10-301/601: Introduction to
Machine Learning

Lecture 19 — Pre-training,
Fine-tuning & In-Context
Learning

Henry Chai & Matt Gormley
11/6/23



* Announcements:
* Exam 2 on 11/9 (Thursday!)
* All topics from Lecture 8 - 16 are in-scope

* Exam 1 content may be referenced but will not
Front Matter be the primary focus of any question

* No electronic devices (you won’t need them!)

* You may bring one letter-size sheet of notes;
you can put whatever you want on both sides

11/6/23



Recall:
Scaled Dot-

Product
Attention

11/6/23

Ay = softmax(s4, j)

—7 kiq,
S4_,j =
Ak
— T
q; = Wgx;
k] = W?;x]
v]' = W;I;x]

Attention
weights

Scores

Queries

Keys

Values



Scaled Dot-

Product
Attention:
Matrix Form

11/6/23

r 1/

\softma% / /
[




Scaled Dot-

Product
Attention:
Matrix Form

11/6/23

!

!

softmax/ / /
[




W ! ! ! !
4 [ softmax/ / / )
Scaled Dot- 1
Product
Attention: W Q=Wex"
Matrix Form o K =WIXT
w,

11/6/23



IT1T1] I 11 T1 A = softmax(S)
w r 1 v/ /1N
d [ softmax/ / / )
Scaled Dot- {1 /1 /1 _K
Product Ve
Attention: W & FXtin e =wix
Matrix Form /) R K = WIXT
w, 1 2 3 4
e FII/I |v|/|| oho v =wixT
X1 X7 X3 X4 ?’
[(T11] O O COTT]

11/6/23



T — )
CTCh N\ NI O T1 A = softmax(S)
w, M1 VR ! !
Scaled Dot- s _KTQ
Product Vi
Attention: il Q = wyx’
Matrix Form K = WixT
W” Vq [ 4) v T T
(I OO OO O V=WwyX
X1 X2 X3 X4

11/6/23



Holy cow,
that’s a lot of
new arrows...

do we always
want/need all
of those?

11/6/23

UTl | M\Rl II/ITI T:I:l
Vq 1 %) v

11 11 Crrd I
X1 X2 X3 X4

A = softmax(S)

S—KTQ
Nen

— TyT
Q =wlx

K=wixT

V=wixT



= = Sorimax
Jdi

CTCh N\ NI O T1 A = softmax(S)

* Suppose we’re training

Decoding our transformer to
predict the next token(s)

W,
given the input...
* ... then attending to
w,
! Y2 v tokens that come after

X1 X X3 X4 the current token is
T 111 1171 111 I

cheating!

11/6/23 10



11/6/23

|ldea: we can effectively delete or “mask” some of these

arrows by selectively setting attention weights to 0
T

X' =VA=V softmax(

Jax

CTCh N\ NI O T1 A = softmax(S)

Wv Vq 1 %) v
0 I e I e B B e

X1 X2 X3 Xy
T 111 1171 111 I

KQ)

11



11/6/23

|ldea: we can effectively delete or “mask” some of these
arrows by selectively setting attention weights to 0

W, v,

U3

KTQ
X' =VA =V softmax

Vdk
T1 A = softmax(S)

Insight: if some
element in the input to
the softmax is -0, then
the corresponding
output is 0!

exp(-0) 0

X1 X

2. €Xp S; B 2. €Xp S

2 X3 X4
(T 11 CIIT 11 CIII11 CIIT1

12



Poll Question 1:

Which of the
mask matrices

corresponds to
this set of
arrows?

