10-301/601: Introduction to Machine Learning Lecture 19: Clustering & Bagging

Henry Chai & Matt Gormley 11/27/23

Front Matter

- Announcements
 - HW8 released 11/20, due 12/1 (Friday) at 11:59 PM

Clustering

- Goal: split an unlabeled data set into groups or clusters of "similar" data points
- Use cases:
 - Organizing data
 - Discovering patterns or structure
 - Preprocessing for downstream machine learning tasks
- Applications:

Recall: Similarity for kNN

- Intuition: predict the label of a data point to be the label of the "most similar" training point two points are "similar" if the distance between them is small
- Euclidean distance: $d(\mathbf{x}, \mathbf{x}') = ||\mathbf{x} \mathbf{x}'||_2$

Partition-Based Clustering

- Given a desired number of clusters, K, return a partition of the data set into K groups or clusters, $\{C_1, \ldots, C_K\}$, that optimize some objective function
- 1. What objective function should we optimize?

2. How can we perform optimization in this setting?

Example Clusterings

Option A Option B

Example Clusterings

Define a model and model parameters

Recipe for *K*-means

Write down an objective function

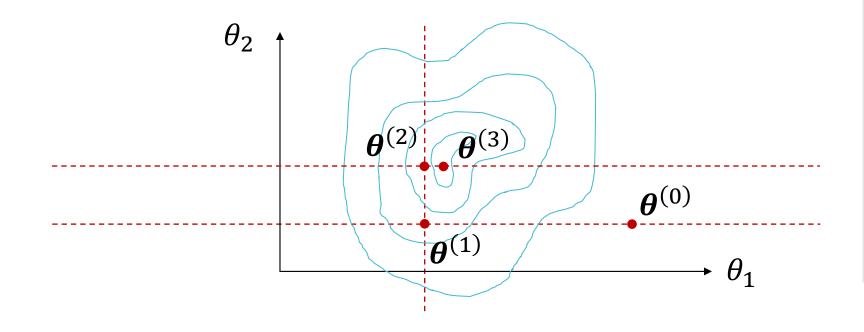
• Optimize the objective w.r.t. the model parameters

Coordinate Descent

Goal: minimize some objective

$$\widehat{\boldsymbol{\theta}} = \operatorname{argmin} J(\boldsymbol{\theta})$$

• Idea: iteratively pick one variable and minimize the objective w.r.t. just that variable, *keeping all others fixed*.



Block Coordinate Descent

Goal: minimize some objective

$$\widehat{\boldsymbol{\alpha}}, \widehat{\boldsymbol{\beta}} = \operatorname{argmin} J(\boldsymbol{\alpha}, \boldsymbol{\beta})$$

- Idea: iteratively pick one *block* of variables (α or β) and minimize the objective w.r.t. that block, keeping the other(s) fixed.
 - Ideally, blocks should be the largest possible set of variables that can be efficiently optimized simultaneously

Optimizing the *K*-means objective

$$\widehat{\mu}_1, \dots, \widehat{\mu}_K, z^{(1)}, \dots, z^{(N)} = \operatorname{argmin} \sum_{n=1}^N ||x^{(n)} - \mu_{z^{(n)}}||_2$$

• If $\mu_1, ..., \mu_K$ are fixed

• If $z^{(1)}, \dots, z^{(N)}$ are fixed

K-means Algorithm

- Input: $\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(n)} \right) \right\}_{n=1}^{N}, K$
- 1. Initialize cluster centers $\mu_1, ..., \mu_K$
- 2. While NOT CONVERGED
 - Assign each data point to the cluster with the nearest cluster center:

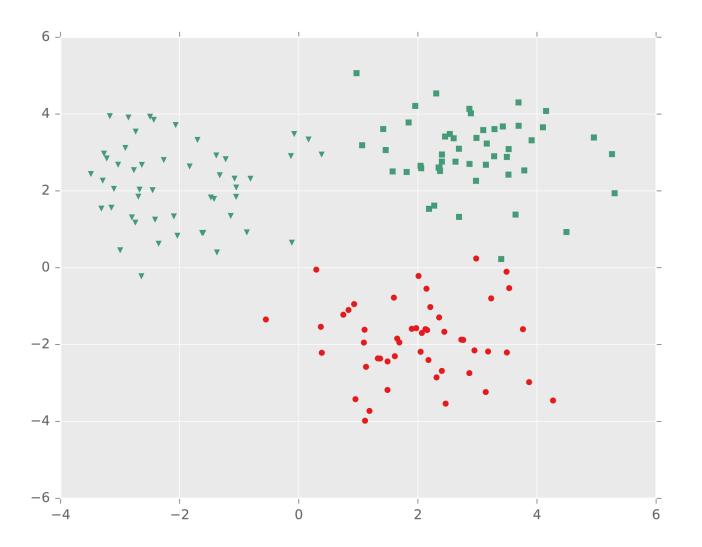
$$z^{(n)} = \underset{k}{\operatorname{argmin}} \| \boldsymbol{x}^{(n)} - \boldsymbol{\mu}_k \|_2$$

b. Recompute the cluster centers:

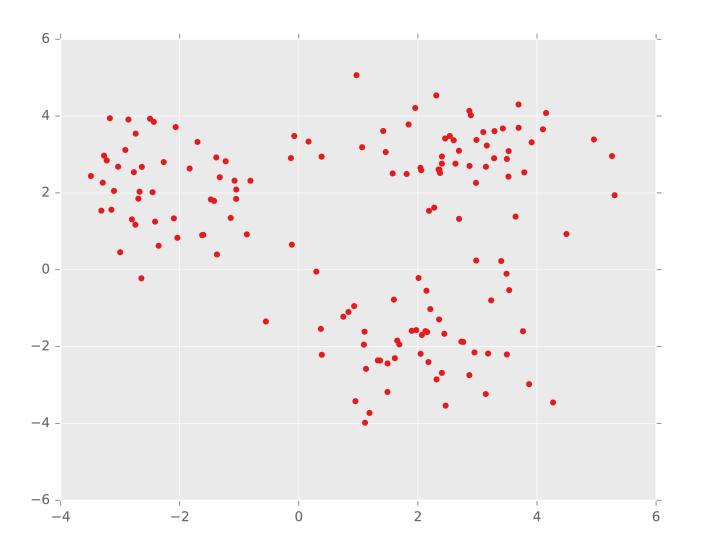
$$\mu_k = \frac{1}{N_k} \sum_{n: z^{(n)} = k} x^{(n)}$$

