10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Automatic Differentiation
&
Transformers

Matt Gormley
Lecture 28
Nov. 1, 2023

Reminders

* Homework 6: Learning Theory & Generative Models
— Out: Fri, Oct 27
— Due: Fri, Nov 3 at 11:59pm

 Exam 2 Practice Problems
— Out: Fri, Nov 3
 Exam 2: Thu, Nov 9

MODULE-BASED AUTOMATIC
DIFFERENTIATION

Training Backpropagation

Training Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a
direcﬁgsj acyclic graph, where each variable is a node (i.e. the “computation
grap

2. Visit each node in topological order.

For variable u; with inputs v,,..., vy
a. Compute u; = gi(v,,..., Vx)
b. Store the result at the node

Backward Computation (Version B)
1. Initialize all partial derivatives dy/du; to o0 and dy/dy = 1.
2. Visit each node in reverse topological order.
For variable u; = gi(v,,..., Vx)
a. Wealready know dy/du;
b. Increment dy/dv; by (dy/du;)(du;/dv;)
(Choice of algorithm ensures computing (du;/dv)) is easy)

Return partial derivatives dy/du;for all variables

Training Backpropagation

Why is the backpropagation algorithm e;
1,
2.

icient?
Reuses computation from the forward pass in the backward pass

Reuses partial derivatives throughout the backward pass (but
only if the algorithm reuses shared computation in the forward

pass)

\—

(Key idea: partial derivatives in the backward pass should be
thought of as variables stored for reuse)

Bec

Backpropagation:
Abstract Picture

Output

[(F) Loss]
J =, i log(yk)
z

[(E) Output (softmax)
Y = exp(by)
; Zlel exp(bi)

Hidden Layer

\

f

[(D) Output (linear)
br = 35 Brjz; Yk

f

Forward Backward [(C) Hidden (nonlinear)
. J=—yllogy 6. gg=—-y+Yy \ zj =o(aj), Vj
. ¥ = softmax(b) 7. gb = g5 (diag(y) —y3") r f
_b=8z 8. g5 =gla’ (B) Hidden (gj\efr)
aj = i—g Qjili, VJ
g. =8 g ‘ : ; :
. z=o(a) 10. 84 =8, 0z 0O (1 —2)
- (A) Input
.aAa=— oax 11. ga — 8aX Given X, V1

Backpropagation:
Procedural Method

Algorithm 1 Forward Computation Drawbacks of

1: procedure NNFORWARD(Training example (x, y), Params «, 3) Procedural Method

2 a=ox 1. Hardtoreuse/

3 z=o(a) adapt for other

4 b=pz models

A S‘_OftTrqzx(})) 2. (Possibly) harder to
. :Ob“y_ectg(;’a 2 b.9.J) make individual

’ e e) steps more efficient

8 return intermediate quantities o

3. Hard to find source
of error if finite-
difference check
reports an error
(since it tells you
only that there is an

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Params «, (3,
Intermediates o)
Place intermediate quantities x,a,z, b, y, J in o in scope

8y =-Yy=Y :
S s error somewhere in

5= 8y (g'ag(y> vy’ those 17 lines of

86 = Bp? code)

g. =0 g}

ga:gz®z®(1_z)
a = gaXT
return parameter gradients g, g3

E

Module-based AutoDiff

Module-based automatic differentiation (AD [Autodiff) is a technique that has
long been used to develop libraries for deep learning

* Dynamic neural network packages allow a specification of the computation
graph dynamically at runtime
— PyTorch
— Torch
— DyNet
— TensorFlow with Eager Execution
* Static neural network packages require a static specification of a
computation graph which is subsequently compiled into code
— TensorFlow with Graph Execution
— Aesara (and Theano)

— (These libraries are also module-based, but herein by “module-based AD” we mean the
dynamic approach)

http://pytorch.org/
http://torch.ch/
https://dynet.readthedocs.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://aesara.readthedocs.io/

Module-based AutoDiff

* Key ldea:
— componentize the computation of the neural-network into layers
— each layer consolidates multiple in the

computation graph (a subset of them) into one vector-valued node
(aka. a module)

* Each module is capable of two actions:

1. Forward computation of output b = [b1,...,bp]| given input
b b a = |ay,...,aa] via some differentiable function f. That is
T l b = f(a).
2. Backward computation of the gradient of the input
[module } g = VaJ = [5L,..., 52L] given the gradient of output
T l g = Vo = [§5,..., 5Z], where J is the final real-valued
output of the entire computation graph. This is done via the
a Ja . oJ J oJ db; .
chainrule 5= = > %, ot qa. foralli {1,..., A}.

