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Reminders

* Homework 7: Transformer in PyTorch
— Out: Sat, Nov. 11
— Due: Mon, Nov. 20 at 11:59pm

* Homework 8: Reinforcement Learning
— Out: Mon, Nov. 20

— Due: Fri, Dec. 1 at 11:59pm




Playing Atari games with Deep RL
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Source: https://www.youtube.com/watch?v=V1ieYniJoRnk&t=2s&ab_channel=TwoMinutePapers




DIMENSIONALITY REDUCTION



High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)
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High Dimension Data

Examples of high dimensional data:
— Brain Imaging Data (100s of MBs per scan)

Image from (Wehbe et al., 2014)

Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/



High Dimension Data

Examples of high dimensional data:
— Customer Purchase Data
B! g MW S INTERESTING FINDS ON AMAZON ©

amazon

‘1
N

Hello, Matt

Departments ~ Browsing History ~  Matt's Amazon.com Cyber Monday Gift Cards & Registry Sell Help Your Account ~

Your Amazon.com  Your Browsing History =~ Recommended For You Improve Your Recommendations  Your Profile  Learn More
v, .
Matt's You could be seeing useful stuff here!
Amazon Sign in to get your order status, balances and rewards.

Recommended for you, Matt

Grocery Pets ) . Baby Products Engineering Books
14 ITEMS 6 ITEMS 5ITEMS 86 ITEMS



Learning Representations

Dimensionality Reduction Algorithms:

Powerful (often unsupervised) learning techniques for extracting hidden
(potentially lower dimensional) structure from high dimensional datasets.

Examples:
PCA, Kernel PCA, ICA, CCA, t-SNE, Autoencoders, Matrix Factorization

Useful for:

* Visualization

* More efficient use of resources (e.g., time, memory, communication)
* Statistical: fewer dimensions = better generalization

* Noise removal (improving data quality)

Slide adapted from Nina Balcan



This section in one slide...

1. Dimensionality reduction: 2. Random Projection:

[J ' KxM
(D Renlonly gl mckix VeR
© Priech duas DY VRD

A A

4. Algorithm for PCA:

3. Definition of PCA:

The option we’ll focus on:

Choose the matrix V that either... Run Singular Value
1. minimizes reconstruction error Decomposition (SVD) to
2. consists of the K eigenvectors with

obtain all the eigenvectors.
largest eigenvalue

Keep just the top-K to form V.

Play some tricks to keep
The above are equivalent definitions. things efficient.

5. An Example




DIMENSIONALITY REDUCTION BY RANDOM
PROJECTION



Random Projection A

Goal: project from M-dimensions down
to K-dimensions

Data:
D = {xN  wherex(® ¢ RM

Algorithm:

T
1. Randomly sample matrix: V € RE*M
Vim ~ Gaussian(0, 1)1 ) x2 2
2. Project down: ud = v x(®
~—~

N~ =~
Kx1 KxMMx1

Example: 2D to 1D

2D input data

1X2
A <) VER

<(6)
25 G*

x(4)
/ x(S)

| % (1) Ty T (Vi .' >
3. Projectup: x\* = V u =v (Vx(®) X5
N~ N~ N~
Mx1 — MXxKKXx1 1D projection onto the real line
umerR  u® u® u uG)  y®

--O--P-OF-r0O-+O O+

=0

- O , 7
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Random Projection
Example: 2D to 1D

4a
2D input da
Goal: project from M-dimensions down A V ER™
to K-dimensions ®l\.

Data:
D = {xN  wherex(® ¢ RM

Algorithm:

|
|
|
>
1. Randomly sample matrix: V € RE*M M’
|
|

Viem ~ Gaussian(0, 1)

2. Project down: u® = v xO
N~ N
Kx1 KxMMx1

. . , : >
3. Project up: x() = VT yq® = VT (Vx®) X

Mx1 MxKKx1

Problem: a random projection might give
us a poor low dimensional
representation of the data



Johnson-Lindenstrauss Lemma

. But how could we ever hope to preserve any useful information
by randomly projecting into a low-dimensional space?

. Evenrandom projection enjoys some surprisingly impressive properties.
In fact, a standard of the J-L lemma starts by assuming we have a random

linear projection obtained by sampling each matrix entry from a
Gaussian(0,1).