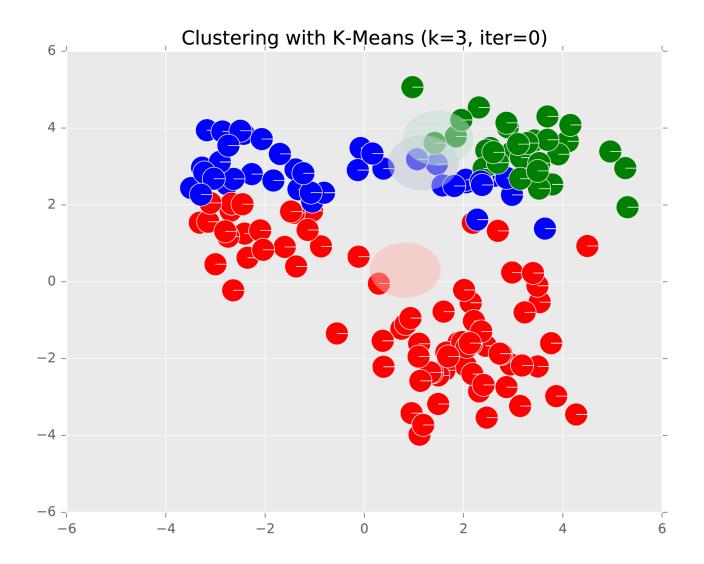
where N_k is the number of data points in cluster k

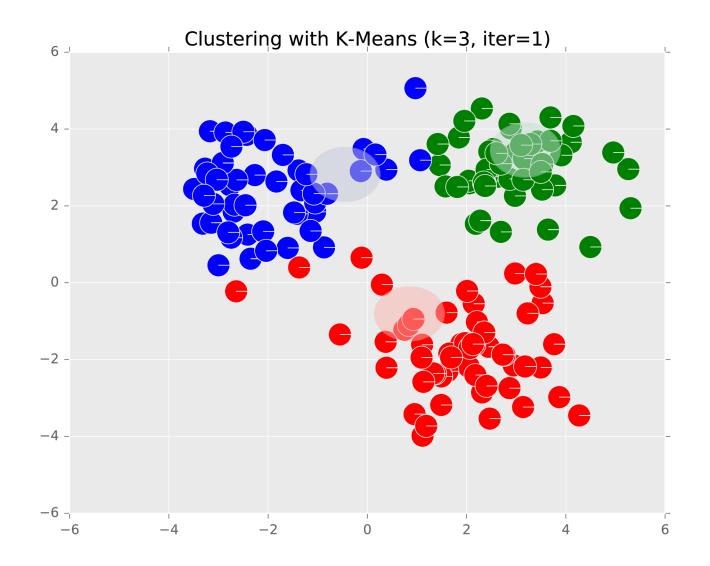
• Output: cluster centers $\mu_1, ..., \mu_K$ and cluster assignments $z^{(1)}, ..., z^{(N)}$