11/6/23

|ldea: we can effectively delete or “mask” some of these
arrows by selectively setting attention weights to 0

KTQ
I:FFI:I (T1T1 [T X' =V softmax + M
/ dk ‘ ) )
2[ = %) %
vy
LI :I:I Anask = softmax(S + M)
W 1 1 AW
q 0 0 0 0
— _ | 0 0 0
MM~ 0 0
|—00 —o0 —oo 0
W, 0 —o0 —00 —0o
|0 0 —oo —o
5. M= 0 0 0 -
0 0 0 0
w v
v 1 U3 Uy
T Coo O oo © TOXC
X1 X2 X3 X4 [0 —00 —00 —O0]
(TTT] LI ey ettt . . .
o Mm=|" 0 © T




Masked Scaled

Dot-Product
Attention:
Matrix Form

11/6/23

|ldea: we can effectively delete or “mask” some of these
arrows by selectively setting attention weights to 0

V>

U3

X1 X2 X3 Xy

K
X' =V softmax(

TQ )
+ M
Vi

[T A5, = softmax(S + M)

0 0 0
—oo 0 0
—00 —00 0
—00 —00 —00

cocog

14



w\}(&. O(\ W\ﬂ)f\
@( \)ew w
0 = W(z)T §T

___——,

(z)T (z)
)} where K® = W,((‘) xT

——

X'= C%at {V(l) softmax(

v® = wd g

Cm—

. x,1 x’z x'3 x;
Wg‘) ‘o Vv -
Masked
Multi-headed .
Attention: Wi
Matrix Form [ multi-headed attentlon

11/6/23



Practical

Considerations

11/6/23

1. Where on earth do tokens come from?

* Example: “Henry is giving a lecture on transformers”

- Word-based tokenization:

” ll H ' ” ll II '

[“henry”, “is”, “giving”, “a”, “lecture”, , “transformers”]

2. How can we handle variable-length sequences?

16



1. Where on earth do tokens come from?
* Example: “Henry is givin’ a Iect\rét\je on transformers”
- Word-based tokenization:
[“henry”, “is”, ???, “@”, ???, “on”, “transformers”]
* Can have difficulty trading off between vocabulary size
Practical and computational tractability
Considerations * Similar words e.g., “transformers” and “transformer”

can get mapped to completely disparate representations

* Typos will typically be out-of-vocabulary (OOV)

2. How can we handle variable-length sequences?

17

11/6/23



1. Where on earth do tokens come from?
- Example: “Henry is givin’ a lectrue on transformers”

* Character-based tokenization:

[“h”, “e”, “n”, “r”, “y”, “i” “s” “g”, “i", “v’, “i", “n”, "7, .. ]
* Much smaller vocabularies but a lot of semantic
Practical meaning is lost...
Considerations * Sequences will be much longer than word-based

tokenization, potentially causing computational issues

 Can do well on logographic languages e.g., Kanji i

2. How can we handle variable-length sequences?

18

11/6/23



Practical

Considerations

11/6/23

1. Where on earth do tokens come from?

2.

- Example: “Henry is givin’ a lectrue on transformers”

- Subword tokenization: U
[l(henry”’ l(iSI)’ ”giV”, ll##in”’ o ( II’ llall’ lllectﬂ l(##ﬁé”’ llonll’
“transform”, “H#ters”]

* Split long or rare words into smaller, semantically

meaningful components or subwords

How can we handle variable-length sequences?

* Artificially make all sequences the same length by
- Padding: adding special pad tokens to short sequences

* Truncating: using only the first few tokens for long

sequences

19



Okay, now how
on earth do we

g0 about
training these
things?

11/6/23

1. Where on earth do tokens come from?
- Example: “Henry is givin’ a lectrue on transformers”

* Subword tokenization: U

4

[l(henry”’ l(iSI)’ ”giV”, ll##in”’ o ( II’ llall’ lllectﬂ l(##re”’ llonl’
“transform”, “##ters”]
* Split long or rare words into smaller, semantically

meaningful components or subwords

2. How can we handle variable-length sequences?
* Artificially make all sequences the same length by
- Padding: adding special pad tokens to short sequences

* Truncating: using only the first few tokens for long

sequences

20



Recall:
Mini-batch

Stochastic
Gradient
Descent...