Module-based AutoDiff

Dimensions: input a € R4, output b € R7, gradient

of output g, = V,J € R4, and gradient of input g, = Linear Module The linear layer has two inputs: a vec-

ViJ € RB. tor a and parameters w € RB*4, The output b
is not used by LINEARBACKWARD, but we pass it in

Sigmoid Module The sigmoid layer has only one input for consistency of form.

vector a. Below o is the sigmoid applied element- 1: procedure LINEARFORWARD(a, w)
wise, and @ is element-wise multiplication s.t. u® 2 b =wa
vV = [u1v1, .. ., UprUN]- 3 return b
1: procedure SIGMOIDFORWARD(a) 4: procedure LINEARBACKWARD(a, w, b, gp)
» b=oc(a) 5 8w =gpa
3 return b 6 ga = wlgp
4: procedure SIGMOIDBACKWARD(a, b, gp,) 7 return g, ga
5 ga=gbObO(1-b)
6 return g, Cross-Entropy Module The cross-entropy layer hastwoin-
puts: a gold one-hot vector a and a predicted proba-
Softmax Module The softmax layer has only one input bility distribution a. It’s output b € R is a scalar. Be-
vector a. For any vector v € R”, we have that low = is element-wise division. The output b is not
diag(v) returns a D x D diagonal matrix whose used by CROSSENTROPYBACKWARD, but we pass it in
diagonal entriesare vy, v, . . ., vp and whose non- for consistency of form.

diagonal entries are zero. procedure CROSSENTROPYFORWARD(a, a)

1:
1: procedure SOFTMAXFORWARD(a) 2: b= —alloga

2 b = softmax(a) 3: return b

3 return b 4: procedure CROSSENTROPYBACKWARD(a, a, b, g5)
4: procedure SOFTMAXBACKWARD(a, b, gp,) 5: ga=—g(a+a)

5 ga = g, (diag(b) — bb™) 6: returng,

6 return g,

Module-based AutoDiff

Algorithm 1 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Parameters «,

B)

2 s e W o W

a = LINEARFORWARD(X,)

Z = SIGMOIDFORWARD(a)

b = LINEARFORWARD(z, 3)

y = SOFTMAXFORWARD(Db)

J = CROSSENTROPYFORWARD(y, ¥)
o = object(x,a,z,b,y,J)
return intermediate quantities o

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Parameters
a, 3, Intermediates o)

2w 2o W

Place intermediate quantities x,a,z, b, y, J in o in scope
gr =% =1 > Base case
gy = CROSSENTROPYBACKWARD(Y, ¥, J, 9.7)
gh = SOFTMAXBACKWARD(b, ¥, g5)

g3, 8z = LINEARBACKWARD(z, b, gp)

ga = SIGMOIDBACKWARD(a, z, g5)

8, 8x = LINEARBACKWARD(X, a,)

return parameter gradients g, g3

> We discard gy

Advantages of

Module-based

AutoDiff

1. Easytoreuse/
adapt for other
models

2. Encapsulated
layers are easier
to optimize (e.g.
implement in C++
or CUDA)

3. Easierto find

bugs because we
can run a finite-
difference check
on each layer
separately

Module-based AutoDiff (oop version)

Object-Oriented Implementation:

— Let each module be an object

— Then allow the control flow dictate the creation of the computation graph
— No longer need to implement NNBackward(-), just follow the computation

graph in reverse topological order

class Sigmoid (Module)
method forward(a)
b =o(a)
return b
method backward(a, b, gp)
g.=8bOb® (1 —-Db)
return g,

class Softmax(Module)
method forward(a)
b = softmax(a)
return b
method backward(a, b, gp)
ga = 8, (diag(b) —bb")
return g,

[0 RN [0) NNV B S V) N -

class Linear (Module)

method forward(a, w)
b =wa
return b

method backward(a, w, b, gp)

8w = gbaT

8a — ngb
return g., g,

class CrossEntropy (Module)

method forward(a, a)
b= —alloga
return b
method backward(a, a, b, gp)
ga = —gr(a+a)
return g,

OW 060 N O U1 h W N A

Module-based AutoDiff (oop version)

class NeuralNetwork (Module) :

method init ()
linl_layer = Linear()
sig layer = Sigmoid ()
lin2_ layer = Linear()
soft_layer = Softmax()
ce_layer = CrossEntropy ()

method forward(Tensor x, Tensor y, Tensor a, Tensor 3)
a =linl_ layer.apply_fwd(x,)
z =sig_ layer.apply_ fwd(a)
b =linl_ layer.apply_ fwd(z, 3)
y =soft_ layer.apply_fwd(b)
J =ce_layer.apply_ fwd(y,y)
return .J.out tensor

method backward (Tensor x, Tensor y, Tensor o, Tensor (3)
tape__bwd ()
return linl layer.in gradients[1] , lin2 layer.in gradients[1]

OW 060 N O U1 h W N A

Module-based AutoDiff (oop version)

class NeuralNetwork (Module) :

method init ()
linl_layer = Linear()
sig layer = Sigmoid ()
lin2_ layer = Linear()
soft_layer = Softmax()
ce_layer = CrossEntropy ()

O 0 N O v A W N o

=
o

method forward(Tensor x, Tensor y, Tensor c"
a =linl_ layer.apply_fwd(x,) "
z =sig_ layer.apply_ fwd(a)
b =linl_ layer.apply_ fwd(z, 3)
y =soft_ layer.apply_fwd(b)
J =ce_layer.apply_ fwd(y,y)
return .J.out tensor

