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Front Matter � Announcements

� HW8 released 11/20, due 12/1 (Friday) at 11:59 PM
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Clustering

� Goal: split an unlabeled data set into groups or clusters of 
“similar” data points

� Use cases:
� Organizing data
� Discovering patterns or structure
� Preprocessing for downstream machine learning tasks

� Applications:
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Recall:
Similarity for 
𝑘NN

� Intuition: predict the label of a data point to be the label of 

the “most similar” training point two points are “similar” if 
the distance between them is small 

� Euclidean distance: 𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙! "
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Partition-Based 
Clustering

� Given a desired number of clusters, 𝐾, return a partition 

of the data set into 𝐾 groups or clusters, 𝐶#, … , 𝐶$ , 
that optimize some objective function

1. What objective function should we optimize?

2. How can we perform optimization in this setting?
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Example Clusterings
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Example Clusterings
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Recipe 
for 
𝐾-means
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� Define a model and model parameters
� Assume 𝐾 clusters and use the Euclidean distance
� Parameters: 𝝁#, … , 𝝁$ and 𝑧 # , … , 𝑧 %

� Write down an objective function

,
&'#

%

𝒙 & − 𝝁( ! "

� Optimize the objective w.r.t. the model parameters
� Use (block) coordinate descent



Coordinate 
Descent

� Goal: minimize some objective 
-𝜽 = argmin 𝐽 𝜽

� Idea: iteratively pick one variable and minimize the 
objective w.r.t. just that variable, keeping all others fixed. 
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Block 
Coordinate 
Descent

11

� Goal: minimize some objective 

7𝜶, -𝜷 = argmin	 𝐽 𝜶, 𝜷

� Idea: iteratively pick one block of variables (𝜶	or	𝜷) and 
minimize the objective w.r.t. that block, keeping the 

other(s) fixed. 

� Ideally, blocks should be the largest possible set of 

variables that can be efficiently optimized 
simultaneously
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7𝝁#, … , 7𝝁$, 𝑧 # , … , 𝑧 + = argmin,
&'#

%

𝒙 & − 𝝁( ! "

� If 𝝁#, … , 𝝁$ are fixed

�̂� & = argmin
, ∈ #, … ,$

𝒙 & − 𝝁, "

� If 𝑧 # , … , 𝑧 % are fixed

7𝝁, = argmin
𝝁

,
& ∶( ! ',

𝒙 & − 𝝁 "

7𝝁, =
1
𝑁,

,
& ∶( ! ',

𝒙 &
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Optimizing the 
𝐾-means 
objective



𝐾-means 
Algorithm
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� Input: 𝒟 = 𝒙 &
&'#
%

, 𝐾

1. Initialize cluster centers 𝝁#, … , 𝝁$
2. While NOT CONVERGED

a. Assign each data point to the cluster with the 
nearest cluster center:
𝑧(&) = argmin

,
𝒙 & − 𝝁, "

b. Recompute the cluster centers:

𝝁, =
1
𝑁,

,
& ∶( ! ',

𝒙 &

where 𝑁, is the number of data points in cluster 𝑘

� Output: cluster centers 𝝁#, … , 𝝁$ and cluster 
assignments 𝑧 # , … , 𝑧 %



𝐾-means: 
Example
(𝐾 = 3)
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𝐾-means: 
Example
(𝐾 = 3)

21Figure courtesy of Matt Gormley11/27/23



𝐾-means: 
Example
(𝐾 = 2)

22Figure courtesy of Matt Gormley11/27/23



𝐾-means: 
Example
(𝐾 = 2)
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𝐾-means: 
Example
(𝐾 = 2)
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Setting 𝐾

� Idea: choose the value of 𝐾 that minimizes the 
objective function 

� Better Idea: look for the characteristic “elbow” or 
largest decrease when going from 𝐾 − 1 to 𝐾
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Initializing 
𝐾-means
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� Common choice: choose 𝐾 data points at random to be 
the initial cluster centers (Lloyd’s method)
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Initializing 
𝐾-means
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� Common choice: choose 𝐾 data points at random to be 
the initial cluster centers (Lloyd’s method)

� Lloyd’s method converges to a local minimum and that 
local minimum can be arbitrarily bad (relative to the 
optimal clusters)

� This is because the 𝐾-means objective is nonconvex!

