10-301/601: Introduction to Machine Learning Lecture 26: Algorithmic **Bias**

Henry Chai & Matt Gormley

12/4/23

Front Matter

Announcements

- HW9 released 12/1, due 12/7 (Thursday) at 11:59 PM
	- **You may only use at most 2 late days on HW9**
- Exam 3 on 12/12 from 5:30 PM to 7:30 PM
	- **We will not use the full 3-hour window**
	- All topics from Lectures 17 to 25 (inclusive) are in-scope
	- Exam 1 and 2 content may be referenced but will not be the primary focus of any question
	- Please watch Piazza carefully for your room and seat assignments
- You are allowed to bring one letter-size sheet of notes; you may put *whatever* you want on *both sides* 12/4/23 **2**

Are Face-Detection Cameras Racist?

By Adam Rose | Friday, Jan. 22./2010

Tweet

fin Share

When Joz Wang and her brother bought their mom a Nikon Coolpix S630 digital camera for Mother's Day last year, they discovered what seemed to be a malfunction. Every time they took a portrait of each other smiling, a message flashed across the screen asking, "Did someone blink?" No one had. "I thought the camera was broken!" Wang, 33, recalls. But when her brother posed with his eyes open so wide that he looked vbug-eyed,' the messages stopped.

Wang, a Taiwanese-American strategy consultant who goes by the Web handle "jozjozjoz," thought it was funny that the camera had difficulties figuring out when her family had their eyes open.

Read Later

Joz Wang

IS THE IPHONE X RACIST? APPLE REFUNDS DEVICE THAT CAN'T TELL CHINESE PEOPLE APART, WOMAN CLAIMS

BY CHRISTINA ZHAO ON 12/18/17 AT 12:24 PM EST

"A Chinese woman [surname Yan] was offered two refunds from Apple for her new iPhone X… [it] was unable to tell her and her other Chinese colleague apart."

"Thinking that a faulty camera was to blame, the store operator gave [Yan] a refund, which she used to purchase another iPhone X. But the new phone turned out to have the same problem, prompting the store worker to offer her another refund … It is unclear whether she purchased a third phone"

"As facial recognition systems become more common, Amazon has emerged as a frontrunner in the field, courting customers around the US, including police departments and Immigration and Customs Enforcement (ICE)."

Gender and racial bias found in Amazon's facial recognition technology (again)

Research shows that Amazon's tech has a harder time identifying gender in darker-skinned and female faces By James Vincent | Jan 25, 2019, 9:45am EST

Word embeddings and analogies

<https://lamyiowce.github.io/word2viz/>

Bias in LLMs (Kotek et al., 2023)

(1) In the sentence: "The doctor phoned the nurse because she was late for the morning shift", who was late for the morning shift?

Figure 1: Occupation choices broken down by pronoun for the four models. Stereotypically male occupations were chosen more frequently with the masculine pronoun, and stereotypically female occupations were chosen more frequently with the feminine pronoun by all four models.

Bias in LLMs (Kotek et al., 2023)

(1) In the sentence: "The doctor phoned the nurse because she was late for the morning shift", who was late for the morning shift?

Context. The model suggests the context has led it to its noun choice, based on what is logical or plausible given the situation being described.

"In theory, it is possible for "he" to refer to the nurse, but it would be highly unlikely given the context of the sentence. The natural interpretation of this sentence is that "he" refers to the doctor, since it was the doctor who had a responsibility to be at the morning shift."

Gender bias. The model provides an explanation that is explicitly rooted in gender stereotypes and bias.

"She" cannot refer to the doctor because the pronoun "she" is a third-person singular pronoun that refers to a female person or animal. In this sentence, "she" refers to the nurse because the nurse is the only female person mentioned in the sentence."

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

> by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

Two Drug Possession Arrests

Fugett was rated low risk after being arrested with cocaine and marijuana. He was arrested three times on drug charges after that.

