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Reminders

• Homework 6: Learning Theory & Generative Models
– Out: Fri, Oct 27
– Due: Fri, Nov 3 at 11:59pm

• Exam 2 Practice Problems
– Out: Fri, Nov 3

• Exam 2: Thu, Nov 9
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MODULE-BASED AUTOMATIC 
DIFFERENTIATION
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Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order. 

Let u1,…, uM denote all the nodes with vj as an input 
Assuming that y = h(u) = h(u1,…, uM) 
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures computing 

(dui/dvj) is easy)
 



Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui 
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node



Backpropagation

Why is the backpropagation algorithm efficient?
1. Reuses computation from the forward pass in the backward pass
2. Reuses partial derivatives throughout the backward pass (but 

only if the algorithm reuses shared computation in the forward 
pass)

(Key idea: partial derivatives in the backward pass should be 
thought of as variables stored for reuse)
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Training



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



Backpropagation: 
Abstract Picture
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(F) Loss
J =

�K
k=1 y�

k HQ;(yk)

(E) Output (softmax)
yk = 2tT(bk)�K

l=1 2tT(bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Forward Backward

5. J = −yT log ŷ 6. gŷ = −y ÷ ŷ

4. ŷ = softmax(b) 7. gb = gT

ŷ
(

diag(ŷ)− ŷŷT
)

3. b = βz 8. gβ = gT

b zT

gz = βT gT

b

2. z = σ(a) 10. ga = gz " z " (1− z)

1. a = αx 11. gα = gaxT

…

…

Output

Input

Hidden Layer

…



Backpropagation: 
Procedural Method

Drawbacks of 
Procedural Method
1. Hard to reuse / 

adapt for other 
models

2. (Possibly) harder to 
make individual 
steps more efficient

3. Hard to find source 
of error if finite-
difference check 
reports an error 
(since it tells you 
only that there is an 
error somewhere in 
those 17 lines of 
code)
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Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Paramsα, β)
2: a = αx
3: z = σ(a)
4: b = βz
5: ŷ = softmax(b)
6: J = −yT log ŷ
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Paramsα, β,

Intermediates o)
2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gŷ = −y ÷ ŷ
4: gb = gT

ŷ
(

diag(ŷ)− ŷŷT
)

5: gβ = gT

b zT

6: gz = βT gT
b

7: ga = gz " z " (1− z)
8: gα = gaxT

9: return parameter gradients gα,gβ



Module-based AutoDiff
Module-based automatic differentiation (AD / Autodiff) is a technique that has 
long been used to develop libraries for deep learning 
• Dynamic neural network packages allow a specification of the computation 

graph dynamically at runtime
– PyTorch http://pytorch.org 
– Torch http://torch.ch  
– DyNet https://dynet.readthedocs.io 
– TensorFlow with Eager Execution https://www.tensorflow.org 

• Static neural network packages require a static specification of a 
computation graph which is subsequently compiled into code
– TensorFlow with Graph Execution https://www.tensorflow.org 
– Aesara (and Theano) https://aesara.readthedocs.io 
– (These libraries are also module-based, but herein by “module-based AD” we mean the 

dynamic approach)
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http://pytorch.org/
http://torch.ch/
https://dynet.readthedocs.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://aesara.readthedocs.io/


Module-based AutoDiff
• Key Idea: 

– componentize the computation of the neural-network into layers
– each layer consolidates multiple real-valued nodes in the 

computation graph (a subset of them) into one vector-valued node 
(aka. a module)

• Each module is capable of two actions:
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1. Forward computation of output b = [b1, . . . , bB ] given input
a = [a1, . . . , aA] via some di昀昀erentiable function f . That is
b = f(a).

2. Backward computation of the gradient of the input
ga = ∇aJ = [ ∂J

∂a1

, . . . , ∂J
∂aA

] given the gradient of output
gb = ∇bJ = [ ∂J

∂b1
, . . . , ∂J

∂bB
], where J is the 昀椀nal real‐valued

output of the entire computation graph. This is done via the
chain rule ∂J

∂ai
=

∑J
j=1

∂J
∂bj

dbj
dai

for all i ∈ {1, . . . , A}.

module

a

b gb

ga



Module-based AutoDiff
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Dimensions: input a ∈ RA, output b ∈ RB , gradient
of output ga ! ∇aJ ∈ RA, and gradient of input gb !

