
10-301/601: Introduction 
to Machine Learning
Lecture 21: Value and 
Policy Iteration
Henry Chai & Matt Gormley

11/13/23



Front Matter

� Announcements

� HW7 released 11/10, due 11/20 at 11:59 PM 

� Please be mindful of your grace day usage 
(see the course syllabus for the policy)

11/13/23 2

https://www.cs.cmu.edu/~hchai2/courses/10601/


Recall: 
Reinforcement 
Learning 
Objective 
Function

� Find a policy 𝜋∗ = argmax
"

	 𝑉" 𝑠 	∀	𝑠 ∈ 𝒮

� Assume stochastic transitions and deterministic rewards

� 𝑉" 𝑠 = 𝔼[discounted total reward of starting in state            
           𝑠 and executing policy 𝜋 forever]

� 𝑉" 𝑠 = 𝔼# $!	 $,	')[𝑅 𝑠) = 𝑠, 𝜋 𝑠) 	

�  −	+ 	𝛾𝑅 𝑠*, 𝜋 𝑠* + 𝛾+𝑅 𝑠+, 𝜋 𝑠+ +⋯]

𝑉" 𝑠 =7
,-)

.

𝛾,𝔼# $!	 $,	') 𝑅 𝑠,, 𝜋 𝑠, 	

� where 0 ≤ 𝛾 < 1 is some discount factor for future rewards
311/13/23



Recall: 
Value Function 
Example

4

7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Hield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9

5.103 5.67 6.3 7 0

0

0

11/13/23



Value 
Function

� 𝑉" 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

                         executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠), 𝜋 𝑠) + 	𝛾𝑅 𝑠*, 𝜋 𝑠* + 𝛾+𝑅 𝑠+, 𝜋 𝑠+ +⋯ 	𝑠) = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠*, 𝜋 𝑠* + 𝛾𝑅 𝑠+, 𝜋 𝑠+ +	… |	𝑠) = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑$"∈	𝒮 𝑝 𝑠*	|	𝑠, 𝜋 𝑠 Y

Z

𝑅 𝑠*, 𝜋 𝑠* +

	 +𝛾𝔼 𝑅 𝑠+, 𝜋 𝑠+ +⋯ 	𝑠*] 	

V" s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 7
$"∈	𝒮

𝑝 𝑠*	|	𝑠, 𝜋 𝑠 𝑉" 𝑠*

511/13/23



Value 
Function

� 𝑉" 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

                         executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠), 𝜋 𝑠) + 	𝛾𝑅 𝑠*, 𝜋 𝑠* + 𝛾+𝑅 𝑠+, 𝜋 𝑠+ +⋯ 	𝑠) = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠*, 𝜋 𝑠* + 𝛾𝑅 𝑠+, 𝜋 𝑠+ +	… |	𝑠) = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑$"∈	𝒮 𝑝 𝑠*	|	𝑠, 𝜋 𝑠 Y

Z

𝑅 𝑠*, 𝜋 𝑠* +

	 +𝛾𝔼 𝑅 𝑠+, 𝜋 𝑠+ +⋯ 	𝑠*] 	

V" s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 7
$"∈	𝒮

𝑝 𝑠*	|	𝑠, 𝜋 𝑠 𝑉" 𝑠*

9Bellman equations11/13/23



� Optimal value function:

𝑉∗ 𝑠 = max
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 7
$!∈	𝒮

𝑝 𝑠2	|	𝑠, 𝑎 𝑉∗ 𝑠2

� System of 𝒮  equations and 𝒮  variables

� Optimal policy:

𝜋∗ 𝑠 = argmax
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 7
$!∈	𝒮

𝑝 𝑠2	|	𝑠, 𝑎 𝑉∗ 𝑠2

� Insight: if you know the optimal value function, you can 

solve for the optimal policy!

Optimality

10

Immediate 
reward

(Discounted) 
Future reward

11/13/23



Fixed 
Point 
Iteration

� Iterative method for solving a system of equations

� Given some equations and initial values
𝑥* = 𝑓* 𝑥*, … , 𝑥3

⋮
𝑥3 = 𝑓3 𝑥*, … , 𝑥3

𝑥*
) , … , 𝑥3

)

� While not converged, do

𝑥*
,4* ← 𝑓* 𝑥*

, , … , 𝑥3
,

⋮

𝑥3
,4* ← 𝑓3 𝑥*

, , … , 𝑥3
,

1111/13/23



Fixed Point Iteration:
Example

𝑥* = 𝑥*𝑥+ +
1
2
	

𝑥+ = −
3𝑥*
2

𝑥*
) = 𝑥+

) = 0

�̀�* =
1
3
, �̀�+ = −

1
2

11/13/23 12

𝑡 𝑥!
" 𝑥#

"