13
14
15
16
17
18

method backward (Tensor x, Tensor y, Tensor '
tape__bwd () 20

return linl layer.in gradients[1] , lin2 lay*
22

23
24

global tape = stack()
class Module:

method init ()
out tensor = null
out_ gradient = 1

method apply fwd(List in_modules)
in tensors = [x.out_ tensor for x in in modules]
out_ tensor = forward(in tensors)
tape.push (self)
return self

method apply_ bwd():
in_gradients = backward (in_tensors , out_tensor , out_ gradient)
for i in 1,..., len(in_modules) :
in__modules[i] .out_gradient += in_ gradients/[i]
return self

function tape bwd():
while len(tape) > 0
m = tape.pop()
m.apply bwd()

Module-based AutoDiff (oop version)

global tape = stack()

;
2

3 class Module:

4

5 method init ()

6 out_ tensor = null

7 out_ gradient = 1

8

9 method apply fwd(List in_modules)

10 in tensors = [x.out_ tensor for x in in modules]

11 out_tensor = forward(in_ tensors)

12 tape.push (self)

13 return self

14

15 method apply_ bwd():

16 in_gradients = backward (in_tensors , out_tensor , out_ gradient)
17 for i in 1,..., len(in_modules) :

18 in__modules[i] .out_gradient += in_ gradients/[i]

19 return self

N
o

function tape bwd():
while len(tape) > 0
m = tape.pop()
m.apply bwd()

N N N
& W oo N

PyTorch

1 # Define model
2 class NeuralNetwork(nn.Module):

The same simple

3 def __ init__ (self):
l I(4 super (NeuralNetwork, self). init ()
neura networ 5 self.flatten = nn.Flatten()
. . 6 self.linearl = nn.Linear(28+*28, 512)

we deflned n 7 self.sigmoid = nn.Sigmoid()

8 self.linear2 = nn.Linear(512,512)
pseudocode can

H 10 def forward(self, x):

aISO be deflned 11 x = gself.flatten(x)
: 12 a = gself.linearl(x)
In PyTorCh' 13 z = self.sigmoid(a)

14 b = self.linear2(z)

15 return b

16

17 # Take one step of SGD
18 def one_step_of_sgd(X, y):

19 loss_fn = nn.CrossEntropyloss()
20 optimizer = torch.optim.SGD(model.parameters(), lr=le-3)
21

22 # Compute prediction error

23 pred = model(X)

24 loss = loss_fn(pred, y)

25

26 # Backpropagation

27 optimizer.zero_grad()

28 loss.backward()

29 optimizer.step()

Example adapted from https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

PyTorch

Why don’t we call linear.forward() in PyTorch?

This is just syntactic sugar. There’s a special method in Python
__call__ thatallows you to define what happens when you treat
an object as if it were a function.

In other words, running the following:
linear(x)

is equivalent to running:
linear.__call__(x)

which in PyTorch is (nearly) the same as running:
linear. forward(x)

This is because PyTorch defines every Module’s __call__ method

to be something like this:
def __call__(self):
self.forward()

(0]

A v bW N

PyTorch

A: This just makes your code cleaner.

Q: Why don’t we pass in the parameters to a PyTorch Module?

In PyTorch, you store the parameters inside the Module and “mark”
them as parameters that should contribute to the eventual gradient

used by an optimizer

method forward(Tensor x, Tensor y, Tensor a«, Tensor 3) 10
a =linl_ layer.apply_ fwd(x, a) 11
z =sig_layer.apply fwd(a)
b =linl_ layer.apply_ fwd(z, 3)
y =soft_ layer.apply_fwd(b) 15

def forward(self, x):
X self.flatten(x)
a self.linearl
Z self.sigmoid(a)
b self.linear?

return b

(x)
(x)
(a)
(z)

J =ce_layer.apply_ fwd(y, y)
return J.out tensor

LARGE LANGUAGE MODELS

What is ChatGPT?

* ChatGPT is a large (in the sense of having many parameters)
language model, fine-tuned to be a dialogue agent

* The base language model is GPT-3.5 which was trained on a
large quantity of text

TASK: LANGUAGE MODELING

n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e) o e) (e) e

W, W, W; W, W Wi
T

n-Gram Model (n=3) p(wi,w, ..., wr) = | [pwe | we—1, i)
t=1

p(Wv W, W3y cee W6) =

The p(W1)
[The J(bat] p(w, [w,)
[The][bat][made] p(W3 W,, W1)
[bat][made][noise] p(W4 W3’ WZ)
[made][noise][at] P(W5 W4, W3)
[noise][at][night] p(W6 WS’ W4)

n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e) o e) (e) e

Wi W, W3 Wy Ws We
T
n-Gram Model (n=3) p(wi,w, ..., wr) = | [pwe | we—1, i)
=1
p(w,, 3o We) =
The p(W1)

The (=l YAYVEE RVVA
— Note: This is called a model because we

made some assumptions about how many
previous words to condition on
(i.e. only n-1 words)

Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?

p(w; | W, = The, p(w; | w, = made, p(w; | Wy, = cows,

0 Wi, = bat) 0 Wi, = NOIse) 0 Wy, = eat)

we o pCle) we o pCle)

ate 0.015 at 0.020 corn 0.420
flies 0.046 pollution 0.030 grass 0.510

zebra 0.000 zebra 0.000 zebra 0.000

27

Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?
Answer: From data! Just count n-gram frequencies

p(w; | Wy, = cows,

O Wi, = eat)
.the cows eat grass...