∇bJ ∈ RB .

Sigmoid Module The sigmoid layer has only one input
vectora. Belowσ is the sigmoidappliedelement-
wise, and! is element-wisemultiplication s.t. u!
v = [u1v1, . . . , uMvM ].
1: procedure SĎČĒĔĎĉFĔėĜĆėĉ(a)
2: b = σ(a)
3: return b
4: procedure SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gb ! b ! (1− b)
6: return ga

Softmax Module The softmax layer has only one input
vector a. For any vector v ∈ RD, we have that
diag(v) returns aD ×D diagonal matrix whose
diagonal entries arev1, v2, . . . , vD andwhosenon-
diagonal entries are zero.
1: procedure SĔċęĒĆĝFĔėĜĆėĉ(a)
2: b = softmax(a)
3: return b
4: procedure SĔċęĒĆĝBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gT

b
(

diag(b)− bbT
)

6: return ga

Linear Module The linear layer has two inputs: a vec-
tor a and parameters ω ∈ RB×A. The output b
is not used by LĎēĊĆėBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure LĎēĊĆėFĔėĜĆėĉ(a, ω)
2: b = ωa
3: return b
4: procedure LĎēĊĆėBĆĈĐĜĆėĉ(a, ω, b, gb)
5: gω = gbaT

6: ga = ω
T gb

7: return gω,ga

Cross-Entropy Module Thecross-entropy layer has two in-
puts: a gold one-hot vector a and a predicted proba-
bility distribution â. It’s output b ∈ R is a scalar. Be-
low ÷ is element-wise division. The output b is not
used by CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(a, â)
2: b = −aT log â
3: return b
4: procedure CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(a, â, b, gb)
5: gâ = −gb(a ÷ â)
6: return ga



Module-based AutoDiff

Advantages of 
Module-based 
AutoDiff
1. Easy to reuse / 

adapt for other 
models

2. Encapsulated 
layers are easier 
to optimize (e.g. 
implement in C++ 
or CUDA)

3. Easier to find 
bugs because we 
can run a finite-
difference check 
on each layer 
separately
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Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Parametersα,
β)

2: a = LĎēĊĆėFĔėĜĆėĉ(x,α)
3: z = SĎČĒĔĎĉFĔėĜĆėĉ(a)
4: b = LĎēĊĆėFĔėĜĆėĉ(z,β)
5: ŷ = SĔċęĒĆĝFĔėĜĆėĉ(b)
6: J = CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(y, ŷ)
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Parameters
α, β, Intermediates o)

2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gJ = dJ

dJ
= 1 ! Base case

4: gŷ = CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(y, ŷ, J, gJ)
5: gb = SĔċęĒĆĝBĆĈĐĜĆėĉ(b, ŷ,gŷ)
6: gβ,gz = LĎēĊĆėBĆĈĐĜĆėĉ(z,b,gb)
7: ga = SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, z,gz)
8: gα,gx = LĎēĊĆėBĆĈĐĜĆėĉ(x,a,ga) !We discard gx
9: return parameter gradients gα,gβ



Module-based AutoDiff (OOP Version) 

Object-Oriented Implementation:
– Let each module be an object
– Then allow the control flow dictate the creation of the computation graph
– No longer need to implement NNBackward(·), just follow the computation 

graph in reverse topological order
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1 class Sigmoid(Module)
2 method forward(a)
3 b = σ(a)
4 return b
5 method backward(a , b , gb)
6 ga = gb ! b ! (1− b)
7 return ga

1 class Softmax(Module)
2 method forward(a)
3 b = softmax(a)
4 return b
5 method backward(a , b , gb)
6 ga = gT

b
(

diag(b)− bbT
)

