10-301/601: Introduction to Machine Learning Lecture 20: Markov Decision Processes

Henry Chai & Matt Gormley

11/8/23

Front Matter

- Announcements
	- · Exam 2 on 11/9 (tomorro
	- · HW7 released 11/10, due
		- · Please be mindful of y

the course syllabus for

Recall: Mini-batch **Stochastic** Gradient **Descent** just the beginning!

• Input: training dataset $\mathcal{D} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}$ $i = 1$ \overline{N} ,

step size γ , and batch size B

- 1. *Pre-train* the parameters $\boldsymbol{\theta}^{(0)}$ and set $t = 0$
- 2. While TERMINATION CRITERION is not satisfied
	- a. Randomly sample B data points from D, $\{(\boldsymbol{x}^{(b)}, y^{(b)})\}$ $b=1$ \pmb{B}
	- b. Compute the gradient of the *fine-tuning* loss $\nabla J^{(B)}(\boldsymbol{\theta}^{(t)})$
	- c. Update $\boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \gamma \nabla J^{(B)}(\boldsymbol{\theta}^{(t)})$
	- d. Increment $t: t \leftarrow t + 1$
- \cdot Output: $\boldsymbol{\theta}^{(t)}$

Mini-batch **Stochastic** Gradient Descent with Momentum • Input: training dataset $\mathcal{D} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}$ $i = 1$ \overline{N} , step size γ , and batch size B, decay parameter β

- *1. Pre-train* the parameters $\boldsymbol{\theta}^{(0)}$ and set $t = 0$, $G_{-1} = 0$ $\odot \boldsymbol{\theta}^{(0)}$
- 2. While TERMINATION CRITERION is not satisfied
	- a. Randomly sample B data points from $\mathcal{D}, \{(\pmb{x}^{(b)}, y^{(b)})\}$ $b=1$ \pmb{B}
	- b. Compute the gradient of the *fine-tuning* loss $G_t = \nabla J^{(B)}(\boldsymbol{\theta}^{(t)})$
	- c. Update $\boldsymbol{\theta}$: $\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \gamma (\beta G_{t-1} + G_t)$
	- d. Increment $t: t \leftarrow t + 1$
- Output: $\boldsymbol{\theta}^{(t)}$

Mini -batch Stochastic Gradient Descent with Momentum

Mini -batch Stochastic Gradient Descent with Momentum

Mini -batch Stochastic Gradient Descent with Momentum

Mini-batch **Stochastic** Gradient Descent with Root Mean Square **Propagation** (RMSProp)

• Input: training dataset $\mathcal{D} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}$ $i = 1$ \overline{N} ,

step size γ , and batch size B, decay parameter β

1. Pre-train the parameters $\boldsymbol{\theta}^{(0)}$ and set $t = 0$, $S_{-1} = 0$ $\odot \boldsymbol{\theta}^{(0)}$

2. While TERMINATION CRITERION is not satisfied

- a. Randomly sample B data points from D, $\{(\mathbf{x}^{(b)}, y^{(b)})\}$ $b=1$ \pmb{B}
- b. Compute the gradient of the *fine-tuning* loss

 $G_t = \nabla J^{(B)}(\boldsymbol{\theta}^{(t)})$

c. Update the scaling factor: $S_t = \beta S_{t-1} + (1 - \beta)(G_t \odot G_t)$

d. Update $\boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} - \frac{\gamma}{\sqrt{t}}$ $\overline{S_t}$ \bigcirc G_t

e. Increment $t: t \leftarrow t + 1$

Mini-batch **Stochastic** Gradient Descent with Root Mean Square **Propagation** (RMSProp)

Adam (Adaptive Moment Estimation) = SGD + Momentum + RMSProp

• Input: training dataset $\mathcal{D} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}$ $i = 1$ \overline{N} ,

step size γ , and batch size B, decay parameters β_1 and β_2

1. Pre-train the parameters $\boldsymbol{\theta}^{(0)}$, $t = 0$, $M_{-1} = S_{-1} = 0 \odot \boldsymbol{\theta}^{(0)}$

2. While TERMINATION CRITERION is not satisfied

- a. Randomly sample B data points from D, $\{(\mathbf{x}^{(b)}, y^{(b)})\}$ $b=1$ \pmb{B}
- b. Compute the gradient, momentum and scaling factor

 $G_t = \nabla J^{(B)}(\boldsymbol{\theta}^{(t)})$ $M_t = \beta_1 M_{t-1} + (1 - \beta_1) G_t$ and $S_t = \beta_2 S_{t-1} + (1 - \beta_2) (G_t \odot G_t)$ c. Update $\boldsymbol{\theta}: \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} - \frac{\gamma}{\gamma}$ $S_t / (1 - \beta_2^t)$ $\bigcirc (M_t / (1 - \beta_1^t$

d. Increment $t: t \leftarrow t + 1$

Recall: Reinforcement Learning from Human Feedback (RLHF)

- Insight: for many machine learning tasks, there is no universal ground truth, e.g., there are lots of possible ways to respond to a question or prompt.
- Idea: use human feedback to determine how good or bad some prediction/response is!
- Issue: if the input space is huge (e.g., all possible chat prompts), to train a good model, we might need tons and tons of (potentially expensive) human annotation…
- Idea: use a small number of annotations to learn a "reward" function!