An Elementary Proof of a Theorem of
Johnson and Lindenstrauss

Sanjoy Dasgupta,’ Anupam Gupta®

ABSTRACT: A result of Johnson and Lindenstrauss [13] shows that a set of n points in high
dimensional Euclidean space can be mapped into an O(log n/e*)-dimensional Euclidean space such
that the distance between any two points changes by only a factor of (1 * €). In this note, we prove
this theorem using elementary probabilistic techniques. © 2003 Wiley Periodicals, Inc. Random Struct.

Alg., 22: 60-65, 2002

http://www.cs.cmu.edu/~anupamg/papers/jl.pdf



DEFINITION OF PRINCIPAL COMPONENT
ANALYSIS (PCA)



Principal Component Analysis (PCA)

* Assumption: the data
lies on a low K-

dimensional linear
subspace

* Goal: identify the axes

of that subspace, and
project each point
onto hyperplane

* Algorithm: find the K
eigenvectors with
largest eigenvalue
using classic matrix
decomposition tools

https://commons.wikimedia.org/wiki/File:Scatter _diagram_for_quality characteristic XXX.svg

1st principal |
component

2nd principal
component

22



Data for PCA

- (x ()T
D = {x N (x(2)T
X —
x() ¢ RM :
(xINT

We assume the data is centered,
l.e. the sample mean is zero

Lo
p= 3 X0 =
P

Q: What if A: Subtract off the sample mean

your data is ~(; - A
not centered? x() = x1) — f, Vi



Background: Sample Variance

Suppose we have a sequence of random samples {z(}), ... z(N)}
from a random variable X.

The (biased) sample variance 52 is given by:

|
~2 L (i) )2
O'—NE($ i)

1=1

where [i is the sample mean.



Sample Covariance Matrix

The sample covariance matrlx > € RMXM,
is given by: f A} g( . ,05, Gapll tor. J Ik

N
1 i
Sjk = D@ o) — 1) (a 0 - )

i=1 ~ =
Since the data matrix is centered, we rewrite as:
——
| (X( ))

_ o ~NT (2)\T
E_NXX < (x.>

()



Principal Component Analysis (PCA)

Linear Projection: 3T
Given KxM matrix V, and Mx1 V= | —g—
vector X we obtain the Kx1 :
projection u® by: T
u® =v x® 2 w

Definition of PCA:

PCA repeatedly chooses a next vector v; that minimizes the
reconstruction error s.t. v; is orthogonal to vy, Vy,..., Vis. .
r () ST (00
U, vV, X

Vector v; is called the jth principal component. 0 © i )

|l

Notice: Two vectors a and b are orthogonal if a'b = 0. :
=>the K-dimensions in PCA are uncorrelated [ ()




Vector Projection
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Projection Example

Question:

Below are two plots of the same dataset D. Consider the
two projections shown. A B
()| 1.  Which maximizes the variance? S % 59/

QL 2.  Which minimizes the reconstruction error? 16, e

S

Answer:

4 A

Option B C = ][ﬂ .
1 1 1 l(’
| | |
¢ ¥ B




PCA Objective Functions

What is the first principal component v; chosen by PCA?

Option 1: The vector that minimizes the reconstruction error

N
1 . ,
Vi = argmin N E HX(Z) _ (VTX(Z))VHZ

vi||v|[?=1 i=1

Option 2: The vector that maximizes the variance

N

1 T ()2
vy = argmax — » (v'x'")
ve|fvl2=1 IV ;



Equivalence of Maximizing PC A

Variance and Minimizing
Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-

ing the variance.

— : - da - 2T T
Proof: First, note that: la-bll, = a'a = 27h 4 )

[ — (vFx®)v]|? = [[xD]|? - (VTX”))QJ (1)
—

since viv = ||v|]? = 1.

Substituting into the minimization problem, and removing the extra-
neous terms, we obtain the maximization problem.

N

1 . .
v* = argmin — Z |[x® — (vTx®)v||? (2)
vi||v][2=1 Y ;=
1 X . .
= argmin — » [|x?[2 — (vIx®)? (3)
vilvljz=1 &V ;1_,4 4
| N
= argmax — z:(vTx(i))2 (4)

viljvliz=1 IV =



PCA Objective Functions

Question: ()%

Why can’t we just use
gradient descent to find
" the minimum of the PCA
v1 =|argmin N Z x4 — (vTx(D)y||? optimization problem?

vi|[v|]2=1 i—=1

What is the first principal component v; chosen by PCA?