... our cows eat hay daily... Wt p(-[+-)
... factory-farm cows eat corn...

corn 411

...0Nn an organic farm, cows eat hay and...
...do your cows eat grass or corn?...
...what do cows eat if they have...
...cows eat corn when there is no... hay 2/11
... which cows eat which foods depends...
...if cows eat grass...

...when cows eat corn their stomachs...
...should we let cows eat corn?...

grass 3/11

if 111

which 1/11

28

Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up

4. Repeat

Noisy Channel Models

Prior to 2017, two tasks relied heavily on language models:
— speech recognition
— machine translation

Definition: a noisy channel model combines a transduction model (probability of
converting y to x) with a language model (probability of y)

A

y = argmax p(y | x) = argmax p(x | y)p(y)
Yy Yy | J J
| N\ language
Goal: to recover y from x transduction model
model

— For speech: x is acoustic signal, y is transcription
— For machine translation: x is sentence in source language, y is sentence in target language

Large (n-Gram) Language Models

. . English n-gram
The earliest (truly) large language models model is ~3 billion

were n-gram models parameters

* Google n-Grams:

— 2006: first release, English n-grams

Number of uni : 13,588,391
* trained on 1 trillion tokens of web text (95 billion umber of unigrams 3,566,39

Number of bigrams: 314,843,401
sentences) Number of trigrams: 977,069,902
* included 1-grams, 2-grams, 3-grams, 4-grams, and 5- Number of fourgrams: | 1,313,818,354
grams Number of fivegrams: 1,176,470,663

— 2009 —2010: n-grams in Japanese, Chinese,
Swedish, Spanish, Romanian, Portuguese,
Polish, Dutch, Italian, French, German, Czech

serve as the incoming 92 accessoire Accessoires </S> 515 i H i BIfE 52
serve as the incubator 99 accessoire Accord i-CTDi 65 i H 2 95
serve as the independent 794 accessoire Accra accu 312 il BHir HRf 49
serve as the index 223 accessoire Acheter cet 1402 i H R A1E 69
serve as the indication 72 accessoire Ajouter au 160 172~ Wi E=E 213
serve as the indicator 120 accessoire Amour Beauté 112 e -k REF R 55
serve as the indicators 45 accessoire Annuaire LOEIL 49 ®EH R ER </s> 183
serve as the indispensable 111 accessoire Architecture artiste 531 e R e E 50
serve as the }nd}spenswle 40 accessoire Attention : 44 ‘e h 50 1 43
serve as the individual 23 Mol % 2R i a
& m g R (=47
serve a< the indiistrv 6007 TEVJ % M% I;L.u 148

Large (n-Gram) Language Models

. English n-gram
The earliest (truly) large language models model is ~3 billion
were n-gram models

parameters
Google n-Grams:
— 2006: first release, English n-grams _
_ . . Number of unigrams: 13,588,391
* trained on 1 trillion tokens of web text (95 billion Number of bigrams: 314,843,401
sentences) Number of trigrams: 977,069,902

* included 1-grams, 2-grams, 3-grams, 4-grams, and 5-

Number of fourgrams: 1,313,818,354
grams

Number of fivegrams: 1,176,470,663
— 2009 —2010: n-grams in Japanese, Chinese,

Swedish, Spanish, Romanian, Portuguese,
Polish, Dutch, Italian, French, German, Czech

1re Accessoi
Q: Is this a large training set? pi:xciod Q: Is this a large model?
1re Acheter
1re Ajouter
A: Yes! - i A: Yes!
B s

> : AGL o T N 2K b 44
serve as the industrial 52 WE R R (B4 148
serve a< the indistrv 607 e liel ST T

How large are LLMs?

Comparison of some recent large language models (LLMs)

Creators Year of | Training Data (# Model Size (#
release | tokens) parameters)

GPT-2 OpenAl 2019 ~10 billion (40Gb) 1.5 billion
GPT-3 OpenAl 2020 300 billion 175 billion
(cf. ChatGPT)

PaLM Google 2022 780 billion 540 billion
Chinchilla DeepMind 2022 1.4 trillion 70 billion
LaMDA Google 2022 1.56 trillion 137 billion
(cf. Bard)

LLaMA Meta 2023 1.4 trillion 65 billion

GPT-4 OpenAl 2023 ? ?

