10-301/601: Introduction to Machine Learning Lecture 20: Markov Decision Processes

Henry Chai & Matt Gormley

11/8/23

Front Matter

- Announcements
 - Exam 2 on 11/9 (tomorrow!)
 - HW7 released 11/10, due 11/20 at 11:59 PM
 - Please be mindful of your grace day usage (see <u>the course syllabus</u> for the policy)

Recall: Mini-batch Stochastic Gradient Descent just the beginning!

• Input: training dataset $\mathcal{D} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^{N}$

step size γ , and batch size *B*

- *Pre-train* the parameters $\theta^{(0)}$ and set t = 0
- 2. While TERMINATION CRITERION is not satisfied
 - a. Randomly sample *B* data points from $\mathcal{D}, \{(x^{(b)}, y^{(b)})\}_{h=1}^{B}$
 - b. Compute the gradient of the *fine-tuning* loss $\nabla J^{(B)}(\boldsymbol{\theta}^{(t)})$
 - c. Update $\boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} (\gamma \nabla J^{(B)}(\boldsymbol{\theta}^{(t)}))$
 - d. Increment $t: t \leftarrow t + 1$
- Output: $\boldsymbol{\theta}^{(t)}$

• Input: training dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$ step size γ , and batch size B, decay parameter β

- 1. Pre-train the parameters $\theta^{(0)}$ and set t = 0, $G_{-1} = 0 \odot \theta^{(0)}$
- 2. While TERMINATION CRITERION is not satisfied
 - a. Randomly sample *B* data points from $\mathcal{D}, \{(x^{(b)}, y^{(b)})\}_{h=1}^{B}$
 - b. Compute the gradient of the *fine-tuning* loss $G_t = \nabla J^{(B)}(\boldsymbol{\theta}^{(t)})$
 - c. Update $\boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \gamma(\boldsymbol{\beta}G_{t-1} + G_t)$
 - d. Increment $t: t \leftarrow t + 1$
- Output: $\boldsymbol{\theta}^{(t)}$

Mini-batch Stochastic Gradient **Descent** with **(Root Mean** Square Propagation (RMSProp)

• Input: training dataset $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$

step size γ , and batch size B, decay parameter β

1. Pre-train the parameters $\boldsymbol{\theta}^{(0)}$ and set $t = 0, S_{-1} = 0 \odot \boldsymbol{\theta}^{(0)}$

2. While TERMINATION CRITERION is not satisfied

- a. Randomly sample *B* data points from $\mathcal{D}, \{(x^{(b)}, y^{(b)})\}_{h=1}^{B}$
- b. Compute the gradient of the *fine-tuning* loss

 $G_t = \nabla J^{(B)}(\boldsymbol{\theta}^{(t)})$

c. Update the scaling factor: $S_t = \beta S_{t-1} + (1 - \beta) \underbrace{(G_t \odot G_t)}_{\gamma}$

d. Update $\boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} - \frac{\gamma}{\sqrt{S_t}} \odot G_t$

e. Increment $t: t \leftarrow t + 1$

Mini-batch Stochastic Gradient **Descent with Root Mean** Square Propagation (RMSProp)

Adam (Adaptive Moment Estimation) = SGD+ Momentum + **RMSProp**

• Input: training dataset $\mathcal{D} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$

step size γ , and batch size B, decay parameters β_1 and β_2

1. Pre-train the parameters $\theta^{(0)}$, t = 0, $M_{-1} = S_{-1} = 0 \odot \theta^{(0)}$

2. While TERMINATION CRITERION is not satisfied

- a. Randomly sample *B* data points from $\mathcal{D}, \{(x^{(b)}, y^{(b)})\}_{h=1}^{B}$
- b. Compute the gradient, momentum and scaling factor $G_t = \nabla J^{(B)}(\boldsymbol{\theta}^{(t)})$

 $M_{t} = \beta_{1}M_{t-1} + (1 - \beta_{1})G_{t} \text{ and } S_{t} = \beta_{2}S_{t-1} + (1 - \beta_{2})(G_{t} \odot G_{t})$

c. Update $\boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} - \frac{\gamma}{\sqrt{S_t/(1-\beta_2^t)}} \odot (\frac{M_t}{M_t}/(1-\beta_1^t))$

d. Increment $t: t \leftarrow t + 1$

• Output: $\boldsymbol{\theta}^{(t)}$

Recall: Reinforcement Learning from Human Feedback (RLHF)

- Insight: for many machine learning tasks, there is no universal ground truth, e.g., there are lots of possible ways to respond to a question or prompt.
- Idea: use human feedback to determine how good or bad some prediction/response is!
- Issue: if the input space is huge (e.g., all possible chat prompts), to train a good model, we might need tons and tons of (potentially expensive) human annotation...
- Idea: use a small number of annotations to learn a "reward" function!

What the heck is Reinforcement Learning?

- Insight: for many machine learning tasks, there is no universal ground truth, e.g., there are lots of possible ways to respond to a question or prompt.
- Idea: use human feedback to determine how good or bad some prediction/response is!
- Issue: if the input space is huge (e.g., all possible chat prompts), to train a good model, we might need tons and tons of (potentially expensive) human annotation...
- Idea: use a small number of annotations to learn a "reward" function!

