

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Machine Learning as Function Approximation

Matt Gormley Lecture 2 Aug. 30, 2023

Reminders

- Background Test
 - Fri, Sep 1, in-class
- Homework 1: Background
 - Out: Fri, Sep 1
 - Due: Wed, Sep 6 at 11:59pm
 - Two parts:
 - 1. written part to Gradescope
 - 2. programming part to Gradescope
 - unique policies for this assignment:
 - 1. unlimited submissions for programming (i.e. keep submitting until you get 100%)
 - 2. we will grant (essentially) any and all extension requests

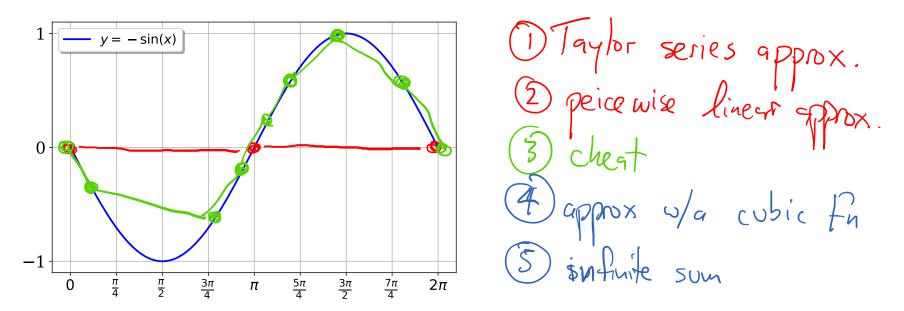
Big Ideas

- 1. How to formalize a learning problem
- 2. How to learn an expert system (i.e. Decision Tree)
- 3. Importance of inductive bias for generalization
- 4. Overfitting

FUNCTION APPROXIMATION

Function Approximation

Quiz: Implement a simple function which returns $-\sin(x)$.



A few constraints are imposed:

- 1. You can't call any other trigonometric functions
- You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution
- You only need to evaluate it for x in [0, 2*pi]

SUPERVISED MACHINE LEARNING

Medical Diagnosis

- Setting:
 - Doctor must decide whether or not patient is sick
 - Looks at attributes of a patient to make a medical diagnosis
 - (Prescribes treatment if diagnosis is positive)
- Key problem area for Machine Learning
- Potential to reshape health care

Medical Diagnosis

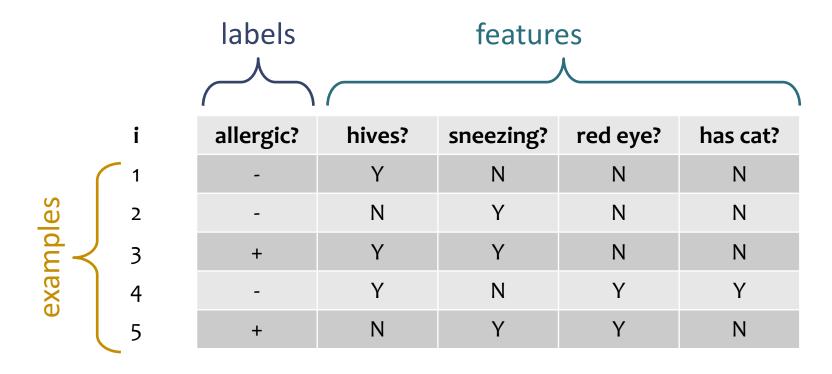
Interview Transcript

Date: Jan. 15, 2023

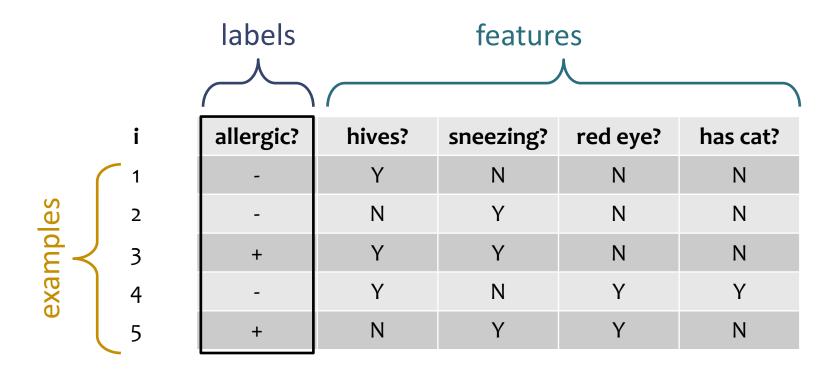
Parties: Matt Gormley and Doctor S.