Transformer Language Models

MODEL: GPT

36

Ways of Drawing Neural Networks

(F) Loss Computation Graph
J=35(y—y*)? :

(E) Output (sigmoid) (E’) Label
. Given y*)
b= 370557

Y= Thexp(=n)
f .

?
[(C) Hidden (sigmoid)

[(D) Output (linear)

(C’) Parameters

T+exp(—a;)’ Given (3;,V)

\

f

[(B) Hidden (linear)

Given x;, V1

] (A’) Parameters
Given Qg V’L,]

The diagram represents an algorithm
Nodes are rectangles

One node per intermediate variable in the
algorithm

Node is labeled with the function that it
computes (inside the box) and also the
variable name (outside the box)

Edges are directed

(since they don’t
need them)
For neural networks:
— Each intercept term should appear as a node
(if it’s not folded in somewhere)
— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph
— It’s perfectly fine to include the loss

RNN Language Model

[The][bat][made][noise][at][night] [END]

T

T

T

T

TP(W1|h1) TP(WZIhZ) TP(W3|h3) Tp(w4lh4) 'r(Wslhs) T(W6Ih6) ']‘P(W7|h7)
' > * > > > > > >

h,

h,

hs

h,

A

hy

he

h,

[—L1

[—>

[—1]

[—> 1]

[> |

[1—>1

A

A

N

A

[STARTJ [The] [bat] [made] [noise] [at] [night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(wy.,, -..

the vector h, = fg(wy,, ..., W,)

, W,)) that conditions on

RNNs and Forgetting

Attention

[
S41
[[[

1 2 4
(rri1 [CrrJ1 Cerf Gt

Attention

1

/ — . .

X = ai,5Vy
j=1

aJ

|
E,oftmax
s

[

[TT]

Attention

2

/ — . .

Xo = a2,5Vj
j=1

[/ softinax]
S

0 ul

\A \'p

Attention

1
(0 O e O

Attention

[
S41
[[[

1 2 4
(rri1 [CrrJ1 Cerf Gt

Attention

)) / _
X; X4 Xy = E Qg V4

))
1 2
1 O I I I A B I

attention weights

Scores

T [T [T OO values

Scaled Dot-Product Attention

\"
T v = WTXj values

(

1 2 V3
L[] L[] L[]
X X, X; X,

Scaled Dot-Product Attention

a 4,2 d

[softmax/ / /]

S$ 2 513 5$4

]]
ki > k, T
1/ OO [T11 [T ki = Wi x; keys
Vi Vv, / V, T
1 O O s o A e i v, = Wy X; values
X X X3 X4

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

/
X4 = A4,5V;j
j=1
a1 a
W, s$
]
A 9 W7 queries
Wi [(T1T1 O | q; = W Xj
k
1 _ xxrT
o1/ | | ki = Wi x; keys
Wv Vv Vv T
X

X3 X,

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

/ —
Xy = A4,5V

j=1

Q\Z O s4,; = kI qu/+/dyScores

- q; = ngj queries
k, 2 k; k, T
T/ Oy [[kj = Wi x; keys
"2 vz/ A v, T
1 O O s o A e i v, = Wy X; values
X

X3 X,

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

/ —
Xy = A4,5V

j=1

a, = softmax(sy)attention weights

Q\Z O s4,; = kI qu/+/dyScores

- q; = ngj queries
k, 2 k; k, T
T/ Oy [[kj = Wi x; keys
"2 vz/ A v, T
1 O O s o A e i v, = Wy X; values
X

X3 X,

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

X, X

2
[1]

ay = softmax(s4)attention weights

S4. = ijqél/w /d,. scores
q; = ngj queries
k;, = Wix, keys

_ T

51

Scaled Dot-Product Attention

X)

X)

X)

1
LI 1]

2
LLT]

)
X4

/ — . .
X = E :atJVJ

3
LLT]

g=1

a; = softmax(s;) attention weights

si,; = k; qi/+/dj, scores

} qQj = ngj queries

X3

\[attention

_//X1 Xz

X4

k;, = Wix, keys

_ wlo
v, = Wlx; values

Animation of 3D Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[:,:,0] wO[:,:,0] wl[:,:,0] o[:,:,0]
0 0 0 0 0 0 O -1 1 T ([1 5 -3 -3
0 2 W/---‘l/ 11 [3 .10 7
0 0 |21 ff2]0 O 1 0 -1 11 |-1 1 -3 -2
0 1 (2 {0 |0 o[:,:,1]
0 2 [0 L] 2 -1 1
0 2 1 0 O = n
00000 o i
x[:,:,1]

0 0 0 0 O

0 1 1 2

0 2 |2 (2 |2

0 0 2o j2 0 Bjasb0 (1x1x Bias b1 (1x1x1)

