
10-301/601: Introduction to
Machine Learning
Lecture 19 – Pre-training,
Fine-tuning & In-Context
Learning
Henry Chai & Matt Gormley

11/6/23

Front Matter

� Announcements:

� Exam 2 on 11/9 (Thursday!)

� All topics from Lecture 8 - 16 are in-scope

� Exam 1 content may be referenced but will not
be the primary focus of any question

� No electronic devices (you won’t need them!)

� You may bring one letter-size sheet of notes;
you can put whatever you want on both sides

11/6/23 2

Recall:
Scaled Dot-
Product
Attention

11/6/23 3

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑎4,1 𝑎4,2 𝑎4,3

𝑠4,1 𝑠4,2 𝑠4,3 𝑠4,4

𝑎4,4

𝒗! = 𝑾"
#𝒙!

𝒌! = 𝑾$
#𝒙!

𝒒! = 𝑾%
#𝒙!

𝑠&,! =
𝒌!#𝒒&
𝑑$

𝑎&,! = softmax 𝑠&,!

𝒙&(=1
!)*

&

𝑎&,!𝒗!

Values

Keys

Queries

Scores

Attention
weights

attention

Scaled Dot-
Product
Attention:
Matrix Form

11/6/23 4

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣
𝑉 = 𝒗*, ⋯ , 𝒗+ = 𝑾"

𝒙*, ⋯ , 𝒙+

𝐾 = 𝒌*, ⋯ , 𝒌+ = 𝑾$
𝒙*, ⋯ , 𝒙+

𝑄 = 𝒒*, ⋯ , 𝒒+ = 𝑾%
𝒙*, ⋯ , 𝒙+

Scaled Dot-
Product
Attention:
Matrix Form

11/6/23 7

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣
𝑉 = 𝑾"

#𝑋#

𝐾 = 𝑾$
#𝑋#

𝑄 = 𝑾%
#𝑋#

𝑆 =
𝐾#𝑄
𝑑$

𝐴 = softmax 𝑆

Scaled Dot-
Product
Attention:
Matrix Form

11/6/23 8

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣
𝑉 = 𝑾"

#𝑋#

𝐾 = 𝑾$
#𝑋#

𝑄 = 𝑾%
#𝑋#

𝑆 =
𝐾#𝑄
𝑑$

𝐴 = softmax 𝑆

𝑋(= 𝑉𝐴 = 𝑉	softmax
𝐾#𝑄
𝑑$

Decoding

11/6/23 10

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑋(= 𝑉𝐴 = 𝑉	softmax
𝐾#𝑄
𝑑$

• Suppose we’re training

our transformer to
predict the next token(s)
given the input…

•… then attending to
tokens that come after

the current token is
cheating!

𝐴 = softmax 𝑆

Masking

11/6/23 12

𝒒1 𝒒2 𝒒3 𝒒4

𝒗1 𝒗2 𝒗3 𝒗4

softmax

𝒌1 𝒌2 𝒌3 𝒌4

𝒙1 𝒙2 𝒙3 𝒙4

𝑾𝑘

𝑾𝑞

𝑾𝑣

𝑋(= 𝑉𝐴 = 𝑉	softmax
𝐾#𝑄
𝑑$

𝐴 = softmax 𝑆

Insight: if some
element in the input to
the softmax is -∞, then
the corresponding
output is 0!

exp −∞
∑! exp 𝑠!

=
0

∑! exp 𝑠!

Idea: we can effectively delete or “mask” some of these
arrows by selectively setting attention weights to 0

Masked
Multi-headed
Attention:
Matrix Form

11/6/23 15

𝒙1 𝒙2 𝒙3 𝒙4

𝑾%
,

𝑾$
,

𝑾"
,

multi-headed attention

𝒙*(𝒙-(𝒙.(𝒙&(

𝑋(= concat
,

𝑉 , 	softmax
𝐾 , #𝑄 ,

𝑑$
+𝑀 	

𝑉 , = 𝑾"
, #𝑋#

𝐾 , = 𝑾$
, #𝑋#

𝑄 , = 𝑾%
, #𝑋#

where

Practical
Considerations

11/6/23 16

1. Where on earth do tokens come from?

� Example: “Henry is giving a lecture on transformers”
� Word-based tokenization:

[“henry”, “is”, “giving”, “a”, “lecture”, “on”, “transformers”]

� Can have difficulty trading off between vocabulary size
and computational tractability

� Similar words e.g., “transformers” and “transformer”

can get mapped to completely disparate representations

� Typos will typically be out-of-vocabulary (OOV)

2. How can we handle variable-length sequences?

Practical
Considerations

11/6/23 17

1. Where on earth do tokens come from?

� Example: “Henry is givin’ a lectrue on transformers”
� Word-based tokenization:

[“henry”, “is”, ???, “a”, ???, “on”, “transformers”]

