy
of the input alongsidethe

• These residual
connections allow for
effective training of very
deep networks that
perform better than their
shallower (though still
deep) counterparts

63
Figure from https://arxiv.org/pdf/1512.03385.pdf

a

b

b = f(a)

Plain Connection

a

b

Residual Connection

b = f(a) + a

Why are residual connections helpful?
Instead of f(a) having to learn a full

transformation of a, f(a) only needs to learn an
additive modification of a (i.e. the residual).

Transformer Layer

64

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer Layer

65

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer

Transformer Layer

66

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer

Transformer Layer

67

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

x1’ x2’ x3’ x4’

Transformer layer

Transformer Language Model

68

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer

Question:
Suppose we have the following input
embeddings and attention weights:
• x1 = [1,0,0,0] a4,1 = 0.1
• x2 = [0,1,0,0] a4,2 = 0.2
• x3 = [0,0,2,0] a4,3 = 0.6
• x4 = [0,0,0,1] a4,4 = 0.1
And Wv = I. Then we can compute x4’.
Now suppose we swap the
embeddings x2 and x3 such that
• x2 = [0,0,2,0]
• x3 = [0,1,0,0]
What is the new value of x4’?

Answer:

In-Class Poll

69

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Position Embeddings
• The Problem: Because attention is position

invariant, we need a way to learn about positions
• The Solution: Use (or learn) a collection of position

specific embeddings: pt represents what it means
to be in position t. And add this to the word
embedding wt.
The key idea is that every word that appears in
position t uses the same position embedding pt

• There are a number of varieties of position
embeddings:
– Some are fixed (based on sine and cosine), whereas

others are learned (like word embeddings)
– Some are absolute (as described above) but we can

also use relative position embeddings (i.e. relative
to the position of the query vector)

70

w1 w2 w3 w4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Transformer layer

Transformer layer

Transformer layer

p1 p2 p3 p4

+ + + +

GPT-3

• GPT stands for Generative Pre-trained Transformer
• GPT is just a Transformer LM, but with a huge number of

parameters

73

Model # layers dimension
of states

dimension
of inner
states

attention
heads

params

GPT (2018) 12 768 3072 12 117M

GPT-2
(2019)

48 1600 -- -- 1542M

GPT-3
(2020)

96 12288 4*12288 96 175000M

Matrix Version of Scaled Dot-Product Attention
• For speed, we compute

all the queries at once
using matrix operations

• First we pack the queries,
keys, values into
matrices:
– Q = [q1,…,qN]T

– K = [k1,…,kN]T

– V = [v1,…,vN]T

• Then we compute all the
queries at once:

74

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention
weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Attn(x1:N) = softmax
(

QKT

√

dk
V

)

Matrix Version of Scaled Dot-Product Attention
• For speed, we compute

all the queries at once
using matrix operations

• First we pack the queries,
keys, values into
matrices:
– Q = [q1,…,qN]T

– K = [k1,…,kN]T

– V = [v1,…,vN]T

• Then we compute all the
queries at once:

75

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention
weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Attn(x1:N) = softmax
(

QKT

√

dk
V

)

In practice, the attention weights are computed for all time
steps T, then we mask out (by setting to –inf) all the inputs to
the softmax that are for the timesteps to the right of the query.

LEARNING A TRANSFORMER LM

81

Learning a Deep Language Model
• Each training example is

a sequence (e.g.
sentence), so we have
training data D = {w(1),
w(2), …, w(N)}

• The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is
typically the log-
likelihood of the training
examples:
 J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch
SGD (or your favorite
flavor of mini-batch SGD)

83

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7)

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT)
 = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one
training
example

Deep Language Model

+
J = log p(w)

END

Learning a Transformer Language Model
• Each training example is

a sequence (e.g.
sentence), so we have
training data D = {w(1),
w(2), …, w(N)}

• The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is
typically the log-
likelihood of the training
examples:
 J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch
SGD (or your favorite
flavor of mini-batch SGD)

84

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7)

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT)
 = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one
training
example

Transformer LM

+
J = log p(w)

END

Language Modeling
An aside:
• State-of-the-art language models currently tend to rely on transformer networks

(e.g. GPT-2)
• RNN-LMs comprised most of the early neural LMs that led to current SOTA

architectures

86
Figure from https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Why does efficiency matter?
Case Study: GPT-3
• # of training

tokens = 500
billion

• # of
parameters =
175 billion

• # of cycles = 50
petaflop/s-days
(each of which
are 8.64e+19
flops)

87
Figure from https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Summary
• Task: Language Modeling
– noisy channel models (speech / MT)
– (historical) Large LMs (n-gram models)

• Model: GPT
– Attention (computation graph)
– Transformer-LM (cf. RNN-LM)

• Learning for LLMs
– Pre-training (unsupervised learning)
– Reinforcement Learning with Human Feedback (deep RL)

• Optimization for LLMs
– Adam (cf. SGD)
– Distributed training

• Societal Impacts of LLMs
104