0 210 ﬂfl O[:,:, [:,:,0]
001000 O L 0

0 0 0 0 0 O

X[:,:,2] toggle movement

0 0 0 O 0 0

0 0 00 2 070

0 2 |1 |1 ff1 0

0o 2 [of2l0]0 O

0o o 241 |2 0

01 2 0 0 2 O

0 0 0 0 0 0 O

53

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

Multi-headed Attention

multi-headed attention

—//X Xz

X3

X4

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step

To ensure the dimension of the

nput embedding x s the same - My |ti-headed Attention

as the output embedding x,
Transformers usually choose
the embedding sizes and
number of heads appropriately:

* dmodel = dim. of inputs

* dy=dim. of each output

* h=#ofheads

e Choose dy = diodel / D X, X, X’ X,
Then concatenate the outputs (1] [1]
W, L] ﬁ'
W, multi-headed attention
W,
—//x1 X, X3 Xq

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step

To ensure the dimension of the
input embedding x; is the same
as the output embedding x,
Transformers usually choose
the embedding sizes and
number of heads appropriately:

* dmodel = dim. of inputs

* dy=dim. of each output

* h=#of heads

e Choose dy = diodel / D
Then concatenate the outputs

Multi-headed Attention

)

)

)

X, X, X5 X,
T T
B B
B8 B multi-headed attention
B B
X, X3 Xq

X1

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step

RNN Language Model

[The][bat][made][noise][at][night] [END]

T

T

T

T

TP(W1|h1) TP(WZIhZ) TP(W3|h3) Tp(w4lh4) 'r(Wslhs) T(W6Ih6) ']‘P(W7|h7)
' > * > > > > > >

h,

h,

hs

h,

A

hy

he

h,

[—L1

[—>

[—1]

[—> 1]

[> |

[1—>1

A

A

N

A

[STARTJ [The] [bat] [made] [noise] [at] [night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(wy.,, -..

the vector h, = fg(wy,, ..., W,)

, W,)) that conditions on

Transformer Language Model

Important!

* RNN computation
graph grows
linearly with the
number of input
tokens

* Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

)\

[The [bat] [made] [noise]

P

T P(W1|h1) p(W2|h2)
>

>

T

p(ws|hs) 4 P(Walh,)

1
IIIIIIIIII

IPZ=

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

Transformer Language Model

Important!

RNN computation
graph grows
linearly with the
number of input
tokens

Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

)\

[The

[bat] [made] [noise]

T

T

P(W2|h2)

T

p(wslh;)

T

p(w,lh,)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

Layer Normalization

* The Problem: internal Given input a € R”*, LayerNorm computes output b € R¥:
covariate shift occurs
during training of a deep
network when a small
change in the low layers

a_
b=v0—&70
0)

amplities into a large where we have meanu = = S0 a
. . — — k

change in the high layers H f Zf{—l ’

* One Solution: Layer standard deviation o = \/f D=1 (ar — 1)?,
normalization normalizes and parameters v € RX, 8 € RX,
:?ecnllé?q)ﬁvriggcgl;?s/rbnisas ® and & denote elementwise multiplication and addition.

* Such normalization allows 1.0 Attentive reader

LSTM
BN-LSTM

BN-everywhere
LN-LSTM

for higher learning rates
(for faster convergence)
without issues of
diverging gradients

o
©

o
@

o©
Sl

validation error rate
o
~l

s
i
3
§
{

o
ey

_ _ 0 100 200 300 400 500 600 700 800
Figure from https://arxiv.org/pdf/1607.06450.pdf training steps (thousands)

Residual Connections

* The Problem: as network
depth grows very large, a
performance degradation
occurs that is not
explained by overfitting
(i.e. train [test error both
worsen)

* One Solution: Residual
connections pass a copy
of the input alongsidethe

* Theseresidual
connections allow for
effective training of very
deep networks that
perform better than their
shallower (though still
deep) counterparts

Figure from https://arxiv.org/pdf/1512.03385.pdf

Plain Connection

b

|

b= /(@]

20

30
iter. (1e4)

40

Residual Connection

ResNet-18
- ResNet-34

Q—r

W\
AN AN,

34-layer

10

20

30
iter. (1e4)

40

50

Residual Connections

* The Problem: as network
depth grows very large, a
performance degradation
occurs that is not
explained by overfitting
(i.e. train [test error both
worsen)

* One Solution: Residual
connections pass a copy
of the input alongsidethe

* These residual
connections allow for
effective training of very
deep networks that
perform better than their
shallower (though still
deep) counterparts

Figure from https://arxiv.org/pdf/1512.03385.pdf

Residual Connection
Plain Connection

b

|

b= /(@]

Why are residual connections helpful?

Instead of f(a) having to learn a full
transformation of a, f(a) only needs to learn an
additive modification of a (i.e. the residual).

nsformer Layer

[

x,’
IIIIIIIIIIIIIIIIIII_I
[layer normalization]
[(IT1T1] 11 oty et
[residual connections]4—
[(IT1T1] 1 ol et
[feed forward neural network]
ITT1I |—|—|—I/$I—I—|:I:I'$|:I—I:|:|:I\—'|:|—
layer normalization]
[(IT1T1] 1) il ekt
[residual connections]4—
[(ITI1] 1 bty cefrtrl
A A A A

B =B

B8 @ multi-headed attention

B B
X 2 X3 Xy

Each layer of a Transformer LM
consists of several sublayers:

1.

