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Reminders

• Homework 7: Transformer in PyTorch
– Out: Sat, Nov. 11
– Due: Mon, Nov. 20 at 11:59pm

• Homework 8: Reinforcement Learning
– Out: Mon, Nov. 20
– Due: Fri, Dec. 1 at 11:59pm
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Playing Atari games with Deep RL

3Source: https://www.youtube.com/watch?v=V1eYniJ0Rnk&t=2s&ab_channel=TwoMinutePapers



DIMENSIONALITY REDUCTION
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High Dimension Data

Examples of high dimensional data:
– High resolution images (millions of pixels)
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High Dimension Data

Examples of high dimensional data:
– Multilingual News Stories 

(vocabulary of hundreds of thousands of words)
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High Dimension Data

Examples of high dimensional data:
– Brain Imaging Data (100s of MBs per scan)
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Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/

Image from (Wehbe et al., 2014)



High Dimension Data

Examples of high dimensional data:
– Customer Purchase Data
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Learning Representations
Dimensionality Reduction Algorithms: 
Powerful (often unsupervised) learning techniques for extracting hidden 
(potentially lower dimensional) structure from high dimensional datasets.

Examples: 
PCA, Kernel PCA, ICA, CCA, t-SNE, Autoencoders, Matrix Factorization

Useful for:
• Visualization 
• More efficient use of resources (e.g., time, memory, communication)
• Statistical: fewer dimensions à better generalization
• Noise removal (improving data quality)
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Slide adapted from Nina Balcan



This section in one slide…
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1. Dimensionality reduction: 2. Random Projection:

3. Definition of PCA:

Choose the matrix V that either…
1. minimizes reconstruction error
2. consists of the K eigenvectors with 

largest eigenvalue

The above are equivalent definitions.

4. Algorithm for PCA:

The option we’ll focus on: 

Run Singular Value 
Decomposition (SVD) to 
obtain all the eigenvectors. 
Keep just the top-K to form V. 
Play some tricks to keep 
things efficient.

5. An Example



DIMENSIONALITY REDUCTION BY RANDOM 
PROJECTION
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2D input data
Example: 2D to 1D

Random Projection
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Goal:  project from M-dimensions down 
to K-dimensions

Data:

D = {x(i)}Ni=1 where x(i) ∈ RM

Algorithm:

1. Randomly sample matrix: V ∈ RK×M

Vkm ∼ Gaussian(0, 1)

2. Project down: u(i)
︸︷︷︸

K×1

= V
︸︷︷︸

K×M

x(i)
︸︷︷︸

M×1

3. Project up: x̃(i)
︸︷︷︸

M×1

= VT

︸︷︷︸

M×K

u(i)
︸︷︷︸

K×1

= VT (Vx(i))

V ∈ℝ1x2

x

y

x(1) ∈ℝ1x2

x(2)

x(3)

x(4)

x(5)

x(6)

x̃(1) ∈ℝ1x2

x̃(2)

x̃(3)
x̃(4)

x̃(5)
x̃(6)

1D projection onto the real line

u(1) ∈ℝ u(2) u(3) u(4) u(5) u(6)



2D input data
Example: 2D to 1D

Random Projection
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Goal:  project from M-dimensions down 
to K-dimensions

Data:

D = {x(i)}Ni=1 where x(i) ∈ RM

Algorithm:

1. Randomly sample matrix: V ∈ RK×M

Vkm ∼ Gaussian(0, 1)

2. Project down: u(i)
︸︷︷︸

K×1

= V
︸︷︷︸

K×M

x(i)
︸︷︷︸

M×1

3. Project up: x(i)
︸︷︷︸

M×1

= VT

︸︷︷︸

M×K

u(i)
︸︷︷︸

K×1

= VT (Vx(i))

V ∈ℝ1x2

x

y

Problem: a random projection might give 
us a poor low dimensional 
representation of the data



Johnson-Lindenstrauss Lemma
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http://www.cs.cmu.edu/~anupamg/papers/jl.pdf

A: Even random projection enjoys some surprisingly impressive properties. 
In fact, a standard of the J-L lemma starts by assuming we have a random 
linear projection obtained by sampling each matrix entry from a 
Gaussian(0,1).

Q: But how could we ever hope to preserve any useful information 
by randomly projecting into a low-dimensional space?