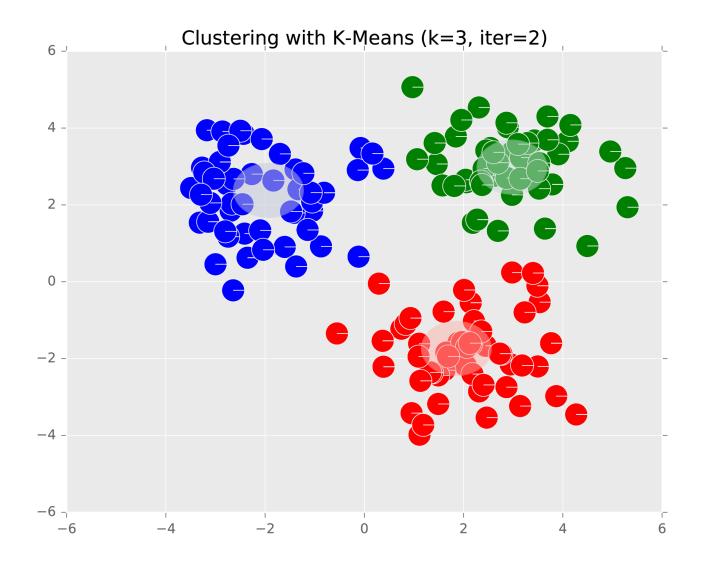


14

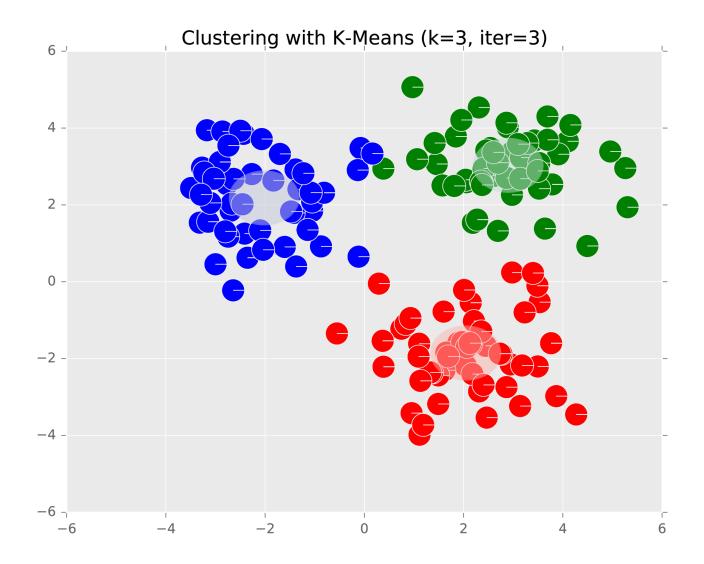




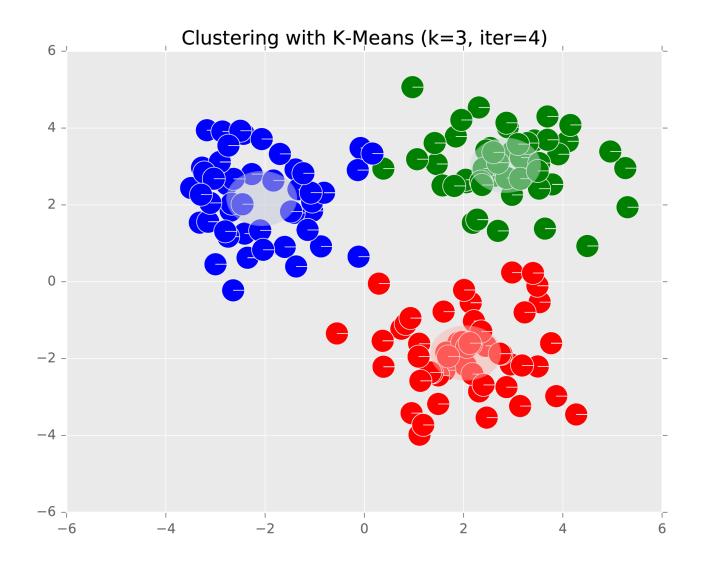


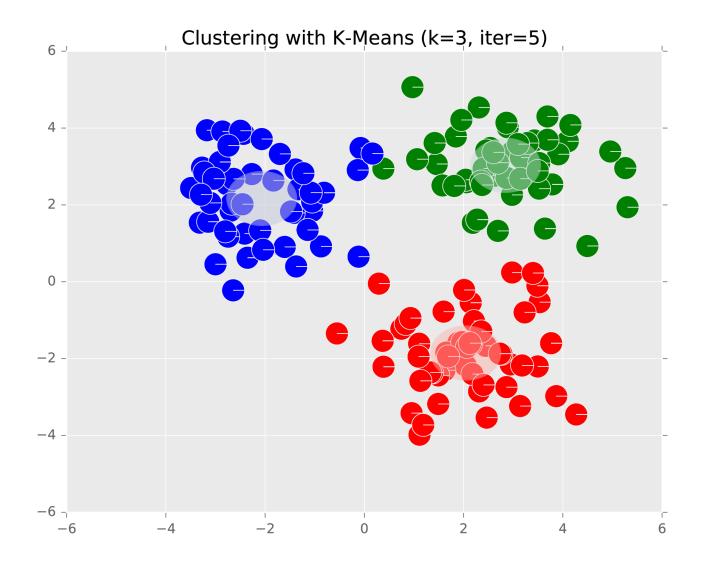


18

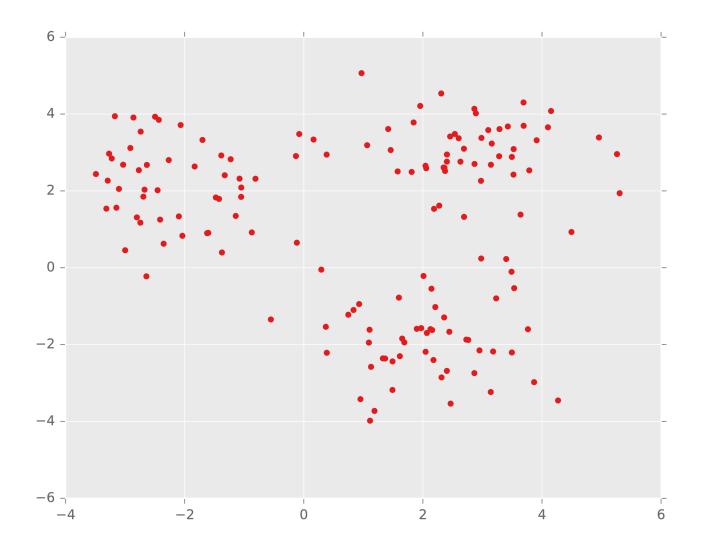


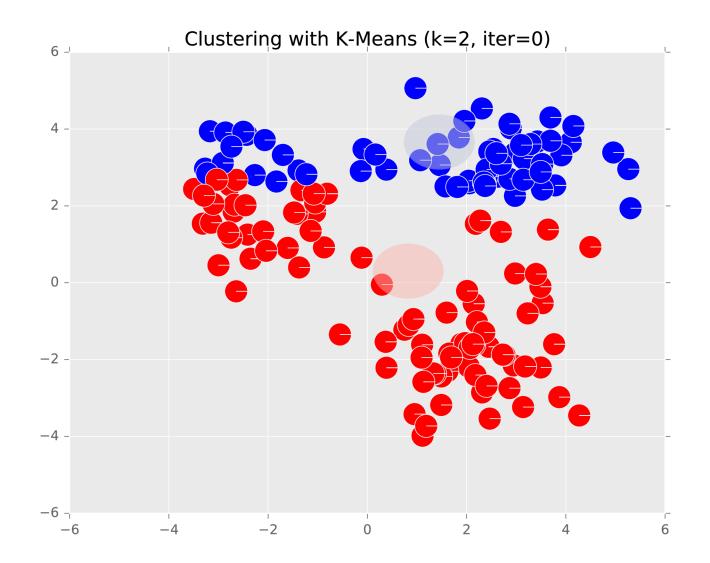
19

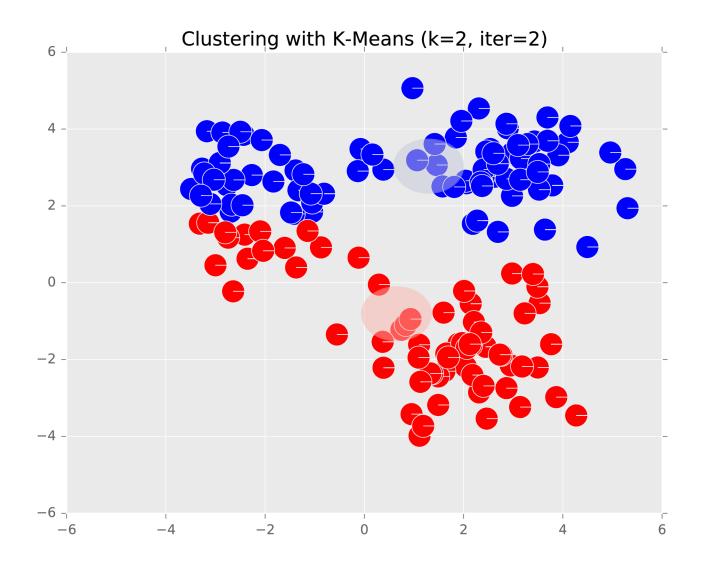


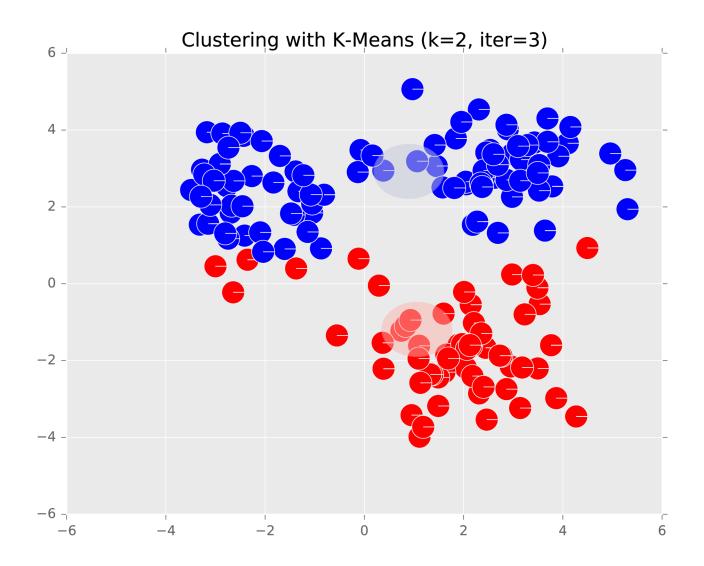


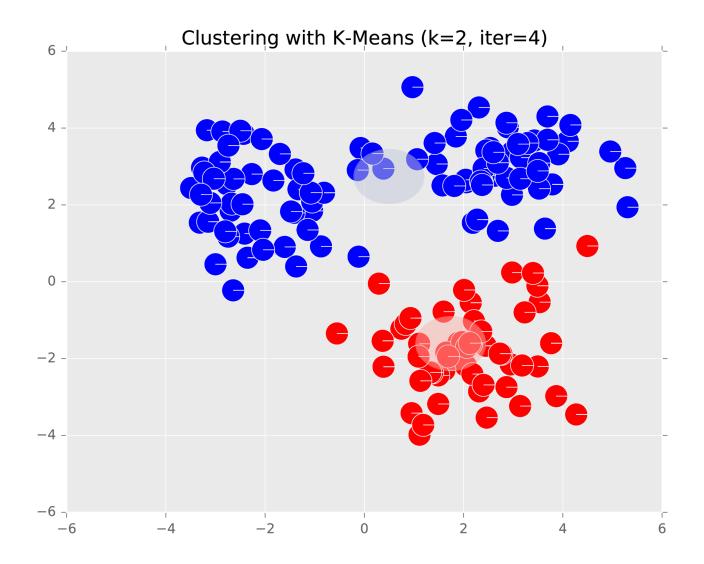
21

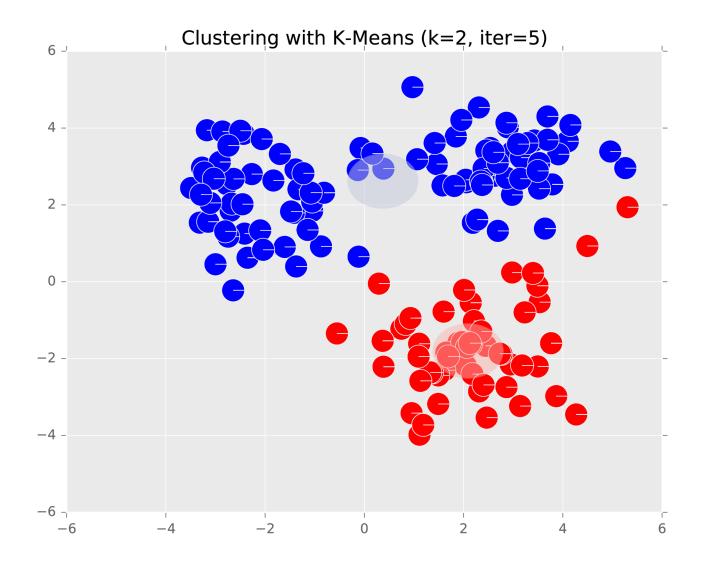


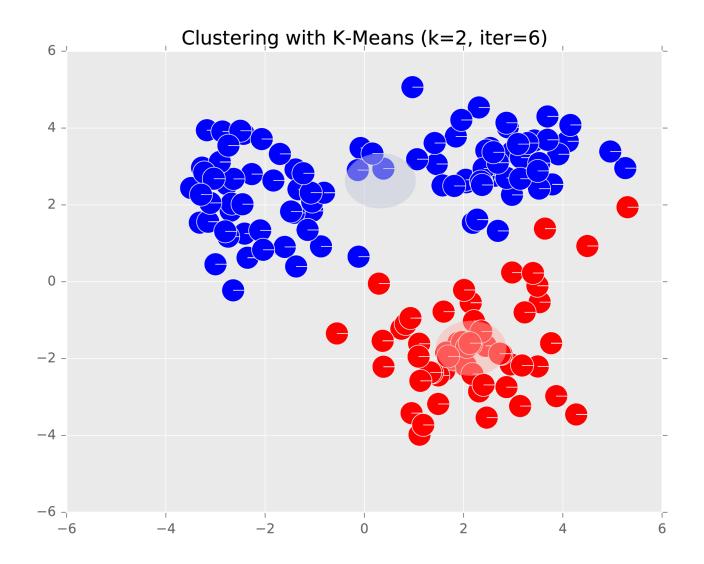


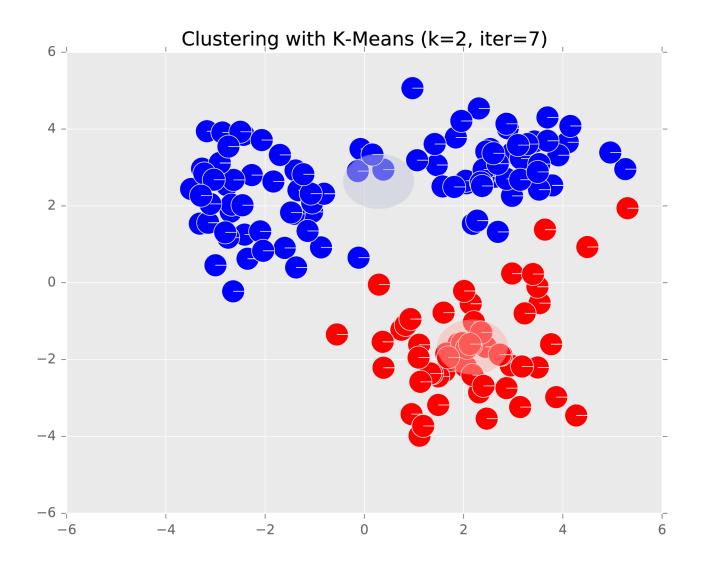












• Idea: choose the value of K that minimizes the objective function

Setting *K*

• Better Idea: look for the characteristic "elbow" or largest decrease when going from K-1 to K