� Intuition: want initial cluster centers to be far apart from 
one another



𝐾-means++ 
(Arthur and 
Vassilvitskii, 
2007)

1. Choose the first cluster center randomly from the 
data points.

2. For each other data point 𝒙, compute 𝐷 𝒙 , the 
distance between 𝒙 and the nearest cluster center.

3. Select the next cluster center proportional to 𝐷 𝒙 ".

4. Repeat 2 and 3 𝐾 − 1 times.

� 𝐾-means++ achieves a 𝑂 log𝐾 approximation to the 
optimal clustering in expectation 

� Both Lloyd’s method and 𝐾-means++ can benefit from 
multiple random restarts. 

11/27/23 37



𝐾-means 
Learning 
Objectives

� You should be able to… 

1. Distinguish between coordinate descent and block 
coordinate descent 

2. Define an objective function that gives rise to a "good" 
clustering 

3. Apply block coordinate descent to an objective function 
preferring each point to be close to its nearest objective 
function to obtain the K-Means algorithm 

4. Implement the K-Means algorithm 

5. Connect the non-convexity of the K-Means objective 
function with the (possibly) poor performance of random 
initialization
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The Netflix 
Prize

39

• 500,000 users
• 20,000 movies
• 100 million ratings
• Goal: To obtain lower 

error than Netflix’s 
existing system on 3 
million held out ratings 
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The Netflix 
Prize
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Movie Recommendations
4111/27/23

MovieID Runtime Genre Budget Year IMDB Rating Liked?

1 124 Action 18M 1980 8.7 PG Y
2 105 Action 30M 1984 7.8 PG Y
3 103 Comedy 6M 1986 7.8 PG-13 N
4 98 Adventure 16M 1987 8.1 PG Y
5 128 Comedy 16.4M 1989 8.1 PG Y
6 120 Comedy 11M 1992 7.6 R N
7 120 Drama 14.5M 1996 6.7 PG-13 N
8 136 Action 115M 1999 6.5 PG Y
9 90 Action 90M 2001 6.6 PG-13 Y
10 161 Adventure 100M 2002 7.4 PG N
11 201 Action 94M 2003 8.9 PG-13 Y
12 94 Comedy 26M 2004 7.2 PG-13 Y
13 157 Biography 100M 2007 7.8 R N
14 128 Action 110M 2007 7.1 PG-13 N
15 107 Drama 39M 2009 7.1 PG-13 N
16 158 Drama 61M 2012 7.6 PG-13 N
17 169 Adventure 165M 2014 8.6 PG-13 Y
18 100 Biography 9M 2016 6.7 R N
19 130 Action 180M 2017 7.9 PG-13 Y
20 141 Action 275M 2019 6.5 PG-13 Y

Source: https://www.kaggle.com/datasets/danielgrijalvas/movies 

https://www.kaggle.com/datasets/danielgrijalvas/movies


Decision Trees
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MovieID Runtime Genre Budget Year IMDB Rating Liked?

1 124 Action 18M 1980 8.7 PG Y
2 105 Action 30M 1984 7.8 PG Y
3 103 Comedy 6M 1986 7.8 PG-13 N
4 98 Adventure 16M 1987 8.1 PG Y
5 128 Comedy 16.4M 1989 8.1 PG Y
6 120 Comedy 11M 1992 7.6 R N
7 120 Drama 14.5M 1996 6.7 PG-13 N
8 136 Action 115M 1999 6.5 PG Y
9 90 Action 90M 2001 6.6 PG-13 Y
10 161 Adventure 100M 2002 7.4 PG N
11 201 Action 94M 2003 8.9 PG-13 Y
12 94 Comedy 26M 2004 7.2 PG-13 Y
13 157 Biography 100M 2007 7.8 R N
14 128 Action 110M 2007 7.1 PG-13 N
15 107 Drama 39M 2009 7.1 PG-13 N
16 158 Drama 61M 2012 7.6 PG-13 N
17 169 Adventure 165M 2014 8.6 PG-13 Y
18 100 Biography 9M 2016 6.7 R N
19 130 Action 180M 2017 7.9 PG-13 Y
20 141 Action 275M 2019 6.5 PG-13 Y