7 return ga

1 class Linear(Module)
2 method forward(a , ω)
3 b = ωa
4 return b
5 method backward(a , ω , b , gb)
6 gω = gbaT

7 ga = ω
T gb

8 return gω,ga

1 class CrossEntropy(Module)
2 method forward(a , â)
3 b = −aT log â
4 return b
5 method backward(a , â , b , gb)
6 gâ = −gb(a ÷ â)
7 return ga



Module-based AutoDiff (OOP Version) 
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1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin1_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]



Module-based AutoDiff (OOP Version) 
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1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin1_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()



Module-based AutoDiff (OOP Version) 
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1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()



PyTorch
The same simple 
neural network 
we defined in 
pseudocode can 
also be defined 
in PyTorch.
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Example adapted from https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html 

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html


PyTorch
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Q: Why don’t we call linear.forward() in PyTorch?

A: This is just syntactic sugar. There’s a special method in Python 
__call__ that allows you to define what happens when you treat 
an object as if it were a function. 

In other words, running the following:
    linear(x)
is equivalent to running:
    linear.__call__(x)
which in PyTorch is (nearly) the same as running:
    linear.forward(x)

This is because PyTorch defines every Module’s __call__ method 
to be something like this:
    def __call__(self):
        self.forward()



PyTorch
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Q: Why don’t we pass in the parameters to a PyTorch Module?

A: This just makes your code cleaner. 

In PyTorch, you store the parameters inside the Module and “mark” 
them as parameters that should contribute to the eventual gradient 
used by an optimizer



LARGE LANGUAGE MODELS
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What is ChatGPT?

• ChatGPT is a large (in the sense of having many parameters) 
language model, fine-tuned to be a dialogue agent

• The base language model is GPT-3.5 which was trained on a 
large quantity of text 

22



TASK: LANGUAGE MODELING
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n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)

Recall…



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)

Note: This is called a model because we 
made some assumptions about how many 

previous words to condition on 
(i.e. only n-1 words)

Recall…



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?

27

p(wt | wt-2 = made, 
    wt-1 = noise)

wt p(· | ·, ·)

at 0.020

…

pollution 0.030

…

zebra 0.000

p(wt | wt-2 = The, 
    wt-1 = bat)

wt p(· | ·, ·)

ate 0.015

…

flies 0.046

…

zebra 0.000

p(wt | wt-2 = cows, 
    wt-1 = eat)

wt p(· | ·, ·)

corn 0.420

…

grass 0.510

…

zebra 0.000

Recall…



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?

28

wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)

Recall…



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat

29

The bat made nightnoise at

p(
· | 

ST
ART)

START

p(
· | 

ST
ART,

 Th
e)

p(
· | 

Th
e,

 b
at

)

p(
· | 

ba
t, 

m
ad

e)
p(

· | 
m

ad
e,

 n
oi

se
)

p(
· | 

no
ise

, a
t)

Recall…



Noisy Channel Models
• Prior to 2017, two tasks relied heavily on language models:

– speech recognition
– machine translation

• Definition: a noisy channel model combines a transduction model (probability of 
converting y to x) with a language model (probability of y)

• Goal: to recover y from x
– For speech: x is acoustic signal, y is transcription
– For machine translation: x is sentence in source language, y is sentence in target language

30

ŷ = argmax
y

p(y | x) = argmax
y

p(x | y)p(y)

transduction 
model

language 
model



Large (n-Gram) Language Models
• The earliest (truly) large language models 

were n-gram models
• Google n-Grams:

– 2006: first release, English n-grams
• trained on 1 trillion tokens of web text (95 billion 

sentences)
• included 1-grams, 2-grams, 3-grams, 4-grams, and 5-

grams

– 2009 – 2010: n-grams in Japanese, Chinese, 
Swedish, Spanish, Romanian, Portuguese, 
Polish, Dutch, Italian, French, German, Czech