• Common choice: choose *K* data points at random to be the initial cluster centers (Lloyd's method)

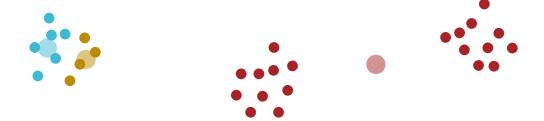
Initializing *K*-means

• Common choice: choose *K* data points at random to be the initial cluster centers (Lloyd's method)

Initializing *K*-means

• Common choice: choose *K* data points at random to be the initial cluster centers (Lloyd's method)

Initializing *K*-means



Initializing *K*-means

• Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

•

•

•

Initializing *K*-means

• Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

11/27/23 35

Initializing *K*-means

 Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

- Lloyd's method converges to a local minimum and that local minimum can be arbitrarily bad (relative to the optimal clusters)
 - This is because the *K*-means objective is nonconvex!
- Intuition: want initial cluster centers to be far apart from one another

11/27/23 **3**

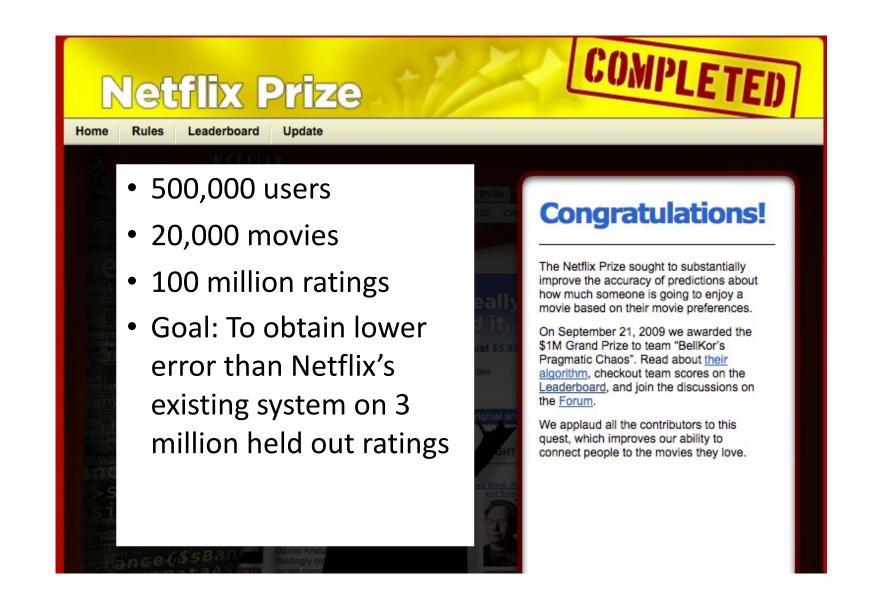
K-means++ (Arthur and Vassilvitskii, 2007)

- 1. Choose the first cluster center randomly from the data points.
- 2. For each other data point x, compute D(x), the distance between x and the nearest cluster center.
- 3. Select the next cluster center proportional to $D(x)^2$.
- 4. Repeat 2 and 3 K-1 times.
- K-means++ achieves a $O(\log K)$ approximation to the optimal clustering in expectation
- Both Lloyd's method and K-means++ can benefit from multiple random restarts.