2.
3.
4.

attention

feed-forward neural network
layer normalization

residual connections

Transformer Layer

||||| |||4\|| |||¢|| III4\ﬂ
: —1 ! Each layer of a Transformer LM
[layer normalization]]
consists of several sublayers:

[T OIL1 O] O 1. attention

2. feed-forward neural network
[residual connections]4— . .
3. layer normalization

O [OTT0 O [T 4. residual connections

feed forward neural network

J 1 l | - — 1 1 1]

Igyer alg

l—l—rﬁllllrlllll/]\lllll/rll

residual connections]4—

11 OO0 O1T1 I

A

2
B8 @ multi-headed attention

B 5
/ / /

X,) X5 X,

Transformer Layer

I1IIIII2IIIII3IIIII4III_I
A A A

A
Each layer of a Transformer LM
/ \ consists of several sublayers:
1. attention

2. feed-forward neural network
3. layer normalization
4. residual connections

Transformer
Layer

U

Transformer Layer

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

x, X, X, x,’

1 2 3 4
[(ITT111 L) et trerr
[Transformer layer

I O

Transformer Language Model

[The

[bat] [made] [noise]

T

T

T

p(w;|h,) p(ws|h;) p(w,lh,)

>

>

L

IIII%

Transformer layer

%II/I I%I |

Transformd

r layer

0 |

%ﬂ I

Transformer layer

%)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

In-Class Poll

Question:)
Suppose we have the following input [Soﬁmax / /
embeddings and attention weights: w, NN E

» x,=[1,0,0,0]a,,= 0.1 E awi= i

* X = :0)110)0] dg,= 0.2 o/t -! Sun

* x;=[0,0,2,0]a,;=0.6 g ob oo b &

* x,=[0,0,0,1]a,,=0.1

And W, = I. Then we can compute x,”. | Answer:
Now suppose we swap the

embed

dings x, and x; such that
0,0,2,0]

0,1,0,0]

What is the new value of x4’?

4
=) aiv;
=1

ay = softmax(s,) attention weights

S4,5 = k?Q4/\/ dk: scores
q; = WqTXj queries

_ wil.
v; = W x; values

(\ -

[The [bat] [made] [noise]

Position Embeddings | | |

. . L p(w,|h,) p(w,|h,) p(ws|hs) Ap(wslhy)
* The Problem: Because attention is position T
invariant, we need a way to learn about positions > > > >
* The Solution: Use (or learn) a collection of position h, T h, T s T h, T
|

specific embeddings: p; represents what it means [T | L1 [T |

[|
to be in position t. And add this to the word
embedding W;. [Transformer layer l]

The key idea is that every word that appears in l_l_% L~
position t uses the same position embedding p; 7 | '/IH I l%l I %rul
* There are a number of varieties of position [Transformer layer]
embeddings: % IENZey .
— Some are fixed (based on sine and cosine), whereas '_'_% = |4\r| /pﬂ A
others are learned (like word embeddings) [Transformér layer)
— Some are absolute (as described above) but we can
also use relative position embeddings (i.e. relative
to the position of the query vector) , [.] [.] (.]
majiesReslls:
P T P: T Ps T P4 T
(0 o

IIIIII\I/\IIII_@TI_II_

GPT-3

e GPT stands for Generative Pre-trained Transformer

* GPTisjust a Transformer LM, but with a huge number of
parameters

layers dimension | dimension |# attention |# params
of states of inner heads
states

GPT (2018) 12 3072 117M
GPT-2 48 1600 - - 1542M
(2019)

GPT-3 96 12288 4%12288 96 175000M

(2020)

Matrix Version of Scaled Dot-Product Attention

s i‘:@ . * For speed, we compute
R all the queries at once

using matrix operations

T o F /R a= softmax(s4)jjzf£;,'c‘;” » First we pack the queries,
T Y/ /] keys, values into

[s /)] matrices:

54 542 543 S4.4 LT

= (] 54, = Kj qa/+/dj, scores - Q=[qy... ,CIN]TT

- q; = Wix; queries — K=[ky... ’kN]T
k k k — V=[Vy...,Vx]
: > : k. = Wix. keys

mEn III/ II/II (L1 J k% * Then we compute all the
o ‘IIZI] |V3|] ;’4|] Vi = W’UTX.j values queries =6 Qe

1 3 4
1] O iy tetrrd

QK')
Attn(xq.n) = softma V
1) &

Matrix Version of Scaled Dot-Product Attention

g=1
™ : > 4 attention
. : : : as = softmax(s4)Weights
[softmax/ / /]
W, 54 54,2 543 544 T
K m S4,j = kj q4/\/dk scores
N A
— Wik, ueries
Wy [] q] — WC] X_] q
k 2 ks k, B 7
I/ OI¥ [0 [0 ki = Wi x; keys
e ’ v / s / Vs T
O OO OO OO v; = W, x; values
Xy X, X3 X,

In practice, the attention weights are computed for all time
steps T, then we mask out (by setting to —inf) all the inputs to
the softmax that are for the timesteps to the right of the query.