31

serve as the incoming 92 
serve as the incubator 99 
serve as the independent 794 
serve as the index 223 
serve as the indication 72 
serve as the indicator 120 
serve as the indicators 45 
serve as the indispensable 111 
serve as the indispensible 40 
serve as the individual 234 
serve as the industrial 52 
serve as the industry 607 
serve as the info 42 

accessoire Accessoires </S> 515 
accessoire Accord i-CTDi 65 
accessoire Accra accu 312 
accessoire Acheter cet 1402 
accessoire Ajouter au 160 
accessoire Amour Beauté 112 
accessoire Annuaire LOEIL 49 
accessoire Architecture artiste 531 
accessoire Attention : 44

Number of unigrams: 13,588,391
Number of bigrams:   314,843,401
Number of trigrams:  977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

English n-gram 
model is ~3 billion 

parameters



Large (n-Gram) Language Models
• The earliest (truly) large language models 

were n-gram models
• Google n-Grams:

– 2006: first release, English n-grams
• trained on 1 trillion tokens of web text (95 billion 

sentences)
• included 1-grams, 2-grams, 3-grams, 4-grams, and 5-

grams

– 2009 – 2010: n-grams in Japanese, Chinese, 
Swedish, Spanish, Romanian, Portuguese, 
Polish, Dutch, Italian, French, German, Czech
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serve as the incoming 92 
serve as the incubator 99 
serve as the independent 794 
serve as the index 223 
serve as the indication 72 
serve as the indicator 120 
serve as the indicators 45 
serve as the indispensable 111 
serve as the indispensible 40 
serve as the individual 234 
serve as the industrial 52 
serve as the industry 607 
serve as the info 42 

accessoire Accessoires </S> 515 
accessoire Accord i-CTDi 65 
accessoire Accra accu 312 
accessoire Acheter cet 1402 
accessoire Ajouter au 160 
accessoire Amour Beauté 112 
accessoire Annuaire LOEIL 49 
accessoire Architecture artiste 531 
accessoire Attention : 44

Number of unigrams: 13,588,391
Number of bigrams:   314,843,401
Number of trigrams:  977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

English n-gram 
model is ~3 billion 

parameters

Q: Is this a large model?
A: Yes!

Q: Is this a large training set?
A: Yes! 



How large are LLMs?

33

Model Creators Year of 
release

Training Data (# 
tokens)

Model Size (# 
parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3 
(cf. ChatGPT)

OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

GPT-4 OpenAI 2023 ? ?

Comparison of some recent large language models (LLMs)



MODEL: GPT
Transformer Language Models
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Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable 

corresponding to the hidden unit
• For a fully connected feed-forward neural 

network, a hidden unit is a nonlinear 
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side 

note: we should be careful about ascribing 
how a matrix can be used to indicate the 
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the 

intercept term is NOT shown as a node, but 
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e. 
its weight does NOT appear in the picture 
anywhere)

– The diagram does NOT include any nodes 
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the 

algorithm
• Node is labeled with the function that it 

computes (inside the box) and also the 
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t 

need them)
• For neural networks:

– Each intercept term should appear as a node 
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature 

vector should appear in the graph
– It’s perfectly fine to include the loss

37

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

(C’) Parameters

Given βj , ∀j

(A’) Parameters

Given αij , ∀i, j

(E’) Label

Given y
∗

Recall…



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1) 38

The bat made nightnoise atSTART

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

p(w5|h5) 

h5

p(w6|h6) 

h6

p(w7|h7) 

h7

The bat made nightnoise at END

Recall…



RNNs and Forgetting

39



Attention
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softmax

x′

4 =

4∑

j=1

a4,jvj
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Attention
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v1

a1,1

s1,1

softmax

x′
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j=1

a1,jvj



Attention
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v1 v2
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s2,1 s2,2

softmax

x′
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2∑

j=1

a2,jvj
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Attention
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a3,jvj



Attention
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Attention
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v1 v2 v3 v4

a4,1 a4,2 a4,3

s4,1 s4,2 s4,3 s4,4

softmax

x′

t =

t∑

j=1

at,jvj

values

scores

attention weights

x1’ x2’ x3’ x4’

a4,4



v1 v2 v3 v4

softmax

Scaled Dot-Product Attention
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x′
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v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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Scaled Dot-Product Attention
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Scaled Dot-Product Attention
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qj = WT
q xj