Genre

RatingIMDB

Action/Adventure Other

Runtime

PG PG-13/R

YIMDB

≤ 7.6 > 7.6

Y

≤ 6.7 > 6.7

NY NY

≤ 97 > 97

Source: https://www.kaggle.com/datasets/danielgrijalvas/movies 

https://www.kaggle.com/datasets/danielgrijalvas/movies


Recall: 
Decision Tree 
Pros & Cons

� Pros
� Interpretable
� Efficient (computational cost and storage)
� Can be used for classification and regression tasks
� Compatible with categorical and real-valued features

� Cons
� Learned greedily: each split only considers the 

immediate impact on the splitting criterion
� Not guaranteed to find the smallest (fewest number 

of splits) tree that achieves a training error rate of 0.
� Prone to overfit
� High variance 
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Decision Trees
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Decision Trees
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MovieID Runtime Genre Budget Year IMDB Rating Liked?

1 124 Action 18M 1980 8.7 PG Y
2 105 Action 30M 1984 7.8 PG Y
3 103 Comedy 6M 1986 7.8 PG-13 N
4 98 Adventure 16M 1987 8.1 PG Y
5 128 Comedy 16.4M 1989 8.1 PG Y
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Budget

Runtime

Runtime

YN

≤ 161 > 161

≤ 14.5M > 14.5M

N

≤ 141 > 141

Year

Year

≤ 2004 > 2004

Y

≤ 2007 > 2007

YN

https://www.kaggle.com/datasets/danielgrijalvas/movies


Decision Trees
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Budget

Runtime
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Decision Trees: 
Pros & Cons

� Pros
� Interpretable
� Efficient (computational cost and storage)
� Can be used for classification and regression tasks
� Compatible with categorical and real-valued features

� Cons
� Learned greedily: each split only considers the 

immediate impact on the splitting criterion
� Not guaranteed to find the smallest (fewest number 

of splits) tree that achieves a training error rate of 0.
� Prone to overfit
� High variance

� Can be addressed via ensembles → random forests
4711/27/23



Random 
Forests

� Combines the prediction of many diverse decision trees to reduce 

their variability  

� If 𝐵 independent random variables 𝑥 # , 𝑥 " , … , 𝑥 ? all have  

variance 𝜎", then the variance of                      is @
"

&

� Random forests = sample bagging             + feature bagging

- = bootstrap aggregating + split-feature randomization

48
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𝜎"
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Aggregating

� How can we combine multiple decision trees, 

𝑡#, 𝑡", … , 𝑡? , to arrive at a single prediction?

� Regression - average the predictions:

̅𝑡 𝒙 =
1
𝐵
,
A'#

?

𝑡A 𝒙

� Classification - plurality (or majority) vote; for binary 

labels encoded as −1,+1 :

̅𝑡 𝒙 = sign
1
𝐵
,
A'#

?

𝑡A 𝒙
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Random 
Forests

� Combines the prediction of many diverse decision trees to reduce 

their variability  

� If 𝐵 independent random variables 𝑥 # , 𝑥 " , … , 𝑥 ? all have  

variance 𝜎", then the variance of                      is @
"

&

� Random forests = sample bagging             + feature bagging

- = bootstrap aggregating + split-feature randomization

51
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Bootstrapping

� Insight: one way of generating different decision trees is 
by changing the training data set

� Issue: often, we only have one fixed set of training data

� Idea: resample the data multiple times with replacement

5211/27/23

MovieID ⋯
1 ⋯
2 ⋯
3 ⋯
⋮ ⋮

19 ⋯
20 ⋯

MovieID ⋯
1 ⋯
1 ⋯
1 ⋯
⋮ ⋮

14 ⋯
19 ⋯

MovieID ⋯
4 ⋯
4 ⋯
5 ⋯
⋮ ⋮

16 ⋯
16 ⋯

Training data Bootstrapped 
Sample 1

Bootstrapped 
Sample 2

⋯

⋯



Bootstrapping
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� Idea: resample the data multiple times with replacement
� Each bootstrapped sample has the same number of 