11/6/23

* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B
1. Randomly initialize the parameters 0 and sett = 0
2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b), y(b))}izl

b. Compute the gradient of the loss w.r.t. the sampled batch,
vJ(B) (g(t))

c. Update 8: 0+D (O _ yv](B)(g(t))
d. Incrementt:t<t+1

- Qutput: 8

21



Mini-batch

Stochastic
Gradient
Descent is aliel
just the
beginning!

11/6/23

* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B

1. —the parameters 0 andsett = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b), y(b))}izl

b. Compute the gradient of the-w.r.t. the sampled batch,
vJ(B) (g(t))

c. Update : 8¢+1)  g(®) __

d. Incrementt:t < t+1

- Qutput: 8

22



Traditional

Supervised
Learning

11/6/23

* You have some

learning to

* You have a

* You fit a

task that you want to apply machine

labelled dataset to train with

deep learning model to the dataset

23



11/6/23

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books
* You have a tiny labelled dataset to train with

* You fit a massive deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * “gradient-based

v 2 optimization starting

()

=1 from random initialization
0

appears to often get
Shallow "Deep" PP 5

Network Network (ho stuck in poor solutions for

pre-training) such deep networks.”

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf 24



https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

11/6/23

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books
* You have a tiny labelled dataset to train with

* You fit a massive deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

S * |dea: if shallow

E |

- networks are easier to

d 1

= train, let’s just

0 decompose our deep

Shallow "Deep"
Network Network (no network into a series

pre-training) of shallow networks!

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf 25



https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training

(Bengio et al.,
2006)

11/6/23

* Train each layer of the Output layer

- Start at the input layer

* Once a layer has been

network iteratively using

the training dataset
34 hidden layer

and move towards the

nd hi
output layer 2"% hidden layer

trained, fix its weights 1* hidden layer
and use those to train

subsequent layers
Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

26


https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the
network iteratively using

the training dataset

- Start at the input layer

Pre-training and move towards the
(Bengio et al., output layer Output layer

2006)

* Once a layer has been

trained, fix its weights 1** hidden layer

and use those to train 5

subsequent layers
Input layer

11/6/23 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf



https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the
network iteratively using

the training dataset

- Start at the input layer

Pre-training and move towards the
(Benglo etal., output layer

2006)

* Once a layer has been
trained, fix its weights
and use those to train

subsequent layers

Output layer

24 hidden layer

15t hidden layer

Input layer

11/6/23 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised tr1282.pdf 28



https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the Output layer
network iteratively using

the training dataset
34 hidden layer

- Start at the input layer ~
Pre'trammg and move towards the
(Bengio etal, output layer 2" hidden layer

2006)

* Once a layer has been
trained, fix its weights 1% hidden layer
and use those to train

subsequent layers
Input layer

11/6/23 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf



https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning

(Bengio et al.,
2006)

11/6/23

* Train each layer of the Output layer

* Use the pre-trained

network iteratively using

the training dataset
34 hidden layer

weights as an
initialization and 2" hidden laver
fine-tune the entire

network e.g., via SGD 15t hidden layer

with the training dataset

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

30


https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset the entire network e.g., via SGD
Su pervised with the training dataset
Pre-training
(BengiO et g | > = Classification error on MNIST handwritten digit dataset
= 3
2006) 5
S 2
o 1
0
Shallow "Deep" "Deep"
Network Network (no Network

pre-training)  (supervised

re-trainin
11/6/23 p e t a g) 31



* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset to the entire network e.g., via SGD
Su o]S rvised predict the labels with the training dataset
Pre-training
(Bengio et al — Classification error on MNIST handwritten digit dataset
°) Q\O
— 3
2006) 5
0
Shallow "Deep"” "Deep"
Network Network (no Network

pre-training)  (supervised

re-trainin
11/6/23 p e t a g) 32



s this the only
thing we could

do with the
training data?