� Can have difficulty trading off between vocabulary size
and computational tractability

� Similar words e.g., “transformers” and “transformer”

can get mapped to completely disparate representations

� Typos will typically be out-of-vocabulary (OOV)

2. How can we handle variable-length sequences?

Practical
Considerations

11/6/23 18

1. Where on earth do tokens come from?

� Example: “Henry is givin’ a lectrue on transformers”
� Character-based tokenization:

[“h”, “e”, “n”, “r”, “y”, “i”, “s”, “g”, “i”, “v”, “i”, “n”, “ ’ ”, …]

� Much smaller vocabularies but a lot of semantic
meaning is lost…

� Sequences will be much longer than word-based

tokenization, potentially causing computational issues

� Can do well on logographic languages e.g., Kanji 漢字

2. How can we handle variable-length sequences?

Practical
Considerations

11/6/23 19

1. Where on earth do tokens come from?

� Example: “Henry is givin’ a lectrue on transformers”
� Subword tokenization:

[“henry”, “is”, “giv”, “##in”, “ ‘ ”, “a”, “lect” “##re”, “on”,
“transform”, “##ers”]

� Split long or rare words into smaller, semantically
meaningful components or subwords

2. How can we handle variable-length sequences?

� Artificially make all sequences the same length by

� Padding: adding special pad tokens to short sequences

� Truncating: using only the first few tokens for long
sequences

Recall:
Mini-batch
Stochastic
Gradient
Descent…

� Input: training dataset 𝒟 = 𝒙 E , 𝑦 E
EFG
H

,

step size 𝛾, and batch size 𝐵

1. Randomly initialize the parameters 𝜽 I and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 J , 𝑦 J
JFG
K

b. Compute the gradient of the loss w.r.t. the sampled batch,

∇𝐽 K 𝜽 L

c. Update 𝜽: 𝜽 LMG ← 𝜽 L − 𝛾∇𝐽 K 𝜽 L

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 L
11/6/23 21

Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

11/6/23 24

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• “gradient-based
optimization starting
from random initialization
appears to often get

stuck in poor solutions for
such deep networks.”

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

11/6/23 25

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• Idea: if shallow
networks are easier to
train, let’s just
decompose our deep

network into a series
of shallow networks!

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/23 26Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/23 27Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

Output layer

� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/23 28Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

Output layer

� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

11/6/23 29Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

11/6/23 30Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Use the pre-trained

weights as an
initialization and

fine-tune the entire
network e.g., via SGD

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Supervised
Pre-training
(Bengio et al.,
2006)

11/6/23 31

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

� Train each layer of the

network iteratively using
the training dataset

� Use the pre-trained
weights as an
initialization and

fine-tune the entire
network e.g., via SGD

with the training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Train each layer of the

network iteratively using
the training dataset to
predict the labels

� Use pre-trained weights
as an initialization and

fine-tune the entire
network e.g., via SGD

with the training dataset

Supervised
Pre-training
(Bengio et al.,
2006)

11/6/23 32

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/23 34

� Idea: a good representation is

one preserves a lot of
information and could be used
to recreate the inputs

� Train each layer of the

network iteratively using
the training dataset to
learn useful representations

� Use pre-trained weights as
an initialization and

fine-tune the entire network
e.g., via SGD with the
training dataset

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 N

� This objective defines an
autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/23 35Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 N

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/23 36Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 N

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/23 37Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 N

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/23 38Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

11/6/23 39Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 N

� When fine-tuning, we’re
effectively swapping out
the last layer and fitting
all the weights to the
training dataset

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Unsupervised
Pre-training
(Bengio et al.,
2006)

11/6/23 40

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 N

� When fine-tuning, we’re
effectively swapping out
the last layer and fitting
all the weights to the
training dataset

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Idea: a good representation is

one preserves a lot of
information and could be used
to recreate the inputs

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

11/6/23 41

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• Problem: what if you
don’t even have
enough data to train a
single layer/fine-tune

the pre-trained
network?

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Another
dose of
Reality

� You have some niche task that you want to apply machine
learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� Ideally, you want to use a large dataset related to your

goal task

11/6/23 42

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� GPT-3 pre-training data:

11/6/23 43Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� Okay that’s great for pre-training and all, but what if

A. the concept of labelled data doesn’t apply to your task
i.e., not every input has a “correct” label e.g., chatbots?

B. you don’t have enough data to fine-tune your model?

Another
dose of
Reality

11/6/23 44

Reinforcement
Learning from
Human
Feedback
(RLHF)

� Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

� Idea: use human feedback to determine how good or

bad some prediction/response is!

� Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation…

� Idea: use a small number of annotations to learn a

“reward” function!
11/6/23 45

Reinforcement
Learning from
Human
Feedback
(RLHF)

11/6/23 46

� RLHF is a special form of fine-tuning, used to fine-tune GPT-

3.5 into ChatGPT
Source: https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt

In-context
Learning

� Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

� Idea: leverage the LLM’s context window by passing a
few one zero(!) examples to the model as input,

without performing any updates to the parameters

� Intuition: during training, the LLM is exposed to a
massive number of examples/tasks and the input
conditions the model to “locate” the relevant concepts

11/6/23 48Source: https://arxiv.org/pdf/2111.02080.pdf

https://arxiv.org/pdf/2111.02080.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

11/6/23 49Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

11/6/23 50Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

11/6/23 51Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

11/6/23 52Source: https://arxiv.org/pdf/2005.14165.pdf

• Key Takeaway: LLMs can perform well on novel tasks
without having to fine-tune the model, sometimes even
with just one or zero labelled training data points!

https://arxiv.org/pdf/2005.14165.pdf

Mini-batch
Stochastic
Gradient
Descent is a lie!
just the
beginning!

� Input: training dataset 𝒟 = 𝒙 E , 𝑦 E
EFG
H

,

step size 𝛾, and batch size 𝐵

1. Randomly initialize the parameters 𝜽 I and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 J , 𝑦 J
JFG
K

b. Compute the gradient of the loss w.r.t. the sampled batch,

∇𝐽 K 𝜽 L

c. Update 𝜽: 𝜽 LMG ← 𝜽 L − 𝛾∇𝐽 K 𝜽 L

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 L
11/6/23 53

Mini-batch
Stochastic
Gradient
Descent
just the
beginning!

� Input: training dataset 𝒟 = 𝒙 E , 𝑦 E
EFG
H

,

step size 𝛾, and batch size 𝐵

1. Pre-train the parameters 𝜽 I and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 J , 𝑦 J
JFG
K

b. Compute the gradient of the fine-tuning loss

∇𝐽 K 𝜽 L

c. Update 𝜽: 𝜽 LMG ← 𝜽 L − 𝛾∇𝐽 K 𝜽 L

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 L
11/6/23 54

Mini-batch
Stochastic
Gradient
Descent
with
Momentum

11/6/23 55

� Input: training dataset 𝒟 = 𝒙 E , 𝑦 E
EFG
H

,

step size 𝛾, and batch size 𝐵, decay parameter 𝛽

1. Pre-train the parameters 𝜽 I and set 𝑡 = 0, 𝐺OG = 0⊙ 𝜽 I

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 J , 𝑦 J
JFG
K

b. Compute the gradient of the fine-tuning loss

𝐺L = ∇𝐽 K 𝜽 L

c. Update 𝜽: 𝜽 LMG ← 𝜽 L − 𝛾 𝛽𝐺LOG + 𝐺L

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 L

11/6/23 56

Mini-batch
Stochastic
Gradient
Descent
with
Momentum

11/6/23 57

Mini-batch
Stochastic
Gradient
Descent
with
Momentum

11/6/23 58

Mini-batch
Stochastic
Gradient
Descent
with
Momentum

Mini-batch
Stochastic
Gradient
Descent with
Root Mean
Square
Propagation
(RMSProp)

11/6/23 59

� Input: training dataset 𝒟 = 𝒙 E , 𝑦 E
EFG
H

,

step size 𝛾, and batch size 𝐵, decay parameter 𝛽

1. Pre-train the parameters 𝜽 I and set 𝑡 = 0, 𝑆OG = 0⊙ 𝜽 I

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 J , 𝑦 J
JFG
K

b. Compute the gradient of the fine-tuning loss

𝐺L = ∇𝐽 K 𝜽 L

c. Update the scaling factor: 𝑆L = 𝛽𝑆LOG + 1 − 𝛽 𝐺L⊙𝐺L

d. Update 𝜽: 𝜽 LMG ← 𝜽 L − P
Q!
⊙𝐺L

e. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 L

Adam
(Adaptive
Moment
Estimation) =
SGD +
Momentum +
RMSProp

11/6/23 60

� Input: training dataset 𝒟 = 𝒙 E , 𝑦 E
EFG
H

,

step size 𝛾, and batch size 𝐵, decay parameters 𝛽G and 𝛽N

1. Pre-train the parameters 𝜽 I , 𝑡 = 0, 𝑀OG = 𝑆OG = 0⊙ 𝜽 I

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 J , 𝑦 J
JFG
K

b. Compute the gradient, momentum and scaling factor

𝐺L = ∇𝐽 K 𝜽 L

𝑀L = 𝛽G𝑀LOG + 1 − 𝛽G 𝐺L	and	𝑆L = 𝛽N𝑆LOG + 1 − 𝛽N 𝐺L⊙𝐺L

c. Update 𝜽: 𝜽 LMG ← 𝜽 L − P

⁄Q! GOS"!
⊙ ⁄𝑀L 1 − 𝛽GL

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 L