0 0 0
1 0.5 0
2 0.5 -0.75
3 0.125 -0.75
4 0.4063 -0.1875
5 0.4238 -0.6094
6 0.2417 -0.6357
7 0.3463 -0.3626
8 0.3744 -0.5195
9 0.3055 -0.5616

10 0.3284 -0.4582
11 0.3495 -0.4926
12 0.3278 -0.5243
13 0.3281 -0.4917
14 0.3386 -0.4922
15 0.3333 -0.5080



Value Iteration

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 ) 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮 

	 𝑉 ,4* 𝑠 ← max
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 𝛾 7
$!∈	𝒮

𝑝 𝑠2	|	𝑠, 𝑎 𝑉 , 𝑠2

� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 7
$!∈	𝒮

𝑝 𝑠2	|	𝑠, 𝑎 𝑉 , 𝑠2

� Return 𝜋∗

13

𝑄 𝑠, 𝑎

11/13/23



Synchronous
Value Iteration

15

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 ) 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮 
� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 7
$!∈	𝒮

𝑝 𝑠2	|	𝑠, 𝑎 𝑉 , 𝑠2

� 	𝑉 ,4* 𝑠 ← max
'	∈	𝒜

	𝑄 𝑠, 𝑎

� 𝑡 = 𝑡 + 1
� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 7
$!∈	𝒮

𝑝 𝑠2	|	𝑠, 𝑎 𝑉 , 𝑠2

� Return 𝜋∗
11/13/23



Asynchronous
Value Iteration

16

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly)
� While not converged, do:

� For 𝑠 ∈ 𝒮 
� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 7
$!∈	𝒮

𝑝 𝑠2	|	𝑠, 𝑎 𝑉 𝑠2

� 𝑉 𝑠 ← max
'	∈	𝒜

	𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 7
$!∈	𝒮

𝑝 𝑠2	|	𝑠, 𝑎 𝑉 𝑠2

� Return 𝜋∗
11/13/23



18

� Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited” 

infinitely often (Bertsekas, 1989)

� Theorem 2: Convergence criterion 

if max
$	∈	𝒮

𝑉 ,4* 𝑠 − 𝑉 , 𝑠 < 𝜖, 

then max
$	∈	𝒮

𝑉 ,4* 𝑠 − 𝑉∗ 𝑠 < +78
*98

 (Williams & Baird, 1993) 

� Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
'	∈	𝒜

	𝑄 𝑠, 𝑎 , converges to the 

optimal 𝜋∗ in a finite number of iterations, often before 

the value function has converged! (Bertsekas, 1987) 

Value Iteration
Theory

11/13/23



� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)

� Initialize 𝜋 randomly 

� While not converged, do:

� Solve the Bellman equations defined by policy 𝜋

	 V" s = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 7
$!∈	𝒮

𝑝 𝑠2	|	𝑠, 𝜋 𝑠 𝑉" 𝑠2

�Update 𝜋

	 −	 𝜋 𝑠 ← argmax
'	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 7
$!∈	𝒮

𝑝 𝑠2	|	𝑠, 𝑎 𝑉" 𝑠2

� Return 𝜋

19

Policy Iteration

11/13/23



� In policy iteration, the policy improves in each iteration. 

� Given finite state and action spaces, there are finitely 
many possible policies

� Thus, the number of iterations needed to converge is 
bounded!

� Value iteration takes 𝑂 𝒮 + 𝒜  time / iteration

� Policy iteration takes 𝑂 𝒮 + 𝒜 + 𝒮 :  time / iteration

� However, empirically policy iteration requires fewer 

iterations to converge than value iteration

21

Policy Iteration
Theory

11/13/23



Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?

2211/13/23



MDP and 
Value/Policy 
Iteration 
Learning 
Objectives

You should be able to…

� Compare reinforcement learning to other learning paradigms 

� Cast a real-world problem as a Markov Decision Process 

� Depict the exploration vs. exploitation tradeoff via MDP examples

� Explain how to solve a system of equations using fixed point iteration 

� Define the Bellman Equations 

� Show how to compute the optimal policy in terms of the optimal 
value function 

� Explain the relationship between a value function mapping states to 
expected rewards and a value function mapping state-action pairs to 
expected rewards 

� Implement value iteration and policy iteration 

� Contrast the computational complexity and empirical convergence of 
value iteration vs. policy iteration 

� Identify the conditions under which the value iteration algorithm will 
converge to the true value function

� Describe properties of the policy iteration algorithm11/13/23 23