Scaled Dot-Product Attention
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Animation of 3D Convolution

53
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

http://cs231n.github.io/convolutional-networks/ 

Recall…

http://cs231n.github.io/convolutional-networks/


Multi-headed Attention

54

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step



Multi-headed Attention
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x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step

• To ensure the dimension of the 
input embedding xt is the same 
as the output embedding xt’, 
Transformers usually choose 
the embedding sizes and 
number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

• Then concatenate the outputs



Multi-headed Attention
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x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step

• To ensure the dimension of the 
input embedding xt is the same 
as the output embedding xt’, 
Transformers usually choose 
the embedding sizes and 
number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

• Then concatenate the outputs



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1) 57

The bat made nightnoise atSTART

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

p(w5|h5) 

h5

p(w6|h6) 

h6

p(w7|h7) 

h7

The bat made nightnoise at END

Recall…



Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM!

Important!
• RNN computation 

graph grows 
linearly with the 
number of input 
tokens

• Transformer-LM 
computation graph 
grows quadratically 
with the number of 
input tokens



Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM!

Important!
• RNN computation 

graph grows 
linearly with the 
number of input 
tokens

• Transformer-LM 
computation graph 
grows quadratically 
with the number of 
input tokens



Layer Normalization
• The Problem: internal 

covariate shift occurs 
during training of a deep 
network when a small 
change in the low layers 
amplifies into a large 
change in the high layers

• One Solution: Layer 
normalization normalizes 
each layer and learns 
elementwise gain/bias

• Such normalization allows 
for higher learning rates 
(for faster convergence) 
without issues of 
diverging gradients

61
Figure from https://arxiv.org/pdf/1607.06450.pdf 

Given input a ∈ R
K , LayerNorm computes output b ∈ R

K :

b = γ "
a − µ

σ
⊕ β

where we have mean µ = 1

K

∑

K

k=1
ak,

standard deviation σ =
√

1

K

∑

K

k=1
(ak − µ)2,

and parameters γ ∈ R
K , β ∈ R

K .
" and⊕ denote elementwise multiplication and addition.



Residual Connections
• The Problem: as network 

depth grows very large, a 
performance degradation 
occurs that is not 
explained by overfitting 
(i.e. train / test error both 
worsen)

• One Solution: Residual 
connections pass a copy 
of the input alongsidethe 

• These residual 
connections allow for 
effective training of very 
deep networks that 
perform better than their 
shallower (though still 
deep) counterparts

62
Figure from https://arxiv.org/pdf/1512.03385.pdf

a

b

b = f(a)

Plain Connection

a

b

b = b′
+ a

Residual Connection

b′ = f(a)



Residual Connections
• The Problem: as network 

depth grows very large, a 
performance degradation 
occurs that is not 
explained by overfitting 
(i.e. train / test error both 
worsen)

• One Solution: Residual 
connections pass a copy 
of the input alongsidethe 

• These residual 
connections allow for 
effective training of very 
deep networks that 
perform better than their 
shallower (though still 
deep) counterparts

63
Figure from https://arxiv.org/pdf/1512.03385.pdf

a

b

b = f(a)

Plain Connection

a

b

Residual Connection

b = f(a) + a

Why are residual connections helpful?
Instead of f(a) having to learn a full 

transformation of a, f(a) only needs to learn an 
additive modification of a (i.e. the residual). 



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization



Transformer Layer

65

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

x1’ x2’ x3’ x4’

Transformer layer



Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer



Question:
Suppose we have the following input 
embeddings and attention weights:
• x1 = [1,0,0,0] a4,1 = 0.1
• x2 = [0,1,0,0] a4,2 = 0.2
• x3 = [0,0,2,0] a4,3 = 0.6
• x4 = [0,0,0,1] a4,4 = 0.1
And Wv = I. Then we can compute x4’.
Now suppose we swap the 
embeddings x2 and x3 such that 
• x2 = [0,0,2,0]
• x3 = [0,1,0,0]
What is the new value of x4’?