Option 1: The vector that minimizes the reconstruction error

Answer: "
@6\) (si-:ef umcows%u,\al

Option 2: The vector that maximizes the variance

N
1 :
V] = argmax — E (vIx())2

vi||v|[?=1 i=1




Principal Component Analysis (PCA)

: L Question:
Linear Projection: T Whv can’t we iust use
Given KxM matrix V, and Mx1 \/= — W — y, J
vector x() we obtain the Kx1 2 grad'e.njc descent to find
projection u® by ____v’:\ the minimum Of the PCA
u® = vx® g optimization problem?
Definition of PCA: Answer:

PCA repeatedly chooses a next vector v; that
s.t. vjis orthogonal to v,, v,,..., vj,.

Vector v; is called the jth principal component.

Notice: Two vectors a and b are orthogonal if a'b = 0.
=>»the K-dimensions in PCA are uncorrelated



Background:
Eigenvectors & Eigenvalues

For a square matrix A (n x n matrix), the
vector v (n x 1 matrix) is an eigenvector
iff there exists eigenvalue A (scalar)
such that:

Av = Av

Av = Av
The linear transformation A is only

stretching vectorv.

\Y
/ That is, Av is a scalar multiple of v.
>

4




Background:
Eigenvectors & Eigenvalues

Fact #1: The eigenvectors of a symmetric
matrix are orthogonal to each other.

Fact #2: The covariance matrix X is
[ ] //_\
symmetric.




The First
Principal P CA

Component

Claim: The vector that maximizes the variances is the  Recall: For a square matrix A, the vector v is an eigen-

eigenvector of X with Iirgji'ciigm\vza/hje. vector iff there exists eigenvalue A such that:
—_—
Proof Sketch: To find the first principal component, we AV = \v (6)

wish to solve the following constrained optimization

problem (variance eaimization). . o L
Wort Rewriting the objective of the maximization shows that

v, = argmax v Xv (1)  not only will the optimal vector v, be an eigenvector,
- v:i||v|]2=1 it will be one with maximal eigenvalue.
V V= | = (VTV~ IQ:O

So we turn to the method of Lagrange multipliers. The > vIiSv = vi v (7)

L . . . /
agrangian is _ 3Ty (8)
LV,\)=vIZv - A\vIv-1) (2) = \|v]? (9)
Taking the derivative of the Lagrangian and setting to =A (10)

zero gives:

c;iv (\igy — )\(VTV — 1)) =0 (3)
3v—Av=0 (4)
Yv=JAv (5)



Principal Component Analysis (PCA)

(XXT)v = Av, so v (the first PC) is the eigenvector of
sample correlation/covariance matrix X X'

Sample variance of projection v X XTv = Avliv =1

VZN =N
Thus, the eigenvalue 4 denotes the amount of variability
captured along that dimension (aka amount of energy along that

dimension).

Eigenvalues 4, = 4, = 43 = -
« The 15t PC v, is the the eigenvector of the sample covariance matrix X X'
associated with the largest eigenvalue

* The 2nd PC v, is the the eigenvector of the sample covariance matrix
X XT associated with the second largest eigenvalue

e Andsoon...

Slide from Nina Balcan



ALGORITHMS FOR PCA



Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?

* Power iteration (aka. Von Mises iteration)
— finds each principal component one at a time in order

» Singular Value Decomposition (SVD)
— finds all the principal components at once

— two options:
« Option A: run SVD on X™X = 2.

e OptionB:runSVDonX <— NxM
(not obvious why Option B should work...)

 Stochastic Methods (approximate)
— very efficient for high dimensional datasets with lots of points

MM

39



SVD

m=n

Data X, one
row per data

point

[from Wall et al., 2003]

2 =

Usr'

Eigenassay

A
u,

U

m

mxn

US gives
coordinates
of rows of X
in the space
of principle
components

Singular
Value

}a"k

r n

S-

n

nxn

S is diagonal,

Sk > Spaps

S 2 is kth
largest
eigenvalue

fR e

Fig¢' ngt ne /
¥
‘. -I_

n

)@ﬂ)% ,F V\q; J‘mk

nxn

Rows of V7 are unit
length eigenvectors of
XX

If cols of X have zero
mean, then X’X =c¢ X

and eigenvects are the

Principle Components

40
Slide from Tom Mitchell



Singular Value Decomposition

To generate principle components:

~ ;| N .