Topic: Medical decision making

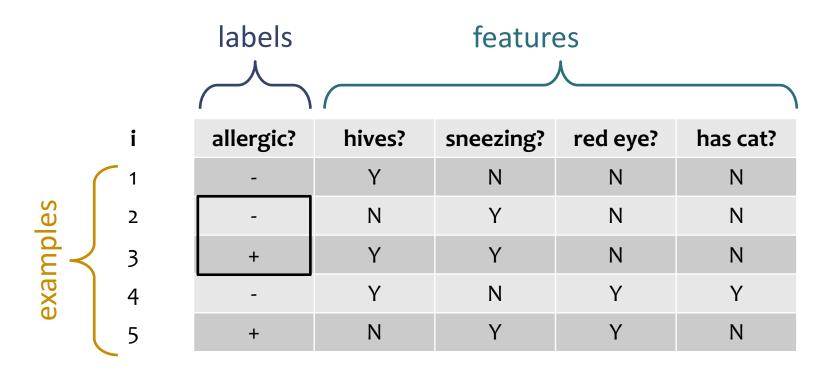
As a (supervised) binary classification task



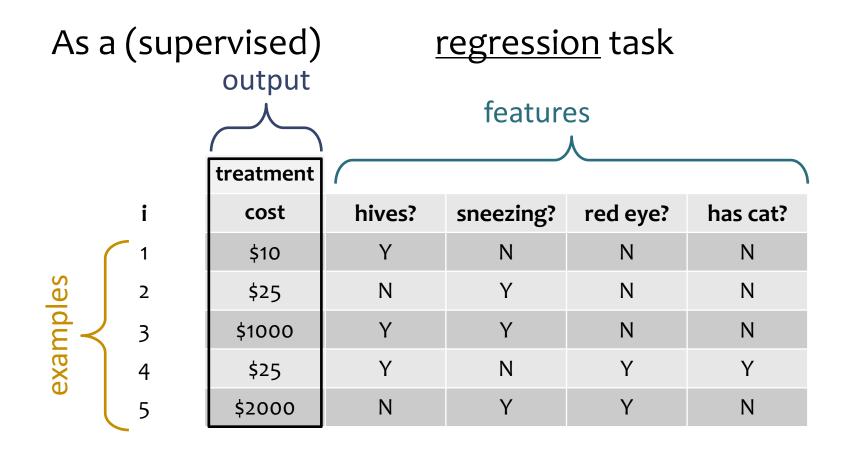
As a (<u>supervised</u>) binary classification task



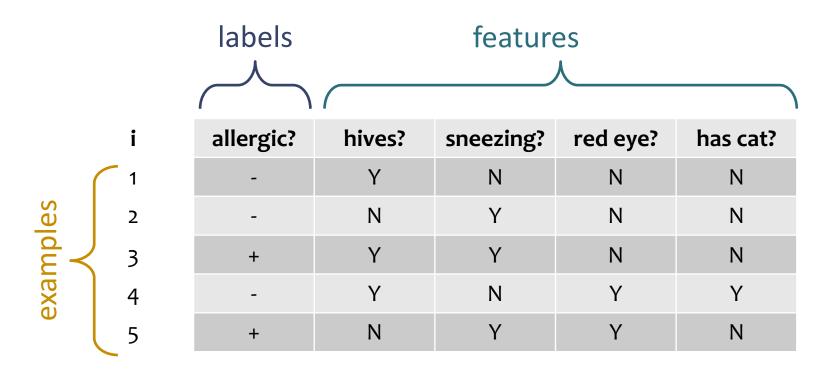
As a (supervised) binary classification task



As a (supervised) classification task labels features allergy sneezing? red eye? hives? has cat? Υ Ν Ν Ν none examples 2 Ν Ν Ν none Ν 3 Υ Ν dust Ν Υ 4 Υ Υ none mold Ν Υ Υ Ν