DEFINITION OF PRINCIPAL COMPONENT 
ANALYSIS (PCA)
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Principal Component Analysis (PCA)
• Assumption: the data 

lies on a low K-
dimensional linear 
subspace 

• Goal: identify the axes 
of that subspace, and 
project each point 
onto hyperplane

• Algorithm: find the K 
eigenvectors with 
largest eigenvalue 
using classic matrix 
decomposition tools

22
https://commons.wikimedia.org/wiki/File:Scatter_diagram_for_quality_characteristic_XXX.svg

PCA Example: 2D Gaussian Data



Data for PCA

We assume the data is centered, 
i.e. the sample mean is zero
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s =

�

����

(t(1))T

(t(2))T

...
(t(N))T

�

����

D = {t(i)}N
i=1

Q: What if 
your data is 

not centered?

µ̂ =
1

N

N∑

i=1

x(i)
= 0

A: Subtract off the sample mean

x̃(i)
= x(i)

− µ̂, ∀i



Background: Sample Variance
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Suppose we have a sequence of random samples {x(1), . . . , x(N)}
from a random variableX .

The (biased) sample variance σ̂2 is given by:

σ̂2 =
1

N

N∑

i=1

(x(i) − µ̂)2

where µ̂ is the sample mean.



Sample Covariance Matrix
The sample covariance matrix
is given by:
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�jk =
1

N

N�

i=1

(x(i)
j � µj)(x

(i)
k � µk)

Since the data matrix is centered, we rewrite as:

� =
1

N
sT s s =

�

����

(t(1))T

(t(2))T

...
(t(N))T

�

����



Principal Component Analysis (PCA)
Linear Projection:
Given KxM matrix V, and Mx1 
vector x(i) we obtain the Kx1 
projection u(i) by:

u(i) = V x(i)

Definition of PCA:
PCA repeatedly chooses a next vector vj that minimizes the 
reconstruction error s.t. vj is orthogonal to v1, v2,..., vj-1. 

Vector vj is called the jth principal component.

Notice: Two vectors a and b are orthogonal if aTb = 0. 
èthe K-dimensions in PCA are uncorrelated
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Vector Projection
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Objectives for PCA
Minimize the Reconstruction Error Maximize the Variance
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Answer:

Question:
Below are two plots of the same dataset D. Consider the 
two projections shown.

1. Which maximizes the variance?
2. Which minimizes the reconstruction error?

Projection Example
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Option A Option B

1 2 3

1
2

3

1 2 3
1

2
3



PCA Objective Functions
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What is the Ƥrst principal component v1 chosen by PCA?

v1 = argmin
v:||v||2=1

1

N

N∑

i=1

||x(i) − (vT x(i))v||2

Option 1: The vector that minimizes the reconstruction error

Option 2: The vector that maximizes the variance

v1 = argmax
v:||v||2=1

1

N

N∑

i=1

(vT x(i))2



PCA
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Equivalence of Maximizing 
Variance and Minimizing  

Reconstruction Error



PCA Objective Functions
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What is the Ƥrst principal component v1 chosen by PCA?

v1 = argmin
v:||v||2=1

1

N

N∑

i=1

||x(i) − (vT x(i))v||2

Option 1: The vector that minimizes the reconstruction error

Option 2: The vector that maximizes the variance

v1 = argmax
v:||v||2=1

1

N

N∑

i=1

(vT x(i))2

Answer:

Question:
Why can’t we just use 
gradient descent to find 
the minimum of the PCA 
optimization problem?



Principal Component Analysis (PCA)
Linear Projection:
Given KxM matrix V, and Mx1 
vector x(i) we obtain the Kx1 
projection u(i) by:

u(i) = V x(i)

Definition of PCA:
PCA repeatedly chooses a next vector vj that minimizes the 
reconstruction error s.t. vj is orthogonal to v1, v2,..., vj-1. 

Vector vj is called the jth principal component.

Notice: Two vectors a and b are orthogonal if aTb = 0. 
èthe K-dimensions in PCA are uncorrelated
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Answer:

Question:
Why can’t we just use 
gradient descent to find 
the minimum of the PCA 
optimization problem?



Background: 
Eigenvectors & Eigenvalues

For a square matrix A (n x n matrix), the 
vector v (n x 1 matrix) is an eigenvector
iff there exists eigenvalue λ (scalar) 
such that: 

Av = λv
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Av = λv

v

The linear transformation A is only 
stretching vector v.

That is, λv is a scalar multiple of v.



Background: 
Eigenvectors & Eigenvalues

Fact #1: The eigenvectors of a symmetric 
matrix are orthogonal to each other.

