10-301/10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University # Machine Learning as Function Approximation Matt Gormley Lecture 2 Aug. 30, 2023 #### Reminders - Background Test - Fri, Sep 1, in-class - Homework 1: Background - Out: Fri, Sep 1 - Due: Wed, Sep 6 at 11:59pm - Two parts: - 1. written part to Gradescope - 2. programming part to Gradescope - unique policies for this assignment: - 1. unlimited submissions for programming (i.e. keep submitting until you get 100%) - 2. we will grant (essentially) any and all extension requests ## Big Ideas - 1. How to formalize a learning problem - 2. How to learn an expert system (i.e. Decision Tree) - 3. Importance of inductive bias for generalization - 4. Overfitting #### **FUNCTION APPROXIMATION** ## **Function Approximation** **Quiz:** Implement a simple function which returns $-\sin(x)$. #### A few constraints are imposed: - 1. You can't call any other trigonometric functions - You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution - You only need to evaluate it for x in [0, 2*pi] #### **SUPERVISED MACHINE LEARNING** ## Medical Diagnosis - Setting: - Doctor must decide whether or not patient is sick - Looks at attributes of a patient to make a medical diagnosis - (Prescribes treatment if diagnosis is positive) - Key problem area for Machine Learning - Potential to reshape health care ## Medical Diagnosis **Interview Transcript** **Date:** Jan. 15, 2023 **Parties:** Matt Gormley and Doctor S. **Topic:** Medical decision making As a (supervised) binary classification task As a (<u>supervised</u>) binary classification task As a (supervised) binary classification task As a (supervised) classification task labels features allergy sneezing? red eye? hives? has cat? Υ Ν Ν Ν none examples 2 Ν Ν Ν none Ν 3 Υ Ν dust Ν Υ 4 Υ Υ none mold Ν Υ Υ Ν As a (supervised) binary classification task Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$ | | у | X_1 | X ₂ | X_3 | X ₄ | |---|-----------|--------|----------------|----------|-----------------------| | i | allergic? | hives? | sneezing? | red eye? | has cat? | | 1 | - | Υ | N | N | N | Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$ | | у | X_1 | X_2 | X_3 | X ₄ | |---|-----------|--------|-----------|----------|-----------------------| | i | allergic? | hives? | sneezing? | red eye? | has cat? | | 1 | - | Y | N | N | N | | 2 | - | N | Υ | N | N | | 3 | + | Υ | Υ | N | N | | 4 | - | Υ | N | Υ | Υ | | 5 | + | N | Υ | Y | N | Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$ | | у | X_1 | X_2 | X_3 | X ₄ | |---|--------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | i | allergic? | hives? | sneezing? | red eye? | has cat? | | 1 | y ⁽¹⁾ - | X ₁ ⁽¹⁾ Y | X ₂ ⁽¹⁾ N | x ₃ ⁽¹⁾ N | x ₄ ⁽¹⁾ N | | 2 | y ⁽²⁾ - | $X_1^{(2)} N$ | $X_2^{(2)} Y$ | $X_3^{(2)} N$ | $X_4^{(2)} N$ | | 3 | y ⁽³⁾ + | X ₁ ⁽³⁾ Y | X ₂ ⁽³⁾ Y | x ₃ ⁽³⁾ N | x ₄ ⁽³⁾ N | | 4 | y ⁽⁴⁾ - | X ₁ ⁽⁴⁾ Y | $X_2^{(4)} N$ | x ₃ ⁽⁴⁾ Y | x ₄ ⁽⁴⁾ Y | | 5 | y ⁽⁵⁾ + | X ₁ ⁽⁵⁾ N | X ₂ ⁽⁵⁾ Y | x ₃ ⁽⁵⁾ Y | x ₄ ⁽⁵⁾ N | Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_2, ..., x_M$ | | у | X ₁ | X_2 | X_3 | X_4 | | |---|--------------------|---------------------------------|--|---------------------------------|---------------------------------|-------------------------| | i | allergic? | hives? | sneezing? | red eye? | has cat? | | | 1 | y ⁽¹⁾ - | X ₁ ⁽¹⁾ Y | $X_2^{(1)} N$ | x ₃ ⁽¹⁾ N | x ₄ ⁽¹⁾ N | X ⁽¹⁾ | | 2 | y ⁽²⁾ - | X ₁ ⁽²⁾ N | X ₂ ⁽²⁾ Y | x ₃ ⁽²⁾ N | x ₄ ⁽²⁾ N | X ⁽²⁾ | | 3 | y ⁽³⁾ + | Χ ₁ ⁽³⁾ Υ | X ₂ ⁽³⁾ Y | x ₃ ⁽³⁾ N | x ₄ ⁽³⁾ N | X (3) | | 4 | y ⁽⁴⁾ - | X ₁ ⁽⁴⁾ Y | X ₂ ⁽⁴⁾ N | x ₃ ⁽⁴⁾ Y | x ₄ ⁽⁴⁾ Y | X ⁽⁴⁾ | | 5 | y ⁽⁵⁾ + | x ₁ ⁽⁵⁾ N | X ₂ ⁽⁵⁾ Y | x ₃ ⁽⁵⁾ Y | x ₄ ⁽⁵⁾ N | X ⁽⁵⁾ | N = 5 training examples M = 4 attributes ### ML as Function Approximation #### Whiteboard - ML as Function Approximation - Problem setting - Input space - Output space - Unknown target function - Hypothesis space - Training examples - Goal of Learning ML as Function Approximation ## Supervised Machine Learning Doctor diagnoses the patient as sick or not $y \in \{+, -\}$ based on attributes of the patient $x_1, x_1, ..., x_M$ | | y | X ₁ | X_2 | X ₃ | X_4 | | |---|--------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------| | i | allergic? | * hives? | sneezing? | red eye? | has cat? | | | 1 | y ⁽¹⁾ - | * X ₁ ⁽¹⁾ Y | x ₂ ⁽¹⁾ N | x ₃ ⁽¹⁾ N | x ₄ ⁽¹⁾ N | X ⁽¹⁾ | | 2 | y ⁽²⁾ - | * X ₁ ⁽²⁾ N | X ₂ ⁽²⁾ Y | x ₃ ⁽²⁾ N | x ₄ ⁽²⁾ N | $X^{(2)}$ | | 3 | y(3) 4 | * X ₁ ⁽³⁾ Y | X ₂ ⁽³⁾ Y | x ₃ ⁽³⁾ N | x ₄ ⁽³⁾ N | X ⁽³⁾ | | 4 | y(4) | χ ₁ ⁽⁴⁾ Υ | $X_2^{(4)} N$ | x ₃ ⁽⁴⁾ Y | x ₄ ⁽⁴⁾ Y | X ⁽⁴⁾ | | 5 | y(5) 4 | X ₁ ⁽⁵⁾ N | X ₂ ⁽⁵⁾ Y | х ₃ ⁽⁵⁾ Ү | x ₄ ⁽⁵⁾ N | X ⁽⁵⁾ | N = 5 training examples M = 4 attributes Example hypothesis function: $$h(x) = \int + if \text{ sneezing} = Y$$ $$- \text{ otherwise}$$ ## Supervised Machine Learning #### Problem Setting - Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all possible patients) - Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses) - Exists an unknown target function, $c^* : \mathcal{X} \rightarrow \mathcal{Y}$ (the doctor's brain) - Set, \mathcal{H} , of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible decision trees) - Learner is given N training examples $D = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), ..., (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$ where $\mathbf{y}^{(i)} = \mathbf{c}^*(\mathbf{x}^{(i)})$ (history of patients and their diagnoses) - Learner produces a hypothesis function, $\hat{y} = h(x)$, that best approximates unknown target function $y = c^*(x)$ on the training data ## Supervised Machine Learning #### Problem Setting - Set of possible inputs, $x \in \mathcal{X}$ (all possible patients) - Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses) - Exists an unknown tar function, $c^*: \mathcal{X} \rightarrow \mathcal{Y}$ (the doctor's brain) - Set, \mathcal{H} , of candidate hypoth (all possible decision trees) consider: - Learner is given N training D = {(x⁽¹⁾, y⁽¹⁾), (x⁽²⁾, y⁽²⁾), ..., where y⁽ⁱ⁾ = c*(x⁽ⁱ⁾) (history of patients and the - Learner produces a hypoth approximates unknown tar Two important settings we'll consider: - Classification: the possible outputs are discrete - 2. Regression: the possible outputs are real-valued data ## **Function Approximation** **Quiz:** Implement a simple function which returns $-\sin(x)$. #### A few constraints are imposed: - 1. You can't call any other trigonometric functions - You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution - You only need to evaluate it for x in [0, 2*pi] ## Supervised Machine Learning #### Problem Setting - Set of possible inputs, $x \in \mathcal{X}$ (all values in [0, 2*pi]) - Set of possible outputs, $y \in \mathcal{Y}$ (all values in [-1,1]) - Exists an unknown target function, $c^*: \mathcal{X} \rightarrow \mathcal{Y}$ ($c^*(x) = \sin(x)$) - Set, \mathcal{H} , of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible piecewise linear functions) - Learner is given N training examples D = $\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), ..., (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$ where $\mathbf{y}^{(i)} = \mathbf{c}^*(\mathbf{x}^{(i)})$ (true values of $\sin(\mathbf{x})$ for a few random x's) - Learner produces a hypothesis function, $\hat{y} = h(x)$, that best approximates unknown target function $y = c^*(x)$ on the training data ## **EVALUATION OF MACHINE LEARNING ALGORITHM** ## Supervised Machine Learning ## **Function Approximation** **Quiz:** Implement a simple function which returns $-\sin(x)$. How well does h(x) approximate c*(x)? #### A few constraints are imposed: - 1. You can't call any other trigonometric functions - 2. You can call an existing implementation of sin(x) a