As a (supervised) binary classification task



Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$

	у	X_1	X ₂	X_3	X ₄
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Υ	N	N	N

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$

	у	X_1	X_2	X_3	X ₄
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	-	Y	N	N	N
2	-	N	Υ	N	N
3	+	Y	Y	N	N
4	-	Υ	N	Υ	Υ
5	+	N	Y	Υ	N

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_1, ..., x_M$

	У	X_1	X_2	X_3	x_4
i	allergic?	hives?	sneezing?	red eye?	has cat?
1	y ⁽¹⁾ -	X ₁ ⁽¹⁾ Y	X ₂ ⁽¹⁾ N	$x_3^{(1)} N$	x ₄ ⁽¹⁾ N
2	y ⁽²⁾ -	$X_1^{(2)} N$	X ₂ ⁽²⁾ Y	$x_3^{(2)} N$	$X_4^{(2)} N$
3	y ⁽³⁾ +	X ₁ ⁽³⁾ Y	X ₂ ⁽³⁾ Y	$x_3^{(3)} N$	x ₄ ⁽³⁾ N
4	y ⁽⁴⁾ -	X ₁ ⁽⁴⁾ Y	$X_2^{(4)} N$	x ₃ ⁽⁴⁾ Y	x ₄ ⁽⁴⁾ Y
5	y ⁽⁵⁾ +	X ₁ ⁽⁵⁾ N	X ₂ ⁽⁵⁾ Y	x ₃ ⁽⁵⁾ Y	x ₄ ⁽⁵⁾ N

Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$

	У	X ₁	X ₂	X_3	X ₄	
i	allergic?	hives?	sneezing?	red eye?	has cat?	
1	y ⁽¹⁾ -	X ₁ ⁽¹⁾ Y	$X_2^{(1)} N$	x ₃ ⁽¹⁾ N	x ₄ ⁽¹⁾ N	X ⁽¹⁾
2	y ⁽²⁾ -	X ₁ ⁽²⁾ N	$X_2^{(2)} Y$	$X_3^{(2)} N$	X ₄ ⁽²⁾ N	$\left(\mathbf{X}^{(2)}\right)$
3	y ⁽³⁾ +	Χ ₁ ⁽³⁾ Υ	X ₂ ⁽³⁾ Y	x ₃ ⁽³⁾ N	x ₄ ⁽³⁾ N	X ⁽³⁾
4	y ⁽⁴⁾ -	X ₁ ⁽⁴⁾ Y	X ₂ ⁽⁴⁾ N	x ₃ ⁽⁴⁾ Y	x ₄ ⁽⁴⁾ Y	X ⁽⁴⁾
5	y ⁽⁵⁾ +	x ₁ ⁽⁵⁾ N	X ₂ ⁽⁵⁾ Y	x ₃ ⁽⁵⁾ Y	x ₄ ⁽⁵⁾ N	X (5)

N = 5 training examples

M = 4 attributes

ML as Function Approximation

Whiteboard

- ML as Function Approximation
 - Problem setting
 - Input space
 - Output space
 - Unknown target function
 - Hypothesis space
 - Training examples
 - Goal of Learning

ML as Function Approximation

Problem Setting

- Set of possibles & (all possible Feature vectors)
- Set & possible y (all possible labels)
- Unknown target function c*: 2 -> y
- Set of candidate hypotheses

$$\mathcal{H} = \text{all possible hypotheses} = \{h \mid h: \chi \rightarrow \chi\}$$

Learner is given:

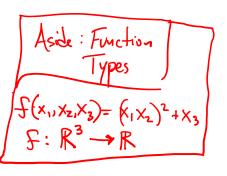
- Training examples $D_{1} = \{(\vec{x}^{(1)}, y^{(1)}), (\vec{x}^{(2)}, y^{(2)}), ..., (\vec{x}^{(N)}, y^{(N)})\}$ of unknown target function $y^{(i)} = c^*(\vec{x}^{(i)})$, $\forall i \in \{1,...,N\}$
- N = # of training exemples, M= # fectores = | \(\frac{1}{x} \)

Learner produces:

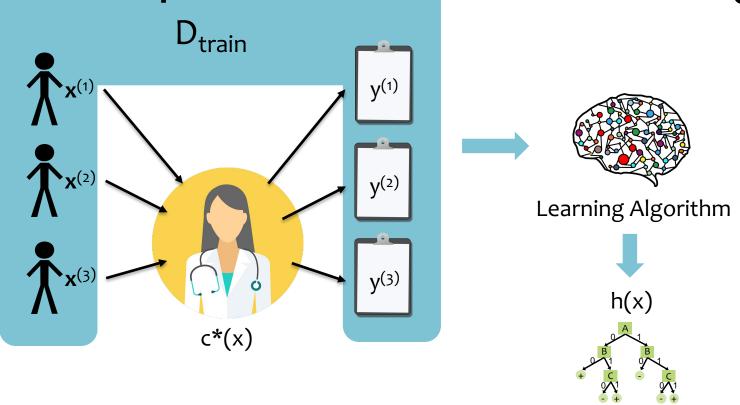
- Hypothesis h & A that best approximates c*

To Evaluate:

- Loss function $l: \mathcal{Y}_{\times}\mathcal{Y}_{\to} \to \mathbb{R}$ measures how "b-d" predictions $\hat{y} = h(\hat{x})$ are compared to $c^*(\hat{x})$
- Another dataset $D_{test} = \{(\vec{x}^{(i)}, y^{(i)}), \dots, (\vec{x}^{(N')}, y^{(N')})\}$
- Evaluate the average loss of h(x) on Dtest



Supervised Machine Learning



Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$

Oredictions		y	× ₁	X ₂	x ₃	x ₄	
	i	allergic? _{c*}	hives?	sneezing?	red eye?	has cat?	
	1	y ⁽¹⁾ - *	X ₁ ⁽¹⁾ Y	X ₂ (1) N	x ₃ ⁽¹⁾ N	x ₄ ⁽¹⁾ N	X ⁽¹⁾
	2	y ⁽²⁾ -	$X_1^{(2)} N$	x ₂ (2) Y	x ₃ ⁽²⁾ N	x ₄ ⁽²⁾ N	$X^{(2)}$
	3	y(3) 4	χ ₁ ⁽³⁾ Υ	χ ₂ ⁽³⁾ Υ	x ₃ ⁽³⁾ N	x ₄ ⁽³⁾ N	X ⁽³⁾
	4	y(4)	Χ ₁ ⁽⁴⁾ Υ	x ₂ (4) N	X ₃ ⁽⁴⁾ Y	x ₄ ⁽⁴⁾ Y	X(4)
1	5	y(5) 4	X ₁ ⁽⁵⁾ N	X ₂ ⁽⁵⁾ Y	х ₃ ⁽⁵⁾ Ү	x ₄ ⁽⁵⁾ N	X ⁽⁵⁾
		N – 5 traini	no eyamr	les Exam	nple hypo	thesis	

N = 5 training examples M = 4 attributes

function: $h(x) = \begin{cases} + \text{ if sneezing} = Y \\ - \text{ otherwise} \end{cases}$

Supervised Machine Learning

Problem Setting

- Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all possible patients)
- Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
- Exists an unknown target function, $c^* : \mathcal{X} \rightarrow \mathcal{Y}$ (the doctor's brain)
- Set, \mathcal{H} , of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible decision trees)
- Learner is given N training examples $D = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), ..., (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$ where $\mathbf{y}^{(i)} = \mathbf{c}^*(\mathbf{x}^{(i)})$ (history of patients and their diagnoses)
- Learner produces a hypothesis function, $\hat{y} = h(x)$, that best approximates unknown target function $y = c^*(x)$ on the training data

Supervised Machine Learning

Problem Setting

- Set of possible inputs, $x \in \mathcal{X}$ (all possible patients)
- Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses)
- Exists an unknown tar function, $c^*: \mathcal{X} \rightarrow \mathcal{Y}$ (the doctor's brain)
- Set, \mathcal{H} , of candidate hypoth (all possible decision trees) consider:
- Learner is given N training
 D = {(x⁽¹⁾, y⁽¹⁾), (x⁽²⁾, y⁽²⁾), ...,
 where y⁽ⁱ⁾ = c*(x⁽ⁱ⁾)
 (history of patients and the
- Learner produces a hypoth approximates unknown tar

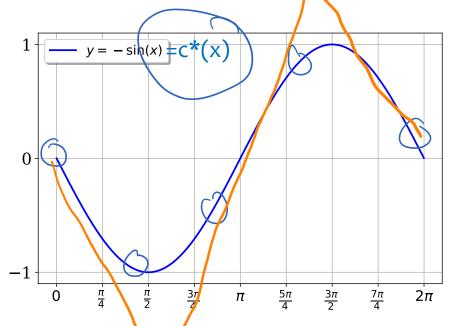
Two important settings we'll consider:

- Classification: the possible outputs are discrete
- 2. Regression: the possible outputs are real-valued

data

Function Approximation

Quiz: Implement a simple function which returns $-\sin(x)$.