data points as the original data set 
� Duplicated points cause different decision trees to 

focus on different parts of the input space
MovieID ⋯

1 ⋯
2 ⋯
3 ⋯
⋮ ⋮

19 ⋯
20 ⋯

MovieID ⋯
1 ⋯
1 ⋯
1 ⋯
⋮ ⋮

14 ⋯
19 ⋯

MovieID ⋯
4 ⋯
4 ⋯
5 ⋯
⋮ ⋮

16 ⋯
16 ⋯

Training data Bootstrapped 
Sample 1

Bootstrapped 
Sample 2

⋯

⋯



Split-feature 
Randomization

� Issue: decision trees trained on bootstrapped samples 
still behave similarly

� Idea: in addition to sampling the data points (i.e., the 
rows), also sample the features (i.e., the columns)

� Each time a split is being considered, limit the possible 
features to a randomly sampled subset 
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Random 
Forests

� Input: 𝒟 = 𝒙 & , 𝑦 &
&'#
%

, 𝐵, 𝜌

� For 𝑏 = 1, 2, … , 𝐵

� Create a dataset, 𝒟A, by sampling 𝑁 points from the 
original training data 𝒟 with replacement

� Learn a decision tree, 𝑡A, using 𝒟A and the ID3 
algorithm with split-feature randomization, 
sampling 𝜌 features for each split

� Output: ̅𝑡 = 𝑓 𝑡#, … , 𝑡? , the aggregated hypothesis

5811/27/23



Recall: 
Validation Sets

� Suppose we want to compare multiple 
hyperparameter settings 𝜃#, … , 𝜃$

� For 𝑘 = 1, 2, … , 𝐾
� Train a model on 𝐷DEFG& using 𝜃,

� Evaluate each model on 𝐷HFI and find 
the best hyperparameter setting, 𝜃,∗

� Compute the error of a model trained 
with 𝜃,∗ on 𝐷DJKD
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Out-of-bag 
Error

� For each training point, 𝒙 & , there are some decision trees 

which 𝒙 & was not used to train (roughly ⁄𝐵 𝑒 trees or 37%)

� Let these be 𝑡 L& = 𝑡#
L& , 𝑡"

L& , … , 𝑡%$!
L&

� Compute an aggregated prediction for each 𝒙 & using the 

trees in 𝑡 L& , ̅𝑡 L& 𝒙 &

� Compute the out-of-bag (OOB) error, e.g., for regression

61
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1
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,
&'#

%

̅𝑡 L& 𝒙 & − 𝑦 & "

11/27/23



Out-of-bag 
Error

� For each training point, 𝒙 & , there are some decision trees 

which 𝒙 & was not used to train (roughly ⁄𝐵 𝑒 trees or 37%)

� Let these be 𝑡 L& = 𝑡#
L& , 𝑡"

L& , … , 𝑡%$!
L&

� Compute an aggregated prediction for each 𝒙 & using the 

trees in 𝑡 L& , ̅𝑡 L& 𝒙 &

� Compute the out-of-bag (OOB) error, e.g., for classification

� 𝐸MM? can be used for hyperparameter optimization!
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𝐸MM? =
1
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&'#

%

𝟙 ̅𝑡 L& 𝒙 & ≠ 𝑦 &



Out-of-bag 
Error

� Suppose we want to compare different 
numbers of trees in our random forest 
𝐵#, … , 𝐵$

� For 𝑘 = 1, 2, … , 𝐾
� Train a random forest on 𝐷DEFG&

with 𝐵, trees

� Compute 𝐸MM? for each random forest 
and find the best number of trees, 𝐵,∗

� Evaluate the random forest with 𝐵,∗
trees on 𝐷DJKD
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Setting Hyperparameters
6511/27/23

Converges quickly 

Optimal value 
somewhere in the middle



Feature 
Importance

6611/27/23

� Some of the interpretability of decision trees gets lost 

when switching to random forests

� Random forests allow for the computation of “feature 
importance”, a way of ranking features based on how 
useful they are at predicting the target

� Initialize each feature’s importance to zero

� Each time a feature is chosen to be split on, add the  
reduction in entropy (weighted by the number of data 
points in the split) to its importance



Feature 
Importance
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