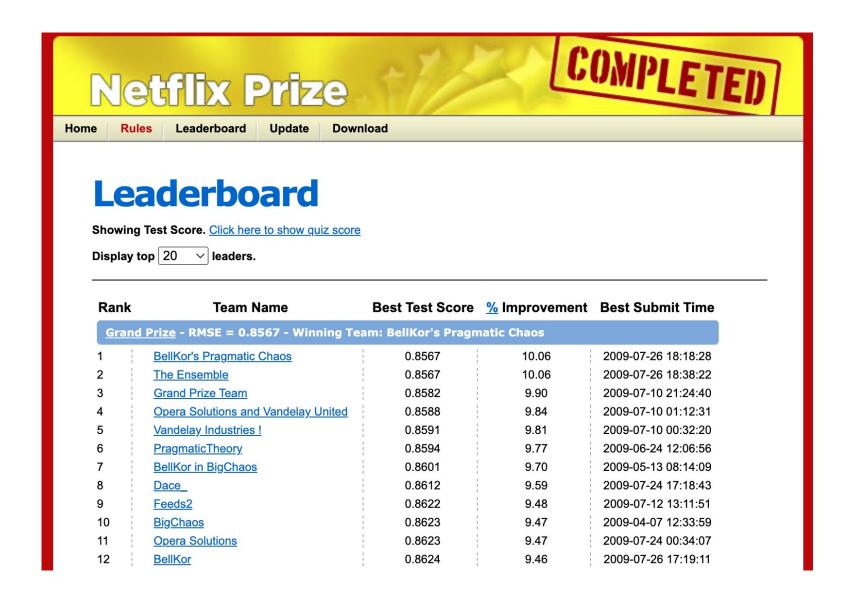
K-meansLearningObjectives

- You should be able to...
- Distinguish between coordinate descent and block coordinate descent
- 2. Define an objective function that gives rise to a "good" clustering
- 3. Apply block coordinate descent to an objective function preferring each point to be close to its nearest objective function to obtain the K-Means algorithm
- 4. Implement the K-Means algorithm
- 5. Connect the non-convexity of the K-Means objective function with the (possibly) poor performance of random initialization

The Netflix Prize



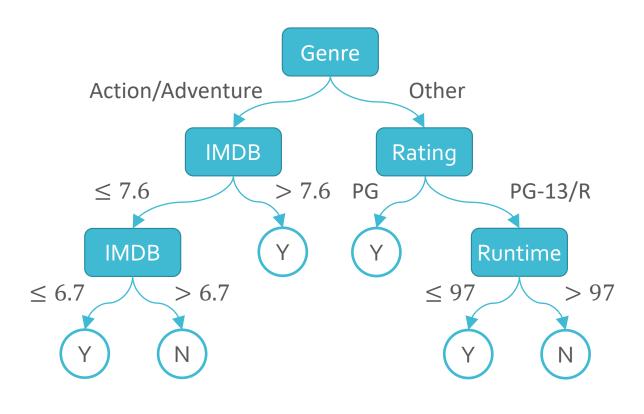
The Netflix Prize



MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Υ
2	105	Action	30M	1984	7.8	PG	Υ
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Υ
5	128	Comedy	16.4M	1989	8.1	PG	Υ
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Υ
9	90	Action	90M	2001	6.6	PG-13	Υ
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Υ
12	94	Comedy	26M	2004	7.2	PG-13	Υ
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	N
17	169	Adventure	165M	2014	8.6	PG-13	Υ
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Y
20	141	Action	275M	2019	6.5	PG-13	Υ

Movie Recommendations

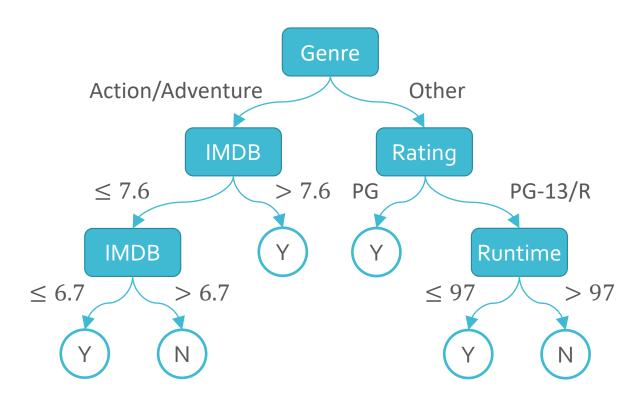
MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Υ
2	105	Action	30M	1984	7.8	PG	Υ
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Υ
5	128	Comedy	16.4M	1989	8.1	PG	Υ
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Υ
9	90	Action	90M	2001	6.6	PG-13	Υ
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Υ
12	94	Comedy	26M	2004	7.2	PG-13	Υ
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	N
17	169	Adventure	165M	2014	8.6	PG-13	Υ
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Υ
20	141	Action	275M	2019	6.5	PG-13	Υ



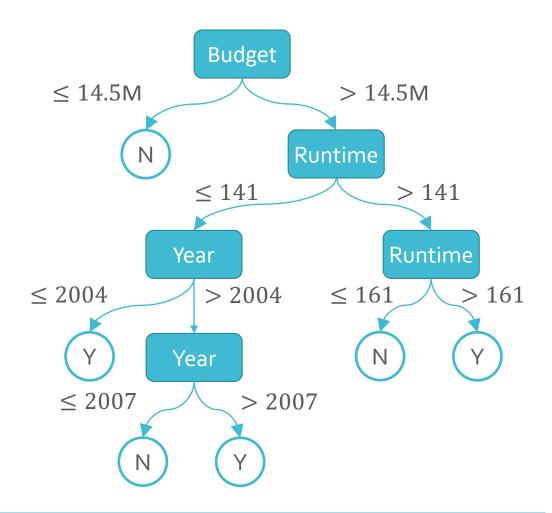
Recall: Decision Tree Pros & Cons

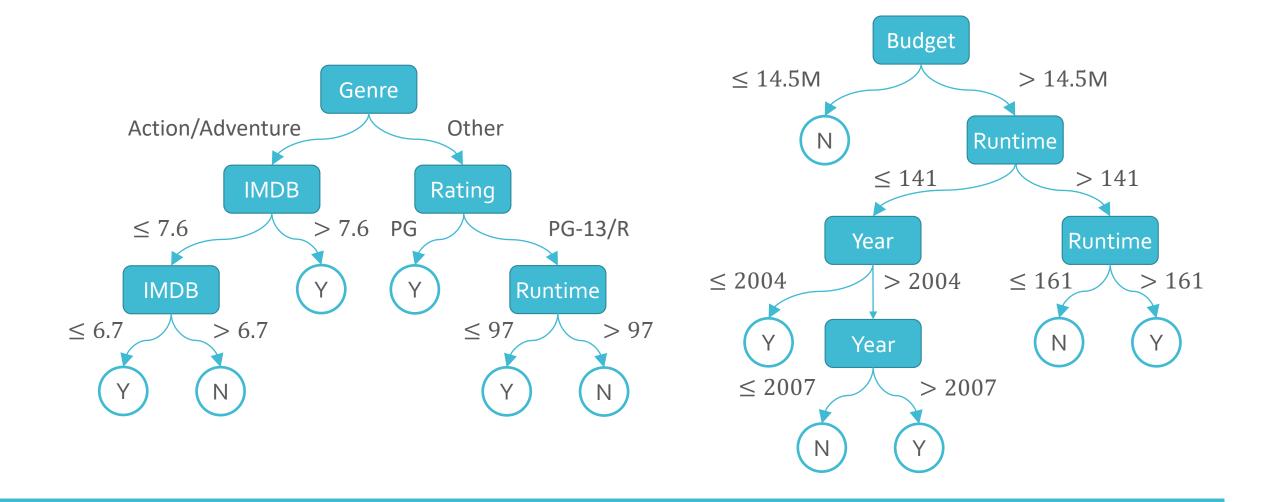
- Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons
 - Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
 - Prone to overfit
 - High variance

MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Υ
2	105	Action	30M	1984	7.8	PG	Υ
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Υ
5	128	Comedy	16.4M	1989	8.1	PG	Υ
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Υ
9	90	Action	90M	2001	6.6	PG-13	Υ
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Υ
12	94	Comedy	26M	2004	7.2	PG-13	Υ
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	N
17	169	Adventure	165M	2014	8.6	PG-13	Υ
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Υ
20	141	Action	275M	2019	6.5	PG-13	Υ



MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Υ
2	105	Action	30M	1984	7.8	PG	Υ
3	103	Comedy	6M	1986	7.8	PG-13	N
4	98	Adventure	16M	1987	8.1	PG	Υ
5	128	Comedy	16.4M	1989	8.1	PG	Υ
6	120	Comedy	11M	1992	7.6	R	N
7	120	Drama	14.5M	1996	6.7	PG-13	N
8	136	Action	115M	1999	6.5	PG	Υ
9	90	Action	90M	2001	6.6	PG-13	Υ
10	161	Adventure	100M	2002	7.4	PG	N
11	201	Action	94M	2003	8.9	PG-13	Υ
12	94	Comedy	26M	2004	7.2	PG-13	Υ
13	157	Biography	100M	2007	7.8	R	N
14	128	Action	110M	2007	7.1	PG-13	N
15	107	Drama	39M	2009	7.1	PG-13	N
16	158	Drama	61M	2012	7.6	PG-13	Y
17	169	Adventure	165M	2014	8.6	PG-13	Υ
18	100	Biography	9M	2016	6.7	R	N
19	130	Action	180M	2017	7.9	PG-13	Υ
20	141	Action	275M	2019	6.5	PG-13	Υ





11/27/23

46

Decision Trees: Pros & Cons

- Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons
 - Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
 - Prone to overfit
 - High variance
 - Can be addressed via ensembles → random forests

Random Forests

- Combines the prediction of many diverse decision trees to reduce their variability
- If B independent random variables $x^{(1)}, x^{(2)}, ..., x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B} \sum_{b=1}^{B} x^{(b)}$ is $\frac{\sigma^2}{B}$
- Random forests = sample bagging + feature bagging
 - = **b**ootstrap **agg**regat**ing** + split-feature randomization

Random Forests

- Combines the prediction of many diverse decision trees to reduce their variability
- If B independent random variables $x^{(1)}, x^{(2)}, ..., x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B}\sum_{b=1}^B x^{(b)}$ is $\frac{\sigma^2}{B}$
- Random forests = sample bagging + feature bagging
 - = bootstrap aggregating + split-feature randomization

Aggregating

- How can we combine multiple decision trees, $\{t_1, t_2, ..., t_B\}$, to arrive at a single prediction?
- Regression average the predictions:

$$\bar{t}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} t_b(\mathbf{x})$$

• Classification - plurality (or majority) vote; for binary labels encoded as $\{-1, +1\}$:

$$\bar{t}(\mathbf{x}) = \operatorname{sign}\left(\frac{1}{B} \sum_{b=1}^{B} t_b(\mathbf{x})\right)$$

Random Forests

- Combines the prediction of many diverse decision trees to reduce their variability
- If B independent random variables $x^{(1)}, x^{(2)}, ..., x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B}\sum_{b=1}^B x^{(b)}$ is $\frac{\sigma^2}{B}$
- Random forests = sample bagging + feature bagging
 - = bootstrap aggregating + split-feature randomization

Bootstrapping

- Insight: one way of generating different decision trees is by changing the training data set
- · Issue: often, we only have one fixed set of training data
- Idea: resample the data multiple times with replacement

MovielD	•••
1	•••
2	•••
3	•••
:	:
19	•••
20	•••

_	•	•	
Ira	ın	ung	data
II a		11116	uata

MovielD	•••
1	•••
1	•••
1	•••
:	:
14	•••
19	•••

Bootstrapped Sample 1

MovielD	•••	
4	•••	
4	•••	
5	•••	
•	i	
16	•••	
16	•••	
10		

Bootstrapped Sample 2

• • •

Bootstrapping

- Idea: resample the data multiple times with replacement
 - Each bootstrapped sample has the same number of data points as the original data set
 - Duplicated points cause different decision trees to focus on different parts of the input space