* For speed, we compute

all the queries at once
using matrix operations

* First we pack the queries,
keys, values into
matrices:

_ Q = [qv'“)qN]T
— K= [Kyyeee KN T
— V= [V1) °)VN]T
* Then we compute all the
queries at once:

QK"
vV

Attn(xi.xy) = softmax (

LEARNING A TRANSFORMER LM

Learning a Deep Language Model

* Each training example is
a sequence %e.g. log p(w) = 10g p(w., Wa, W3, ..., Wr)
sentence), so we have =log p(w;, | h,) + log p(w, | h,) + ... +log p(w, | h)
training data D = {w("), J = log p(w)
w®), . wiNy

* The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is

typically the log- (20) (860) (500 (260) (860 (20) (60)

likelihood of the training
5) Tp(w4 3) TJ(Wsl) T(Wf’l 6) 4p(w]
| \

J(G) =2 log pe(w(i)) Ap(w,h) AP(W:[%) A p(w;|
* We train by mini-batch

SGD (or your favorite
flavor of mini-batch SGD)

one
7)

training
example

examples: T T

A N

S N N T N
VAT AT AT AT

[START] [The] [bat][made] [noise] [at] [night] [END]

83

Learning a Transformer Language Model

Each training example is
a sequence %e.g.
sentence), so we have
training data D = {w("),
w®), ... wiNl

The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is
typically the log-
likelihood of the training
examples: .
J(8) = Z;log pe(wl)
We train by mini-batch
SGD (or your favorite
flavor of mini-batch SGD)

log p(w) = log p(wi, Wy, W3, ... , W1)

=log p(w; | hy) + log p(w, | h,) +... +log p(w, | hy)

J = log p(w)

(26D) (86D) (8060]) (46D) (86) [(Lel)) L4]

T

T

Ap(w,h) AP(W:[%) A p(w;|

3)

wy|

7)

A

N

TP(W4 4) TJ(Wsl 5) T(W(,l 6) A p(
| \

A

\

\

e R

\

N

\

\AT AT

[START] [The] [bat][made] [noise] [at

] (night] [END

one

training
example

84

Language Modeling

An aside:

* State-of-the-art language models currently tend to rely on transformer networks
(e.g. GPT-2)

* RNN-LMs comprised most of the early neural LMs that led to current SOTA
architectures

Language Modelling on Penn Treebank (Word Level)

Leaderboard Dataset

View Test perplexity v | by Date v | for All models v

Zaremba et al. (2014) - LSTM (large)

Recurrént.highway networks

>
=
>
| AWD-LSTM -continuous cache pointer
o
e GL-LWGC,+ AWD-MoS-LSTM + dynamic eval
a.
5 GPT-2
L: BERT-Large-CAS
CPT-3_(Zero-Shot)
0
2015 2016 2017 2018 2019 2020 2021 2022
Other models Models with lowest Test perplexity

Figure from

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Why does efficiency matter?

Quantity Weight in Epochs elapsed when

Dataset (tokens) training mix training for 300B tokens
c a S e S t u d y [G PT_3 Common Crawl] (filtered) 410 billion 60% 0.44
) WebText2 19 billion 22% 29
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Table 2.2: Datasets used to train GPT-3. “Weight in training mix" refers to the fraction of examples during training

] L[]
* # of training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
t O e n S j— O O result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

[] L]
b I | I I O n Model Name Mparams M ayers dmodcl Mheads dhcad Batch Size Lcaming Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
° f GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 104
O GPT-3 Large 760M 24 1536 16 96 0.5M 2.5x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0x 1074
t —_ GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
p a ra m e e rS — GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2x 1074
GPT-3 13B 13.0B 40 5140 40 128 M 1.0 x 10—4

1 7 5 b il I io n GPT-3 175B or “GPT-3" 175.0B 96 12288 96 128 3.2M 0.6 x 1074

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
° # Of Cy C l e S — 5 O which we trained. All models were trained for a total of 300 billion tokens.

10000

petaflop/s-days

(each of which

are 8.64e+19 II III

flops) . . | I ! I I
eﬁ"e@»*}oi@f & d«‘ éfe cg‘”j & f od

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH™20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
Fl gu re fro m is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

https://arxiv.org/pdf/2005.14165.pdf

Summary

Task: Language Modeling

— noisy channel models (speech [MT)

— (historical) Large LMs (n-gram models)
Model: GPT

— Attention (computation graph)

— Transformer-LM (cf. RNN-LM)
Learning for LLMs

— Pre-training (unsupervised learning)

— Reinforcement Learning with Human Feedback (deep RL)
Optimization for LLMs

— Adam (cf. SGD)

— Distributed training

Societal Impacts of LLMs