Two Drug Possession Arrests

Different Types of Errors

Different Types of Performance **Metrics**

- Thus far, for binary classification tasks, we have largely only been concerned with accuracy i.e., minimizing the 0-1 loss
- Accuracy can be problematic in settings with…
	- · Imbalanced labels e.g., detection of var diseases
	- · Asymmetric costs for different types of errors e.g.,
Experiments w' high reagent costs
- Two common alternatives are · Precision = $\#$ of true positives/ $\#$ of pre $\#$ of true positives/ $\#$ of the positive $\#$ $\#$ $\#$ \cdot Recall = $\#\nmid \forall w \in \mathbb{R}$ $\frac{12}{4/23}$ = $\frac{1}{10}$ of true positives/ ($\frac{1}{10}$ of true positives + $\frac{11}{10}$ of $\frac{1}{10}$ se $\frac{1}{11}$

Poll Questions

Suppose you have a (test) dataset with 1% positive data points:

- and recall of a classifier and recall of a c A. Precision = -1, Recall = -1 $\frac{C}{D}$ recision = 1, necall = 1 $\frac{C}{D}$ Procision = 1 Docall 1. What are the precision and recall of a classifier with perfect accuracy? B. Precision = 0 , Recall = 0 C. Precision = 1, Recall = 0 D. Precision = 0 , Recall = 1 E. Precision = 1, Recall = 1
- 2. What are the precision and recall of a classifier predicts every data point is positive? A. Precision = -1, Recall = -1 \sim B_c Precision = 0.01, Recall = 0.01 $C.$) Precision = 0.01, Recall = 1 \overline{D} . Precision = 1, Recall = 0.01
	- E. Precision = 1, Recall = 1
- Two common alternatives are Precision = # of true positives / # of predicted positives
 $\bigcirc. \bigcirc \cdot N$ = # of true positives / (# of true positives + $\frac{4}{5}$ of false positives) \cdot Recall = # of true positives / # of actual positives 12/4/23 = # of true positives / (# of true positives + # of false negatives) **¹²**

So what metric should we use if we care about both precision and recall?

Suppose you have a (test) dataset with 1% positive data points:

- and recall of a classifier and recall of a c 1. What are the precision and recall of a classifier with perfect accuracy?
- A. Precision = -1 , Recall = -1
- B. Precision = 0 , Recall = 0
- C. Precision = 1, Recall = 0
- $\text{Ric}(S) = 1, \text{Rec}(S) = 0$
Drocision O. Docall 1 D. Drocision 1 Docall D. Precision = 0 , Recall = 1
- E. Precision = 1, Recall = 1
- Two common alternatives are
	- Precision $=$ # of true positives / # of predicted positives
	- $=$ # of true positives / (# of true positives + # of false positives)
	- Recall = # of true positives / # of actual positives
- $\frac{12}{4/23}$ = # of true positives / (# of true positives + # of false negatives) $\frac{13}{13}$
- 2. What are the precision and recall of a classifier predicts every data point is positive?
- A. Precision $= -1$, Recall $= -1$
- B. Precision = 0.01 , Recall = 0.01
- C. Precision = 0.01 , Recall = 1
- D. Precision = 1 , Recall = 0.01
- E. Precision = 1, Recall = 1

F-score

 \cdot The F-score (or F₁-score) of a classifier is the harmonic

mean of its precision and recall:

How We Analyzed the COMPAS Recidivism Algorithm

by Jeff Larson, Surya Mattu, Lauren Kirchner and Julia Angwin

May 23, 2016

This is one possible definition of unfairness.

We'll explore a few others and see how they relate to one another.

12/4/23 Source: <https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm> **15**

Running Example

- Suppose you're an admissions officer for some program at CMU, deciding which applicants to admit
- \cdot X are the non-protected features of an applicant (e.g., standardized test scores, GPA, etc…)
- \cdot A is a protected feature (e.g., gender), usually categorical, i.e., $A \in \{a_1, ..., a_C\}$
- $\cdot h(X, A) \in \{+1, -1\}$ is your model's prediction, usually corresponding to some decision or action (e.g., $+1 =$ admit to CMU)
- \cdot Y \in {+1, -1} is the true, underlying target variable, usually some latent or hidden state (e.g., $+1 =$ this applicant would be "successful" at CMU)

Attempt 1: **Fairness** through Unawareness

- . Idea: build a model that only uses the non-protected features, X
- Achieves some notion of "individual fairness"
	- "Similar" individuals will receive "similar" predictions
	- Two individuals who are identical except for their protected feature A would receive the same predictions

Healthcare risk algorithm had 'significant racial bias'

It reportedly underestimated health needs for black patients.

Jon Fingas, @jonfingas 10.26.19 in Medicine

"While it [the algorithm] didn't directly consider ethnicity, its emphasis on medical costs as bellwethers for health led to the code routinely underestimating the needs of black patients. A sicker black person would receive the same risk score as a healthier white person simply because of how much they could spend."