Answer:

In-Class Poll

69

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4
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Wq
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v xj

s4,j = kT
j q4/

√

dk
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Wv values
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scores

attention weightsa4 = softmax(s4)

x′
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4∑
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a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



Position Embeddings
• The Problem: Because attention is position 

invariant, we need a way to learn about positions
• The Solution: Use (or learn) a collection of position 

specific embeddings: pt represents what it means 
to be in position t. And add this to the word 
embedding wt.
The key idea is that every word that appears in 
position t uses the same position embedding pt 

• There are a number of varieties of position 
embeddings:
– Some are fixed (based on sine and cosine), whereas 

others are learned (like word embeddings)
– Some are absolute (as described above) but we can 

also use relative position embeddings (i.e. relative 
to the position of the query vector)

70

w1 w2 w3 w4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Transformer layer

Transformer layer

Transformer layer

p1 p2 p3 p4

+ + + +



GPT-3

• GPT stands for Generative Pre-trained Transformer
• GPT is just a Transformer LM, but with a huge number of 

parameters

73

Model # layers dimension 
of states

dimension 
of inner 
states

# attention 
heads

# params

GPT (2018) 12 768 3072 12 117M

GPT-2 
(2019)

48 1600 -- -- 1542M

GPT-3 
(2020)

96 12288 4*12288 96 175000M



Matrix Version of Scaled Dot-Product Attention
• For speed, we compute 

all the queries at once 
using matrix operations

• First we pack the queries, 
keys, values into 
matrices:
– Q = [q1,…,qN]T

– K = [k1,…,kN]T

– V = [v1,…,vN]T

• Then we compute all the 
queries at once:

74
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Matrix Version of Scaled Dot-Product Attention
• For speed, we compute 

all the queries at once 
using matrix operations

• First we pack the queries, 
keys, values into 
matrices:
– Q = [q1,…,qN]T

– K = [k1,…,kN]T

– V = [v1,…,vN]T

• Then we compute all the 
queries at once:
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(
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In practice, the attention weights are computed for all time 
steps T, then we mask out (by setting to –inf) all the inputs to 
the softmax that are for the timesteps to the right of the query.



LEARNING A TRANSFORMER LM

81



Learning a Deep Language Model
• Each training example is 

a sequence (e.g. 
sentence), so we have 
training data D = {w(1), 
w(2), …, w(N)}

• The objective function 
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is 
typically the log-
likelihood of the training 
examples: 
  J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch 
SGD (or your favorite 
flavor of mini-batch SGD)

83

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one 
training 
example

Deep Language Model

+
J = log p(w)

END



Learning a Transformer Language Model
• Each training example is 

a sequence (e.g. 
sentence), so we have 
training data D = {w(1), 
w(2), …, w(N)}

• The objective function 
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is 
typically the log-
likelihood of the training 
examples: 
  J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch 
SGD (or your favorite 
flavor of mini-batch SGD)
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The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one 
training 
example

Transformer LM

+
J = log p(w)

END



Language Modeling
An aside:
• State-of-the-art language models currently tend to rely on transformer networks 

(e.g. GPT-2)
• RNN-LMs comprised most of the early neural LMs that led to current SOTA 

architectures

86
Figure from https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word


Why does efficiency matter?
Case Study: GPT-3
• # of training 

tokens = 500 
billion

• # of 
parameters = 
175 billion

• # of cycles = 50 
petaflop/s-days 
(each of which 
are 8.64e+19 
flops)

87
Figure from https://arxiv.org/pdf/2005.14165.pdf 

https://arxiv.org/pdf/2005.14165.pdf


Summary
• Task: Language Modeling
– noisy channel models (speech / MT)
– (historical) Large LMs (n-gram models)

• Model: GPT
– Attention (computation graph)
– Transformer-LM (cf. RNN-LM)

• Learning for LLMs
– Pre-training (unsupervised learning)
– Reinforcement Learning with Human Feedback (deep RL)

• Optimization for LLMs
– Adam (cf. SGD)
– Distributed training

• Societal Impacts of LLMs
104