A few constraints are imposed:

- 1. You can't call any other trigonometric functions
- You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution
- You only need to evaluate it for x in [0, 2*pi]

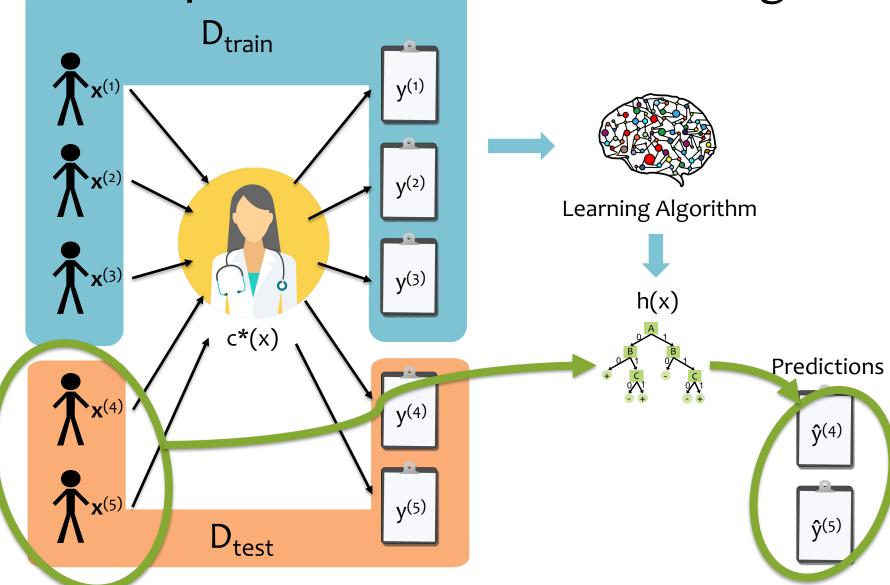
Supervised Machine Learning

Problem Setting

- Set of possible inputs, \mathbf{x} ∈ \mathcal{X} (all values in [0, 2*pi])
- Set of possible outputs, $y \in \mathcal{Y}$ (all values in [-1,1]) or \mathcal{H}
- Exists an unknown target function, $c^*: \mathcal{X} \rightarrow \mathcal{Y}$ ($c^*(x) = \sin(x)$)
- Set, \mathcal{H} , of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible piecewise linear functions)
- Learner is given N training examples D = $\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), ..., (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$ where $\mathbf{y}^{(i)} = \mathbf{c}^*(\mathbf{x}^{(i)})$ (true values of sin(x) for a few random x's)
- Learner produces a hypothesis function, $\hat{y} = h(x)$, that best approximates unknown target function $y = c^*(x)$ on the training data

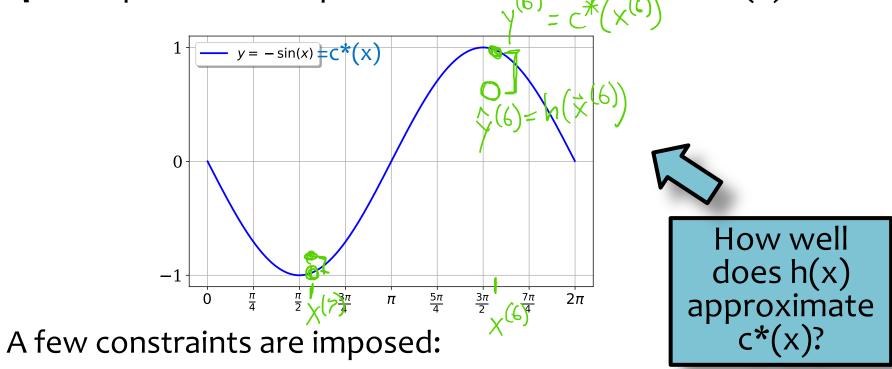
EVALUATION OF MACHINE LEARNING ALGORITHM

Supervised Machine Learning



Function Approximation

Quiz: Implement a simple function which returns $-\sin(x)$.