MovielD	•••
1	•••
2	•••
3	•••
:	÷
19	•••
20	•••

Tra	in	ing	data
		_	

MovielD	•••
1	•••
1	•••
1	•••
:	:
14	•••
19	•••

Bootstrapped Sample 1

MovielD	•••	
4	•••	
4	•••	
5	•••	
:	:	
16	•••	
16	•••	

Bootstrapped Sample 2

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

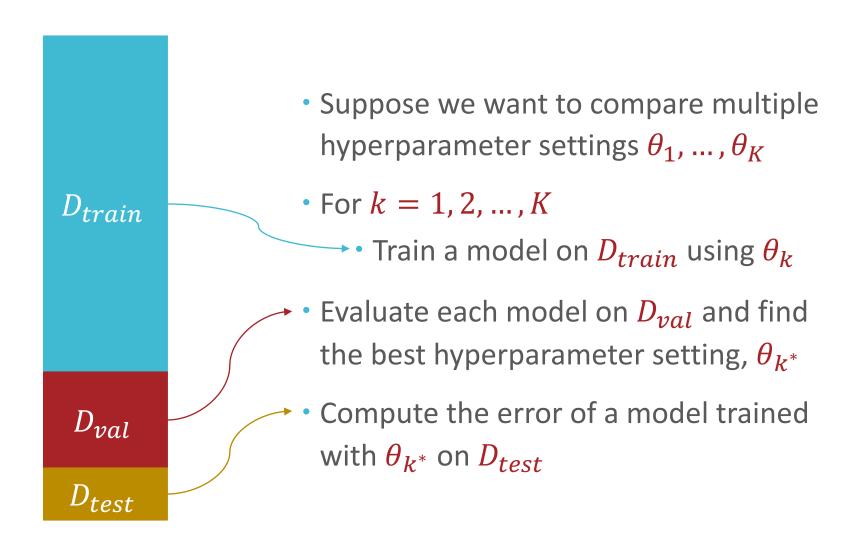
- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Random Forests

• Input:
$$\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}, B, \rho$$

- For b = 1, 2, ..., B
 - Create a dataset, \mathcal{D}_b , by sampling N points from the original training data \mathcal{D} with replacement
 - Learn a decision tree, t_b , using \mathcal{D}_b and the ID3 algorithm with split-feature randomization, sampling ρ features for each split
- Output: $\bar{t} = f(t_1, ..., t_B)$, the aggregated hypothesis

Recall: Validation Sets



Out-of-bag Error

- For each training point, $x^{(n)}$, there are some decision trees which $x^{(n)}$ was not used to train (roughly B/e trees or 37%)
 - Let these be $t^{(-n)} = \left\{ t_1^{(-n)}, t_2^{(-n)}, \dots, t_{N-n}^{(-n)} \right\}$
- Compute an aggregated prediction for each ${\it x}^{(n)}$ using the trees in $t^{(-n)}$, ${\bar t}^{(-n)}({\it x}^{(n)})$
- Compute the out-of-bag (OOB) error, e.g., for regression

$$E_{OOB} = \frac{1}{N} \sum_{n=1}^{N} (\bar{t}^{(-n)}(\mathbf{x}^{(n)}) - y^{(n)})^{2}$$

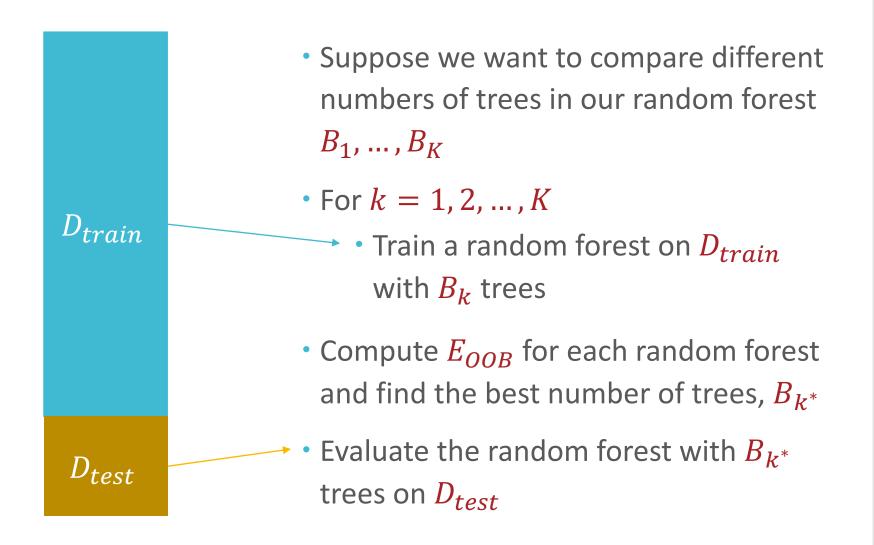
Out-of-bag Error

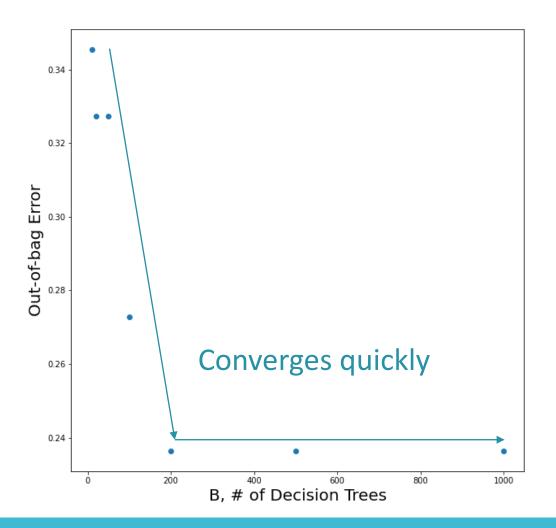
- For each training point, $\mathbf{x}^{(n)}$, there are some decision trees which $\mathbf{x}^{(n)}$ was not used to train (roughly B/e trees or 37%)
 - Let these be $t^{(-n)} = \left\{ t_1^{(-n)}, t_2^{(-n)}, \dots, t_{N-n}^{(-n)} \right\}$
- Compute an aggregated prediction for each ${\it x}^{(n)}$ using the trees in $t^{(-n)}$, ${\bar t}^{(-n)}({\it x}^{(n)})$
- Compute the out-of-bag (OOB) error, e.g., for classification

$$E_{OOB} = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(\bar{t}^{(-n)}(x^{(n)}) \neq y^{(n)})$$

• E_{OOB} can be used for hyperparameter optimization!

Out-of-bag Error







Setting Hyperparameters

Feature Importance

- Some of the interpretability of decision trees gets lost when switching to random forests
- Random forests allow for the computation of "feature importance", a way of ranking features based on how useful they are at predicting the target
- Initialize each feature's importance to zero
- Each time a feature is chosen to be split on, add the reduction in entropy (weighted by the number of data points in the split) to its importance

Feature Importance