 Subtract mean *= P from each data point, to
create zero-centered data

» Create matrix X with one row vector per (zero centered)
data point

« Solve SVD: X =USVT
* Output Principle components: columns of V (= rows of V'7)

— Eigenvectors in V are sorted from largest to smallest eigenvalues
— S is diagonal, with s;? giving eigenvalue for kth eigenvector

41
Slide from Tom Mitchell



Singular Value Decomposition

To project a point (column vector x) into PC coordinates:
VT x

If x; is it" row of data matrix X, then
« (i row of US) = VT x,T
« (US)T=VTX"

To project a column vector x to M dim Principle Components
subspace, take just the first M coordinates of V'” x

Slide from Tom Mitchell

42



How Many PCs?

For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M principal components (PCs).

Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

25 _ }%_ Variance (%) = ratio of variance along

given principal component to total
20 >¥.,/ variance of all principal components \/(

)

YA c - Z N

Wi o=
A0 PN PN A Amme =

PC1 PC2 PC3 PC4 PC5 PC6 PC7§ PC8 PC9 PC10

Variance (%)
o

—
9] o
1 1
—
——
| —

You do lose some information, but if the eigenvalues are small, you don’t lose

much
— Mdimensions in original data
— calculate M eigenvectors and eigenvalues
— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions

© Eric Xing @ CMU, 2006-2011
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PCA EXAMPLES



Projecting MNIST digits

Task Setting:

1. Take each 28x28 image of a digit (i.e. a vector x() of length 784) and project it

down to K components (i.e. a vector u®)

2.  Report percent of variance explained for K components
3.  Then project back up to 28x28 image (i.e. a vector X() of length 784) to

visualize how much information was preserve

A

Original Image

95% of Explained Variance
0

5 10 15 20
784 components

-S*(U\

25 10 15 20

0, 5 1 25
k~=154 components

Original Image

95% of Explained Variance
0

10 15 20

5 25 10 15 2
784 components

5 0 20 25
154 components

Original Image 95% of Explained Variance

5 10 15 20

c 5 ] 25
784 components

5 10 15 20 25
154 components

90% of Explained Variance

0 5 10 15 0 25

87 components

90% of Explained Variance

5 10 15 20 25
87 components

90% of Explained Variance

5 10 15 20

S 0 25
87 components

80% of Explained Variance

5 10 15 20 25
43 components

80% of Explained Variance

0o 15 20

5 10 5 0 25
43 components

80% of Explained Variance

5 10 15 20 25
43 components

0 5 10 15

50% of Explained Variance
0

20 25
11 components

5 10 15 20
11 components

5 10 15 20 25
11 components

Takeaway:
Using fewer
principal
components K
leads to higher
reconstruction
error.

But even a
small number
(say 43) still
preserves a lot
of information
about the
original image.



Projecting MNIST digits

Task Setting:

1. Take each 28x28 image of a digit (i.e. a vector x( of length 784) and project it
down to K=2 components (i.e. a vector u®)

2. Plot the 2 dimensional points u® and label with the (unknown to PCA) label y()
as the color

3. Herewelook at all ten digits0 -9

3 _ 2 Takeaway:
i B O B ﬂ Even with a
g tiny number of
principal
- 6 components
K=2, PCA
learns a
4 representation
that captures
the latent
52 information
about the type
of digit

|
w
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Projecting MNIST digits

Task Setting:
Take each 28x28 image of a digit (i.e. a vector x( of length 784) and project it

1.

down to K=2 components (i.e. a vector u®)

Plot the 2 dimensional points u®) and label with the (unknown to PCA) label y(

as the color
Here we look at just four digits o, 1, 2, 3

3.0

2.5

- 2.0

-1.5

- 1.0

0.5

. 0.0

Takeaway:
Even with a
tiny number of
principal
components
K=2, PCA
learns a
representation
that captures
the latent
information
about the type
of digit
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Learning Objectives

Dimensionality Reduction [ PCA

You should be able to...

1.

W

Define the sample mean, sample variance, and sample covariance of a
vector-valued dataset

ldentify examples of high dimensional data and common use cases for
dimensionality reduction

Draw the principal components of a given toy dataset

Establish the equivalence of minimization of reconstruction error with
maximization of variance

Given a set of principal components, project from high to low dimensional
space and do the reverse to produce a reconstruction

Explain the connection between PCA, eigenvectors, eigenvalues, and
covariance matrix

Use common methods in linear algebra to obtain the principal components