- 1. You can't call any other trigonometric functions
- You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution
- You only need to evaluate it for x in [o, 2*pi]

Evaluation of ML Algorithms

- Definition: loss function, $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
 - Defines how "bad" predictions, $\hat{y} = h(x)$, are compared to the true labels, $y = c^*(x)$
 - Common choices
 - Squared loss (for regression): $\ell(\hat{y}, \hat{y}) = (y \hat{y})^2$ Binary or 0-1 loss (for classification):

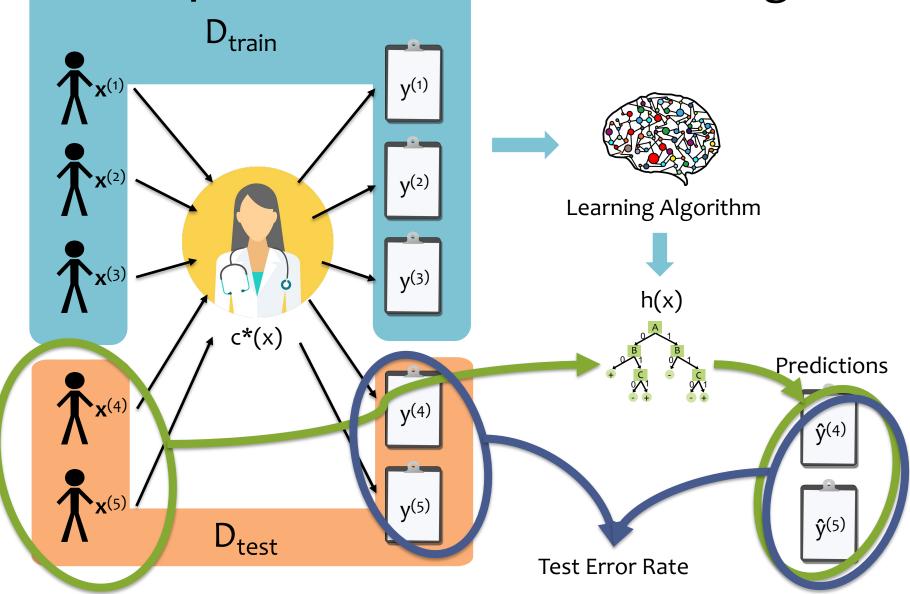
$$\ell(y, \hat{y}) = \mathbb{1}(y \neq \hat{y}) = \begin{cases} 1 & \text{if incorrect} \\ 0 & \text{otherwise} \end{cases}$$

Error rate:

$$err(h, \mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(y^{(n)} \neq \hat{y}^{(n)})$$

• Q: How do we evaluate a machine learning algorithm? A: Check its error rate on a separate test dataset, D_{test}

Supervised Machine Learning



Error Rate

Consider a hypothesis h its...

... error rate over all training data: error(h, D_{train})

... error rate over all test data:

... true error over all data:

error(h, D_{test}) 4
error_{true}(h)

This is the quantity we care most about! But, in practice, error_{true}(h) is **unknown**.

Majority Vote Classifier Example

Dataset:

Output Y, Attributes A and B

2	X
2	X

Ŷ	Υ	Α	В
+	-	1	0
+	-	1	0
+	+	1	0
++++	+	1	0
+	+	1	1
+	+	1	1
+ +	+	1	1
+	+	1	1

In-Class Exercise

What is the **training** error (i.e. error rate on the training data) of the majority vote classifier on this dataset?

Choose one of: $\{0/8, 1/8, 2/8, ..., 8/8\}$

LEARNING ALGORITHMS FOR SUPERVISED CLASSIFICATION

Algorithm 1 majority vote: predict the most common label in the training dataset

	у	X_1	X_2	X_3	x_4
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
-	-	Y	N	N	N
-	-	N	Υ	N	N
-	+	Υ	Υ	N	N
-	-	Υ	N	Υ	Υ
-	+	N	Y	Y	N

<u>Algorithm 2</u> memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict a random label

	у	X_1	X_2	X_3	X_4
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
	-	Y	N	N	N
	-	N	Υ	N	N
+	+	Υ	Υ	N	N
	-	Υ	N	Υ	Υ
+	+	N	Y	Υ	N

The memorizer always gets zero training error!