Learning Paradigms

• Supervised learning - $\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^{N}$ • Regression - $\mathbf{v}^{(n)} \in \mathbb{R}$

• Classification -
$$y^{(n)} \in \{1\}$$

• Classification -
$$y^{(n)} \in \{1, \dots, C\}$$

• Reinforcement learning - $\mathcal{D} = \{(s^{(n)}, a^{(n)}, r^{(n)})\}_{n=1}^{N}$

Source: <u>https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/</u> Source: <u>https://www.wired.com/2012/02/high-speed-trading/</u>

Reinforcement Learning: Examples

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

AlphaGo

11/8/23 Source: https://www.youtube.com/watch?v=WXuK6gekU1Y&ab_channel=DeepMind

Outline

Problem formulation

- Time discounted cumulative reward
- Markov decision processes (MDPs)
- Algorithms:
 - Value & policy iteration (dynamic programming)
 - (Deep) Q-learning (temporal difference learning)

Reinforcement Learning: Problem Formulation

- State space, *S*
- Action space, \mathcal{A}
- Reward function
 - Stochastic, $p(r \mid s, a)$
 - Deterministic, $R: S \times A \rightarrow \mathbb{R}$
- Transition function
 - Stochastic, p(s' | s, a)
 - Deterministic, $\delta: S \times A \rightarrow S$

Reinforcement Learning: Problem Formulation • Policy, $\pi : S \to A$

- Specifies an action to take in *every* state
- Value function, $V^{\pi}: S \to \mathbb{R}$
 - Measures the expected total payoff of starting in some state *s* and executing policy π , i.e., in every state, taking the action that π returns

Toy Example

- $\mathcal{S} =$ all empty squares in the grid
- $\mathcal{A} = \{up, down, left, right\}$
- Deterministic transitions
- Rewards of +1 and -1 for entering the labelled squares
- Terminate after receiving either reward

Poll Question 1: Is this policy optimal? A. Yes TOXIC B. C. No Poll Question 2: Justify your answer to the previous question

Toy Example

Optimal policy given a reward of -2 per step

Toy Example

Optimal policy given a reward of -0.1 per step

Markov Decision Process (MDP) Assume the following model for our data:

- 1. Start in some initial state s_0
- 2. For time step *t*:
- 1. Agent observes state s_t 2. Agent takes action $a_t = \pi(s_t)$
 - 3. Agent receives reward $r_t \sim p(r \mid s_t, a_t)$
 - 4. Agent transitions to state $s_{t+1} \sim p(s' | s_t, a_t)$

3. Total reward is $\sum_{t=1}^{\infty} \gamma^t r_t$ discount factor $0 \leq 1 \leq 1$

• MDPs make the *Markov assumption*: the reward and next state only depend on the current state and action. Reinforcement Learning: Key Challenges

- The algorithm has to gather its own training data
- The outcome of taking some action is often stochastic or unknown until after the fact
- Decisions can have a delayed effect on future outcomes (exploration-exploitation tradeoff)

MDP Example: Multi-armed bandit

- Single state: $|\mathcal{S}| = 1$
- Three actions: $\mathcal{A} = \{1, 2, 3\}$
- Deterministic transitions
- Rewards are stochastic

???

1

1

1

1

0

1

0

???

???

???

			???
Bandit 1	Bandit 2	Bandit 3	222
	2	1	
	0	3	???
	0	0	
	2	2	???
	???	4	
	???	1	???
	???	0	
???	???	4	???
???	???	???	???
???	???	???	
???	???	???	
???	???	???	

MDP Example: Multi-armed bandit

???

Reinforcement Learning: Objective Function • Find a policy $\pi^* = \underset{\pi}{\operatorname{argmax}} V^{\pi}(s) \ \forall s \in S$

- Assume deterministic transitions and deterministic rewards
- $V^{\pi}(s) = discounted$ total reward of starting in state

s and executing policy π forever

$$= R(s_{0}=s,\pi(s_{0})) + NR(s_{1}=S(s,\pi(s_{0})),\pi(s_{1})) + NR(s_{1}=S(s_{0},\pi(s_{1})),\pi(s_{2})) + \dots + NR(s_{2}=S(s_{1},\pi(s_{1})),\pi(s_{2})) + \dots + \dots + NR(s_{2}=S(s_{1},\pi(s_{2})),\pi(s_{2})) + \dots + NR(s_{2}=S(s_{2},\pi(s_{2})),\pi(s_{2})) + \dots + NR(s_{2},\pi(s_{2})) + \dots + NR$$

Reinforcement Learning: Objective Function

 $\langle \alpha \rangle$

- Find a policy $\pi^* = \underset{\pi}{\operatorname{argmax}} V^{\pi}(s) \ \forall s \in S$
- Assume stochastic transitions and deterministic rewards
- $V^{\pi}(s) = \mathbb{E}[discounted \text{ total reward of starting in state}]$

s and executing policy π forever]

 $= E_{p(s'|s,a)} \sum_{R(s_0=S,\pi(s_0))} + \sum_{R(s_1,\pi(s_1))+Y^Z} \frac{1}{R(s_2,\pi(s_2))}$

= $Z_{t=0}^{t} y^{t} E_{P(s'|s,q)} [R(S_{t}, \pi(S_{t}))]$

Value Function: Example

$R(s,a) = \Big\{$	
-------------------	--

-2 if entering state 0 (safety)
3 if entering state 5 (field goal)
7 if entering state 6 (touch down)
0 otherwise

 $\gamma = 0.9$

Value Function: Example

Value Function: Example

 $R(s,a) = \begin{cases} -2 \text{ if entering state 0 (safety)} \\ 3 \text{ if entering state 5 (field goal)} \\ 7 \text{ if entering state 6 (touch down)} \\ 0 \text{ otherwise} \end{cases}$ $\gamma = 0.9$ 0 5.10 5.67 6.3 7 0

Okay, now how do we go about learning this optimal policy?

 $R(s,a) = \begin{cases} -2 \text{ if entering state 0 (safety)} \\ 3 \text{ if entering state 5 (field goal)} \\ 7 \text{ if entering state 6 (touch down)} \\ 0 \text{ otherwise} \end{cases}$ $\gamma = 0.9$