11/6/23

* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset to the entire network e.g., via SGD

predict the labels with the training dataset

Test Error (%)

Classification error on MNIST handwritten digit dataset

Shallow "Deep" "Deep"
Network Network (no Network
pre-training)  (supervised

pre-training) ,



Unsupervised
Pre-training

(Bengio et al.,
2006)

11/6/23

* Train each layer of the * ldea: a good representation is

network iteratively using one preserves a lot of

the training dataset to information and could be used

learn useful representations  to recreate the inputs

Test Error (%)

Classification error on MNIST handwritten digit dataset

Shallow "Deep" "Deep"
Network Network (no Network
pre-training)  (supervised
pre-training)

34



Unsupervised
Pre-training

(Bengio et al.,
2006)

11/6/23

* Train each layer of the Output layer

network iteratively using

the training dataset by

o 34 hidden layer
minimizing the

reconstruction error

||x — h(x) ||2 2"9 hidden layer

15t hidden layer

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

35


https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Unsupervised
Pre-training

(Bengio et al.,
2006)

11/6/23

ml lx — h(0)||- ReconstrL.Jcted
Input
* This architecture/ S

* Train each layer of the

network iteratively using
the training dataset by
minimizing the

reconstruction error

objective defines an 2= 15t hidden layer

autoencoder

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

36


https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Unsupervised
Pre-training

(Bengio et al.,
2006)

11/6/23

* Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

lx — h(x)]l2

* This architecture/

objective defines an

autoencoder

Reconstructed
hidden layer

24 hidden layer

15t hidden layer

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf 37



https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Unsupervised
Pre-training

(Bengio et al.,
2006)

11/6/23

* Train each layer of the

* This architecture/

Reconstructed
hidden layer
network iteratively using

the training dataset by
minimizing the
reconstruction error —

lx — h(x)||5 2nd hidden layer

objective defines an 15t hidden layer

autoencoder

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

38


https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning

(Bengio et al.,
2006)

11/6/23

* Train each layer of the Output layer

* When fine-tuning, we’re

network iteratively using
the training dataset by
o 3rd hidden layer
minimizing the
reconstruction error

|x — h(x)llz 2"9 hidden layer

effectively swapping out 1« higden layer
the last layer and fitting
all the weights to the

training dataset Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

39


https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the * ldea: a good representation is

network iteratively using one preserves a lot of
the training dataset by information and could be used
Unsu pervised minimizing the to recreate the inputs
Pre-trainin g reconstruction error
(BengiO et g I > E\i 3 Classification error on MNIST handwritten digit dataset
2006) 5
52
B I 1 n
0)
Shallow "Deep" "Deep" "Deep"
Network Network (no Network Network

pre-training)  (supervised (unsupervised

s pre-training) pre-training) 0



Another
dose of

Reality

11/6/23

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a-deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * Problem: what if you

v 2 don’t even have

Q

=1 enough data to train a
0)

single layer/fine-tune
Shallow "Deep" 5 Y

Network Network (no the pre-trained

pre-training) network?

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf 41



https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Another
dose of

Reality

11/6/23

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with
* You fit a-deep learning model to the dataset
* Surprise, surprise: it overfits and your test error is super high

* Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

- Ideally, you want to use a large dataset related to your

goal task

42



* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a deep learning model to the dataset
Another massive

dose of - Surprise, surprise: it overfits and your test error is super high

Reality * Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

* GPT-3 pre-training data:

Quantity Weight in

Dataset (tokens) training mix
Common Crawl (filtered) 410 billion 60%
WebText2 19 billion 22%
Booksl 12 billion 8%
Books2 55 billion 8%
Wikipedia 3 billion 3%

11/6/23 Source: https://arxiv.org/pdf/2005.14165.pdf 43



https://arxiv.org/pdf/2005.14165.pdf

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a deep learning model to the dataset
Another - P ;

dose of - Surprise, surprise: it overfits and your test error is super high

Reality * Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

* Okay that’s great for pre-training and all, but what if
A. the concept of labelled data doesn’t apply to your task

i.e., not every input has a “correct” label e.g., chatbots?

B. you don’t have enough data to fine-tune your model?

11/6/23



Reinforcement
Learning from

Human
Feedback
(RLHF)

11/6/23

* Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

* Idea: use human feedback to determine how good or

bad some prediction/response is!

* Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation...

* |dea: use a small number of annotations to learn a

“reward” function!

45



Reinforcement
Learning from

Human
Feedback

(RLHF)

11/6/23

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This datais used to
fine-tune GPT-3.5
with supervised
learning.

* RLHF is a special form of fine-tuning, used to fine-tune GPT-
3.5 into ChatGPT

Source: https://openai.com/blog/chatgpt

N
o

Explain reinforcement

learning to a 6 year old.

'

o)

z

We give treats and

punishments to teach...

}

Step 2

Collect comparison data and
train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

r N

./
Explain reinforcement
learning to a 6 year old.

o

In reinforcement Es in rewards...
learning, the L
agentis...

o o

Inmachine We givetreats and
learning.. punishments to
teach...

S=
®

0-0-0-0

Nt
0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new promptis
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

=~

Write a story
about otters.

/

PPO

46


https://openai.com/blog/chatgpt

Okay, so this is

Step 1

Collect demonstration data
and train a supervised policy.

Step 2

Collect comparison data and

train a reward model.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

° A promptis I A prompt and ™ A new prompt is
./ ./ -
g re a I O u r sampled from our Explain reinforcement several model Explain reinforcement sampled from Write a story
prompt dataset. learning to a 6 year old. outputs are learning to a 6 year old. the dataset. about otters.
. sampled.
reinforcament Explain rewards...
problem is * 50 [ !
ot The PPO model is e
. . A labeler @ (c) initialized from the e
S u J e Ct I Ve u t demonstrates the e supervised policy. Y
4 desired output z P
. h behavior ot ¥ '
a ga I n ) W a t C a n ‘ A labeler ranks the The p;)licty generates Once upon atime...
outputs from best an output.
we do for ©:0:0:0 !
This data is used to .(,);@, The reward model RM
i - - 0. _0
. . f"?ti tune G'_DT 3'5 L * calculates a reward N
Wwith supervise z for the output. Y
learning. EEE .RM'
This data is used ./)?.&. *
W h e re t ra i n i n to train our W The reward is used
reward model. to update the r
g 0-0-0-0 policy using PPO. k

data is scarce”?

* RLHF is a special form of fine-tuning, used to fine-tune GPT-
3.5 into ChatGPT

11/6/23 Source: https://openai.com/blog/chatgpt



https://openai.com/blog/chatgpt

* Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

* Idea: leverage the LLM’s context window by passing a
few examples to the model as input,

without performing any updates to the parameters

In-context * Intuition: during training, the LLM is exposed to a
| ea rning massive number of examples/tasks and the input

conditions the model to “locate” the relevant concepts

11/6/23 Source: https://arxiv.org/pdf/2111.02080.pdf 48



https://arxiv.org/pdf/2111.02080.pdf

Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

11/6/23

* Idea: leverage the LLM’s context window by passing a

few examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: < task description
sea otter => loutre de mer < examples
peppermint => menthe poivrée <

plush girafe => girafe peluche «-

cheese => ¢ prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer < example #1
\Z
\Z

1 peppermint => menthe poivrée ¢ example #2

gradient update

eIé

4

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

49


https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

11/6/23

* Idea: leverage the LLM'’s context window by passing a
few one examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning Traditional fine-tuning (not used for GPT-3)

One-shot Fine-tuning

In addition to the task description, the model sees a single The model is trained via repeated gradient updates using a

example of the task. No gradient updates are performed. large corpus of example tasks.