Question:

If we have 100 features, how many patients does the memorizer need to see to ensure zero test error?

Answer:

Algorithm 1: Majority Vote

Pseudocode

def train(D):
store
$$V = \text{majority-vote}(D)$$

= the class $y \in \mathcal{Y}$ that appears most often in D
def $h(\vec{x})$:
return V
def predict (D_{test}) :
for $(\dot{x}^{(i)}, y^{(i)}) \in D_{\text{test}}$: any classifier today
 $\dot{y}^{(i)} = h(\dot{x}^{(i)})$

Algorithm 2: Memorizer

Pseudocode fain (D): store datatet D $def h(\hat{x}):$ if $\exists \vec{x}^{(i)} \in D$ s.t. $\vec{x} = \vec{x}^{(i)}$: retorn y (i) ese: return random y & y

Algorithm 3 decision stump: based on a single feature, x_d , predict the most common label in the training dataset among all data points that have the same value for x_d

		у	X_1	X ₂	X_3	X_4
pı	redictions	allergic?	hives?	sneezing?	red eye?	has cat?
	-		Υ (N	N	N
X	+	-	N	Y	N	N
	+	+	Y	Y	N	N
	-	-	Υ	N	Υ	Υ
	+	+	N	Y	Υ	N

Nonzero training error, but perhaps still better than the memorizer

Example decision stump:
$$h(\mathbf{x}) = \begin{cases} + \text{ if sneezing} = Y \\ - \text{ otherwise} \end{cases}$$

Algorithm 3: Decision Stump

Pseudocode

def frain (D)=

(1) pick an attribute, m

(2) divide detect D on Xm

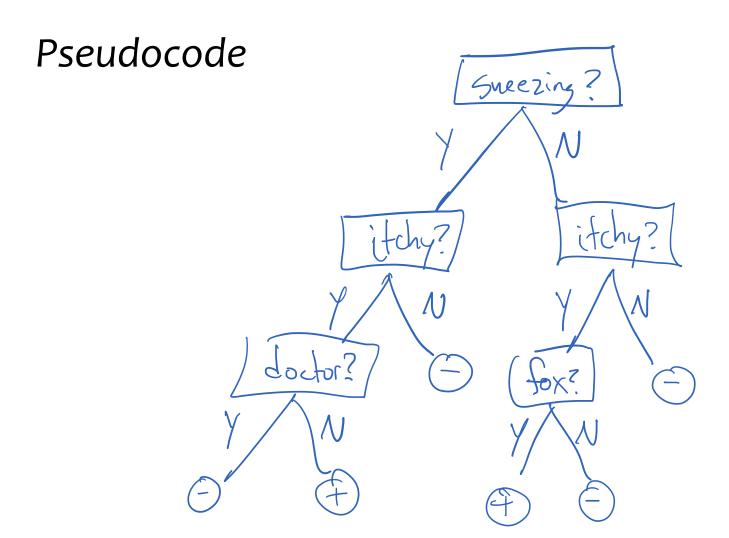
$$D^{(0)} = \{ (x^{(i)}, y^{(i)}) \in D \mid x_m = 0 \}$$

$$D^{(i)} = \{ (x^{(i)}, y^{(i)}) \in D \mid x_m = 1 \}$$
(3) two votes
$$v^{(0)} = majority - vote (D^{(0)})$$

$$v^{(i)} = majority - vote (D^{(0)})$$

Jef
$$h(\vec{x})$$
:
 $i \neq x_{m} = 0$: return $v^{(0)}$
 $i \neq x_{m} = 1$: return $v^{(1)}$

Algorithm 4: Decision Tree (preview)



Tree to Predict C-Section Risk

Learned from medical records of 1000 women (Sims et al., 2000)

Negative examples are C-sections

```
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
  Previous_Csection = 0: [767+,81-] .90+ .10-
   Primiparous = 0: [399+,13-] .97+ .03-
   Primiparous = 1: [368+,68-] .84+ .16-
   | \text{Fetal\_Distress} = 0: [334+,47-] .88+ .12-
   | | Birth_Weight < 3349: [201+,10.6-] .95+ .
   | | Birth_Weight >= 3349: [133+,36.4-] .78+
   | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
```