10-301/601: Introduction to Machine Learning Lecture 21: Value and Policy Iteration

Henry Chai & Matt Gormley

11/13/23

Front Matter

- Announcements
	- · HW7 released 11/10, due
		- · Please be mindful of y
			- (see the course syllab

Recall: Reinforcement Learning **Objective** Function

• Find a policy $\pi^* = \argmax V^{\pi}(s)$ $\forall s \in S$ π

Assume stochastic transitions and deterministic rewards

 $\cdot V^{\pi}(s) = \mathbb{E}[discounted$ total reward of starting in state s and executing policy π forever]

$$
= \mathbb{E}_{p(s'|s,a)}[R(s_0 = s, \pi(s_0)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots]
$$

$$
= \sum_{t=0}^{\infty} \gamma^t \mathbb{E}_{p(s'|s,a)}[R(s_t, \pi(s_t))]
$$

where $0 \leq \gamma < 1$ is some discount factor for future rewards

Recall: Value Function Example

 $R(s, a) =$ -2 if entering state 0 (safety) 3 if entering state 5 (field goal 7 if entering state 6 (touch down) 0 otherwise $\gamma = 0.9$ 5.103 5.67 6.3 7 0 0 Ω

Value Function

 $V^{\pi}(s) = \mathbb{E}$ [discounted total reward of starting in state *s* and executing policy π forever]

$$
= \mathbb{E}[R(s_0, \pi(s_0)) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots | s_0 = s]
$$

\n
$$
= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + \dots | s_0 = s]
$$

\n
$$
= R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)) + \gamma \mathbb{E}[R(s_2, \pi(s_2)) + \dots | s_1])
$$

Value Function

•
$$
V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state } s \text{ and}
$$

executing policy π forever]

$$
= \mathbb{E}[R(s_0, \pi(s_0)) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots | s_0 = s]
$$

\n
$$
= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + \dots | s_0 = s]
$$

\n
$$
= R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)) + \gamma \mathbb{E}[R(s_2, \pi(s_2)) + \dots | s_1])
$$

$$
V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 \mid s, \pi(s)) V^{\pi}(s_1)
$$

Bellman equations

Optimality

Optimal value function:

$$
V^*(s) = \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s')
$$

- System of $|S|$ equations and $|S|$ variables
- Optimal policy:

• Insight: if you know the optimal value function, you can solve for the optimal policy!

Fixed Point Iteration

- Iterative method for solving a system of equations
- Given some equations and initial values

$$
x_1 = f_1(x_1, ..., x_n)
$$

$$
\vdots
$$

\n
$$
x_n = f_n(x_1, ..., x_n)
$$

\n
$$
x_1^{(0)}, ..., x_n^{(0)}
$$

While not converged, do

$$
x_1^{(t+1)} \leftarrow f_1\left(x_1^{(t)}, \dots, x_n^{(t)}\right)
$$

$$
x_n^{(t+1)} \leftarrow f_n\left(x_1^{(t)}, \dots, x_n^{(t)}\right)
$$

 $\ddot{\bullet}$

Fixed Point Iteration: Example

Fixed Point Iteration:
\nExample
\n
$$
x_1 = x_1 x_2 + \frac{1}{2}
$$

\n $x_2 = -\frac{3x_1}{2}$
\n $x_1^{(0)} = x_2^{(0)} = 0$
\n $\hat{x}_1 = \frac{1}{3}, \hat{x}_2 = -\frac{1}{2}$

Value Iteration

- \cdot Inputs: $R(s, a)$, $p(s' | s, a)$
- \cdot Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set $t = 0$
- While not converged, do:
	- \cdot For $s \in \mathcal{S}$

$$
V^{(t+1)}(s) \leftarrow \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{(t)}(s')
$$

$$
\cdot t = t + 1
$$
 Q(s, a)

 \cdot For $s \in S$ $\pi^*(s) \leftarrow \text{argmax}$ $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(\textbf{\textit{s}}' \mid \textbf{\textit{s}}, a) V^{(t)} (\textbf{\textit{s}}'$

• Return π^*

Synchronous Value Iteration \cdot Inputs: $R(s, a)$, $p(s' | s, a)$ • Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set $t = 0$ While not converged, do: \cdot For $s \in \mathcal{S}$ \cdot For $a \in \mathcal{A}$ $Q(s, a) = R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(\textbf{\textit{s}}' \mid \textbf{\textit{s}}, a) V^{(t)} (\textbf{\textit{s}}'$ • $V^{(t+1)}(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$ $\cdot t = t + 1$ \cdot For $s \in S$ $\pi^*(s) \leftarrow \text{argmax}$ $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' \mid s, a) V^{(t)}(s'')$ • Return π^*

Asynchronous Value Iteration

- \cdot Inputs: $R(s, a)$, $p(s' | s, a)$ \cdot Initialize $V(s) = 0 \forall s \in S$ (or randomly) While not converged, do:
	- \cdot For $s \in S$
		- \cdot For $a \in \mathcal{A}$

 $Q(s, a) = R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' | s, a)V(s')$ $\cdot V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$

 \cdot For $s \in S$ $\pi^*(s) \leftarrow \text{argmax}$ $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' | s, a)V(s')$ • Return π^*

Value Iteration **Theory**

Theorem 1: Value function convergence

V will converge to V^* if each state is "visited"

infinitely often (Bertsekas, 1989)

Theorem 2: Convergence criterion

if max $s \in \mathcal{S}$ $|V^{(t+1)}(s) - V^{(t)}(s)| < \epsilon,$

then max $s \in \mathcal{S}$ $|V^{(t+1)}(s) - V^{*}(s)| < \frac{2\epsilon\gamma}{4\epsilon}$ $\frac{2eV}{1-\gamma}$ (Williams & Baird, 1993)

Theorem 3: Policy convergence

The "greedy" policy, $\pi(s) = \argmax Q(s, a)$, converges to the $a \in A$ optimal π^* in a finite number of iterations, often before

the value function has converged! (Bertsekas, 1987)

Policy Iteration

 \cdot Inputs: $R(s, a)$, $p(s' | s, a)$

- \cdot Initialize π randomly
- While not converged, do:
	- Solve the Bellman equations defined by policy π

$$
V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, \pi(s)) V^{\pi}(s')
$$

 \cdot Update π

$$
\pi(s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{argmax}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{\pi}(s')
$$

 \cdot Return π

Policy Iteration Theory

- \cdot In policy iteration, the policy improves in each iteration.
- Given finite state and action spaces, there are finitely many possible policies
- Thus, the number of iterations needed to converge is bounded!

- Policy iteration takes $O(|S|^2|\mathcal{A}|+|S|^3)$ time / iteration
	- However, empirically policy iteration requires fewer iterations to converge than value iteration

Two big Q's

1. What can we do if the reward and/or transition functions/distributions are unknown?

2. How can we handle infinite (or just very large) state/action spaces?

MDP and Value/Policy **Iteration** Learning **Objectives**

You should be able to…

- Compare reinforcement learning to other learning paradigms
- Cast a real-world problem as a Markov Decision Process
- Depict the exploration vs. exploitation tradeoff via MDP examples
- Explain how to solve a system of equations using fixed point iteration
- Define the Bellman Equations
- Show how to compute the optimal policy in terms of the optimal value function
- Explain the relationship between a value function mapping states to expected rewards and a value function mapping state-action pairs to expected rewards
- **· Implement value iteration and policy iteration**
- Contrast the computational complexity and empirical convergence of value iteration vs. policy iteration
- Identify the conditions under which the value iteration algorithm will converge to the true value function
- 11/13/23 Describe properties of the policy iteration algorithm **²³**