. o 1 sea otter => loutre de mer < example #1
1 Translate English to French: < task description
\Z
2 sea otter => loutre de mer ¢ example
gradient update
3 cheese => < prompt
\Z
1 peppermint => menthe poivrée ¢ example #2

gradient update

eIé

4

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

50


https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

11/6/23

* Idea: leverage the LLM'’s context window by passing a

few-one zero(!) examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

1 Translate English to French: < task description

2 cheese => «—— prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer < example #1
\Z
\Z

1 peppermint => menthe poivrée ¢ example #2

gradient update

éIe

2

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

51


https://arxiv.org/pdf/2005.14165.pdf

* Idea: leverage the LLM'’s context window by passing a
few-one zero(!) examples to the model as input,
without performing any updates to the parameters

106 Aggregate Performance Across Benchmarks

—e— Few Shot
—e— One Shot

FEW—ShOt, 80 —e— Zero Shot
One-shot &

o

60

40/

20

Accuracy

Zero-shot
(in-context)
Lea rn i ng 8152—;048'/;)—8; 1.3B 2.6B 6.7B _13B 175B

Parameters in LM (Billions)

* Key Takeaway: LLMs can perform well on novel tasks

without having to fine-tune the model, sometimes even

with just one or zero labelled training data points!

11/6/23 Source: https://arxiv.org/pdf/2005.14165.pdf



https://arxiv.org/pdf/2005.14165.pdf

* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B

Mini-batch 1. —the parameters 0 andsett =0

Stochastic 2. While TERMINATION CRITERION is not satisfied

Gradient a. Randomly sample B data points from D, {(x(b), y(b))}izl

Descent is a-iel
just the 700

beginning!
c. Update : 8¢+1)  g(®) __

d. Incrementt:t—t+1 — =

b. Compute the gradient of the-w.r.t. the sampled batch,

- Qutput: 8
11/6/23 53



Mini-batch
Stochastic
Gradient

Descent
just the
beginning!

11/6/23

* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B
1. Pre-train the parameters 0 andsett =0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b), y(b))}izl

b. Compute the gradient of the fine-tuning loss
vJ(B) (g(t))

c. Update 8: 0+D (O _ yv](B)(g(t))
d. Incrementt:t<t+1

- Qutput: 8

54



* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B, decay parameter [
.- 1. Pre-train the parameters 8(°) and set t = 0,G_1=0 9(®
Mini-batch P 1=00
Stochastic 2. While TERMINATION CRITERION is not satisfied

Gradient a. Randomly sample B data points from D, {(x(b),y(b))}gzl

Descent

: b. Compute the gradient of the fine-tuning loss
with BV al®

G, = VB (W)
Momentum
c. Update 8: 8¢*D « () —y(BG,_, + G,)

d. Incrementt:t<t+1 /K\

- Qutput:

11/6/23



Mini-batch
Stochastic
Gradient

Descent
with
Momentum

11/6/23

56



Mini-batch
Stochastic
Gradient

Descent
with
Momentum

11/6/23

57



Mini-batch
Stochastic
Gradient

Descent
with
Momentum

11/6/23

58



Mini-batch
Stochastic
Gradient
Descent with

Root Mean
Square
Propagation
(RMSProp)

11/6/23

. o~~~ N
* Input: training dataset D = {(x(l):y(l))}izl’
step size y, and batch size B, decay parameter [

1. Pre-train the parameters 00 gnd sett = 0,5.1=00 9®

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b),y(b))}izl

b. Compute the gradient of the fine-tuning loss
G, = V](B)(g(t))
c. Update the scaling factor: Sy = £S;_1 + (1 — B)(G; © G;)
d. Update 8: 8¢+ « (&) — \/Ls_t O G;
4\
e. Incrementt:t < t+1 )

59

- Qutput: O



* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B, decay parameters [5; and (55

1. Pre-train the parameters 8, t =0, M_;, =S_; =00 8®
Adam

(Adaptive ;
Moment a. Randomly sample B data points from D, {(x(b),y(b))}bzl

2. While TERMINATION CRITERION is not satisfied

Estimation) — b. Compute the gradient, momentum and scaling factor
SGD + G, = V](B)(g(t))

Momentum + M, = ByM;_1 + (1 — B) G, and Sy = ByS;—1 + (1 — B) (G, O Gy)

RMSPro
P c. Update 8: 0¢*D () — L O M:/(1 - BD))
\/St/(l—ﬁﬁ)

d. Incrementt:t < t+1

e - Output: 8D