few times (e.g. 100) to test your solution - You only need to evaluate it for x in [0, 2*pi] ## Evaluation of ML Algorithms - Definition: loss function, $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ - Defines how "bad" predictions, $\hat{y} = h(x)$, are compared to the true labels, $y = c^*(x)$ - Common choices - 1. Squared loss (for regression): $\ell(y, \hat{y}) = (y \hat{y})^2$ - 2. Binary or 0-1 loss (for classification): $$\ell(y,\hat{y}) = \mathbb{1}(y \neq \hat{y})$$ • Error rate: $$err(h, \mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(y^{(n)} \neq \hat{y}^{(n)})$$ Q: How do we evaluate a machine learning algorithm? A: Check its error rate on a separate test dataset, D_{test} ## Supervised Machine Learning #### **Error Rate** • Consider a hypothesis *h* its... ... error rate over all training data: error(h, D_{train}) ... error rate over all test data: error(h, D_{test}) ... true error over all data: error_{true}(h) This is the quantity we care most about! But, in practice, error_{true}(h) is **unknown**. ## Majority Vote Classifier Example #### **Dataset:** Output Y, Attributes A and B | Y | Α | В | |---|---|---| | - | 1 | 0 | | - | 1 | 0 | | + | 1 | 0 | | + | 1 | 0 | | + | 1 | 1 | | + | 1 | 1 | | + | 1 | 1 | | + | 1 | 1 | #### **In-Class Exercise** What is the **training error** (i.e. error rate on the training data) of the **majority vote classifier** on this dataset? Choose one of: {0/8, 1/8, 2/8, ..., 8/8} ## LEARNING ALGORITHMS FOR SUPERVISED CLASSIFICATION Algorithm 1 majority vote: predict the most common label in the training dataset | | у | X_1 | X_2 | X_3 | x_4 | |-------------|-----------|--------|-----------|----------|----------| | predictions | allergic? | hives? | sneezing? | red eye? | has cat? | | - | - | Y | N | N | N | | - | - | N | Υ | N | N | | - | + | Υ | Υ | N | N | | - | - | Υ | N | Υ | Υ | | - | + | N | Y | Y | N | <u>Algorithm 2</u> memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict a random label | | у | X_1 | X_2 | X_3 | X_4 | |-------------|-----------|--------|-----------|----------|----------| | predictions | allergic? | hives? | sneezing? | red eye? | has cat? | | - | - | Y | N | N | N | | - | - | N | Υ | N | N | | + | + | Υ | Υ | N | N | | - | - | Υ | N | Υ | Υ | | + | + | N | Υ | Y | N | The memorizer always gets zero training error! #### **Question:** If we have 100 features, how many patients does the memorizer need to see to ensure zero test error? ## Algorithm 1: Majority Vote Pseudocode ## Algorithm 2: Memorizer Pseudocode Algorithm 3 decision stump: based on a single feature, x_d , predict the most common label in the training dataset among all data points that have the same value for x_d | | У | X ₁ | X ₂ | X_3 | X ₄ | |-------------|-----------|----------------|----------------|----------|----------------| | predictions | allergic? | hives? | sneezing? | red eye? | has cat? | | - | - | Y | N | N | N | | + | - | N | Υ | N | N | | + | + | Υ | Υ | N | N | | - | - | Υ | N | Υ | Υ | | + | + | N | Υ | Υ | N | Nonzero training error, but perhaps still better than the memorizer Example decision stump: $$h(x) = \int + if \text{ sneezing} = Y$$ $\int - otherwise$ ## Algorithm 3: Decision Stump Pseudocode ## Algorithm 4: Decision Tree (preview) Pseudocode #### Tree to Predict C-Section Risk Learned from medical records of 1000 women (Sims et al., 2000) Negative examples are C-sections ``` [833+,167-] .83+ .17- Fetal_Presentation = 1: [822+,116-] .88+ .12- | Previous_Csection = 0: [767+,81-] .90+ .10- Primiparous = 0: [399+,13-] .97+ .03- Primiparous = 1: [368+,68-] .84+ .16- | \ | \ | Fetal_Distress = 0: [334+,47-] .88+ .12- | \ | \ | Birth_Weight >= 3349: [133+,36.4-] .78+ | Fetal_Distress = 1: [34+,21-] .62+ .38- | Previous_Csection = 1: [55+,35-] .61+ .39- Fetal_Presentation = 2: [3+,29-] .11+ .89- Fetal_Presentation = 3: [8+,22-] .27+ .73- ```