Fact #2: The covariance matrix 𝚺 is 
symmetric.
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PCA
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The First 
Principal 

Component



Principal Component Analysis (PCA)
X	X! v = λv	, so v (the first PC) is the eigenvector of 

sample correlation/covariance matrix 𝑋	𝑋"

Sample variance of projection v"𝑋	𝑋"v = 𝜆v"v = 𝜆

Thus, the eigenvalue 𝜆	denotes the amount of variability 
captured along that dimension (aka amount of energy along that 
dimension).

Eigenvalues 𝜆! ≥ 𝜆" ≥ 𝜆# ≥ ⋯

• The 1st PC 𝑣! is the the eigenvector of the sample covariance matrix 𝑋	𝑋$ 
associated with the largest eigenvalue 

• The 2nd PC 𝑣" is the the eigenvector of the sample covariance matrix 
𝑋	𝑋$ associated with the second largest eigenvalue 

• And so on …

Slide from Nina Balcan



ALGORITHMS FOR PCA
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Algorithms for PCA
How do we find principal components (i.e. eigenvectors)?
• Power iteration (aka. Von Mises iteration)
– finds each principal component one at a time in order 

• Singular Value Decomposition (SVD)
– finds all the principal components at once
– two options:

• Option A: run SVD on XTX
• Option B: run SVD on X 

(not obvious why Option B should work…)

• Stochastic Methods (approximate)
– very efficient for high dimensional datasets with lots of points

39



40
Slide from Tom Mitchell



41
Slide from Tom Mitchell



42
Slide from Tom Mitchell



• For M original dimensions, sample covariance matrix is MxM, and has 
up to M eigenvectors. So M principal components (PCs).

• Where does dimensionality reduction come from?
Can ignore the components of lesser significance. 

0
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10

15

20

25
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Va
ria

nc
e 

(%
)

How Many PCs?

© Eric Xing @ CMU, 2006-2011 45

• You do lose some information, but if the eigenvalues are small, you don’t lose 
much
– M dimensions in original data 
– calculate M eigenvectors and eigenvalues
– choose only the first D eigenvectors, based on their eigenvalues
– final data set has only D dimensions

Variance (%) = ratio of variance along 
given principal component to total 

variance of all principal components



PCA EXAMPLES
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Projecting MNIST digits
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Task Setting:
1. Take each 28x28 image of a digit (i.e. a vector x(i) of length 784) and project it 

down to K components (i.e. a vector u(i))
2. Report percent of variance explained for K components
3. Then project back up to 28x28 image (i.e. a vector x̃(i) of length 784) to 

visualize how much information was preserved

Takeaway:
Using fewer 

principal 
components K 
leads to higher 
reconstruction 

error.
But even a 

small number 
(say 43) still 

preserves a lot 
of information 

about the 
original image.



Projecting MNIST digits
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Task Setting:
1. Take each 28x28 image of a digit (i.e. a vector x(i) of length 784) and project it 

down to K=2 components (i.e. a vector u(i))
2. Plot the 2 dimensional points u(i) and label with the (unknown to PCA) label y(i)

as the color
3. Here we look at all ten digits 0 - 9

Takeaway:
Even with a 

tiny number of 
principal 

components 
K=2, PCA 
learns a 

representation 
that captures 

the latent 
information 

about the type 
of digit



Projecting MNIST digits
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Task Setting:
1. Take each 28x28 image of a digit (i.e. a vector x(i) of length 784) and project it 

down to K=2 components (i.e. a vector u(i))
2. Plot the 2 dimensional points u(i) and label with the (unknown to PCA) label y(i) 

as the color
3. Here we look at just four digits 0, 1, 2, 3

Takeaway:
Even with a 

tiny number of 
principal 

components 
K=2, PCA 
learns a 

representation 
that captures 

the latent 
information 

about the type 
of digit



Learning Objectives
Dimensionality Reduction / PCA

You should be able to…
1. Define the sample mean, sample variance, and sample covariance of a 

vector-valued dataset
2. Identify examples of high dimensional data and common use cases for 

dimensionality reduction
3. Draw the principal components of a given toy dataset
4. Establish the equivalence of minimization of reconstruction error with 

maximization of variance
5. Given a set of principal components, project from high to low dimensional 

space and do the reverse to produce a reconstruction
6. Explain the connection between PCA, eigenvectors, eigenvalues, and 

covariance matrix
7. Use common methods in linear algebra to obtain the principal components
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