Learning Paradigms

• Supervised learning - $\mathcal{D} = \{(\boldsymbol{x}^{(n)}, y^{(n)})\}$ $n=1$ \overline{N} • Regression $\mathfrak{m}(n) \subset \mathbb{D}$

$$
P \text{ regression} \cdot y \cdot y \in \mathbb{R}
$$

• Classification -
$$
y^{(n)} \in \{1, ..., C\}
$$

• Reinforcement learning - $\mathcal{D} = \{ (\mathbf{s}^{(n)}, \mathbf{a}^{(n)}, r^{(n)}) \}$ $n=1$ \overline{N}

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/ Source: https://www.wired.com/2012/02/high-speed-trading/

Reinforcement Learning: Examples

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

AlphaGo

11/8/23 Source: https://www.youtube.com/watch?v=WXuK6gekU1Y&ab_channel=DeepMind 5

Outline

Problem formulation

- Time discounted cumulative reward
- Markov decision processes (MDPs)
- Algorithms:
	- Value & policy iteration (dynamic programming)
	- (Deep) Q-learning (temporal difference learning)

Reinforcement Learning: Problem Formulation

- \cdot State space, S
- \cdot Action space, $\mathcal A$
- Reward function
	- Stochastic, $p(r | s, a)$
	- Deterministic, $R: S \times \mathcal{A} \rightarrow \mathbb{R}$
- **Transition function**
	- Stochastic, $p(s' | s, a)$
	- Deterministic, δ : $S \times \mathcal{A} \rightarrow S$

Reinforcement Learning: Problem Formulation

• Policy, $\pi : \mathcal{S} \to \mathcal{A}$

- Specifies an action to take in *every* state
- Value function, V^{π} : $S \to \mathbb{R}$
	- Measures the expected total payoff of starting in some state s and executing policy π , i.e., in every state, taking the action that π returns

Toy Example

- \cdot \mathcal{S} = all empty squares in the grid
- \cdot $\mathcal{A} = \{ \text{up}, \text{down}, \text{left}, \text{right} \}$
- Deterministic transitions
- Rewards of +1 and -1 for entering the labelled squares
- Terminate after receiving either reward

Markov Decision Process (MDP) Assume the following model for our data:

- Start in some initial state s_0
- 2. For time step t :
	- 1. Agent observes state s_t
	- 2. Agent takes action $a_t = \pi(s_t)$
	- 3. Agent receives reward $r_t \sim p(r | s_t, a_t)$
	- 4. Agent transitions to state $s_{t+1} \sim p(s' | s_t, a_t)$

3. Total reward is \sum $\overline{t=0}$ ∞ $\gamma^t r_t$

 MDPs make the *Markov assumption*: the reward and next state only depend on the current state and action.

Reinforcement Learning: Key **Challenges**

- The algorithm has to gather its own training data
- The outcome of taking some action is often stochastic or unknown until after the fact
- Decisions can have a delayed effect on future outcomes (exploration-exploitation tradeoff)

MDP Example: Multi -armed bandit

- Single state: $|{\mathcal{S}}| = 1$
- Three actions: $A = \{1, 2, 3, \}$
- Deterministic transitions
- Rewards are stochastic

Reinforcement Learning: **Objective** Function

• Find a policy $\pi^* = \argmax V^{\pi}(s)$ $\forall s \in S$ π

Assume deterministic transitions and deterministic rewards

 $V^{\pi}(s) =$ discounted total reward of starting in state

s and executing policy π forever

Reinforcement Learning: **Objective** Function

• Find a policy $\pi^* = \argmax V^{\pi}(s)$ $\forall s \in S$ π

Assume stochastic transitions and deterministic rewards

 $V^{\pi}(s) = \mathbb{E}[discounted \text{ total reward of starting in state}].$

s and executing policy π forever]

Value Function: Example

 $R(s, a) =$ −2 if entering state 0 (safety 3 if entering state 5 (field goal 7 if entering state 6 (touch down) 0 otherwise $\gamma = 0.9$

Value Function: Example

 $R(s, a) =$ $\left(-2\right)$ if entering state 0 (safety) 3 if entering state 5 (field goal 7 if entering state 6 (touch down) 0 otherwise $\gamma = 0.9$