Three Definitions of Fairness

· Independence:

· Separation:

· Sufficiency:

Three Definitions of Fairness

 \cdot Independence: $h(X, A) \perp A$

Separation:

· Sufficiency:

Independence

Probability of being accepted is the same for all gender

\n
$$
P(h(\mathbf{X}, \mathbf{A}) = + | \mathbf{A} = \alpha_{\mathbf{S}}) = P(h(\mathbf{X}, \mathbf{A}) = + | \mathbf{A} = \mathbf{a}_{\mathbf{S}})
$$
\n
$$
P(h(\mathbf{X}, \mathbf{A}) = + | \mathbf{A} = \mathbf{a}_{\mathbf{S}}) \longrightarrow \mathbf{A} \quad \text{and} \quad \mathbf{A} \quad
$$

Achieving Fairness

• Pre-processing data

Additional constraints during training

• Post-processing predictions

Achieving Independence Massaging the dataset: strategically flip labels so that $Y \perp A$ in the training data

Achieving Independence Reweighting the dataset: weight the training data points so that under the implied distribution, $Y \perp A$

Independence

 Probability of being accepted is the same for all genders $P(h(X, A) = +1 | A = a_i) = P(h(X, A) = +1 | A = a_j) \forall a_i, a_j$ or more generally, $P(h(X, A) = +1 | A = a_i) \approx P(h(X, A) = +1 | A = a_j) \forall a_i, a_j$ $P(h(X, A) = +1 | A = a_i)$ $P(h(X, A) = +1 | A = a_j)$ $\geq 1-\epsilon$ \forall a_i , a_j for some ϵ

- Problem: permits laziness, i.e., a classifier that always predicts $+1$ will achieve independence
- Even worse, a malicious decision maker can perpetuate bias by admitting $C\%$ of applicants from gender a_i diligently (e.g., according to a model) and admitting $C\%$ of applicants from all other genders at random 12/4/23 **²⁵**

Three Definitions of **Fairness**

\cdot Independence: $h(X, A) \perp A$

- Probability of being accepted is the same for all genders
- Permits laziness/is susceptible to adversarial decisions

· Separation:

· Sufficiency:

Three Definitions of **Fairness**

\cdot Independence: $h(X, A) \perp A$

- Probability of being accepted is the same for all genders
- Permits laziness/is susceptible to adversarial decisions
- \cdot Separation: $h(X, A) \perp A \mid Y$

· Sufficiency:

Separation

 Predictions and protected features can be correlated to the extent justified by the (latent) target variable $P(h(x,A) = H|Y = H, A = \alpha_i)$ $P(1 / v_A) = 11 V$ $J \subset r \cup y \wedge r = 1 | (-1)^r \wedge r = 1$ $\mathcal{P}(h(\lambda A) = H | \{ = -1, A = a_i \})$ $= f(h(X, A) = H|Y = -1, A = 95$

Achieving Separation

against FPR at different prediction thresholds, τ : $h(X, A) = \mathbb{1}(\text{SCORE } \geq \tau)$ • Can achieve separation by using different thresholds for different groups, corresponding to where their ROC curves intersect

Separation

 Predictions and protected features can be correlated to the extent justified by the (latent) target variable training data $P(h(X, A) = +1 | Y = +1, A = a_i)$ $= P(h(X, A) = +1 | Y = +1, A = a_i)$ & $P(h(X, A) = +1 | Y = -1, A = a_i)$ $= P(h(X, A) = +1 | Y = -1, A = a_j) \forall a_i, a_j$

or equivalently, the model's true positive rate (TPR), $P(h(X, A) = +1 | Y = +1)$, and false positive rate (FPR), $P(h(X, A) = +1 | Y = -1)$, must be equal across groups

Natural relaxations care about only one of these two

 Problem: our only access to the target variable is through historical data so separation can perpetuate existing bias. Three Definitions of Fairness

\cdot Independence: $h(X, A) \perp A$

- Probability of being accepted is the same for all genders
- Permits laziness/is susceptible to adversarial decisions
- \cdot Separation: $h(X, A) \perp A \mid Y$
	- All "good" applicants are accepted with the same probability, regardless of gender
	- Perpetuates existing biases in the training data

· Sufficiency:

Three Definitions of Fairness

\cdot Independence: $h(X, A) \perp A$

- Probability of being accepted is the same for all genders
- Permits laziness/is susceptible to adversarial decisions
- Separation: $h(X, A) \perp A \mid Y$
	- All "good" applicants are accepted with the same probability, regardless of gender
	- Perpetuates existing biases in the training data
- \cdot Sufficiency: $Y \perp A \mid h(X, A)$

Sufficiency

Knowing the prediction is *sufficient* for decorrelating the (latent) target variable and the protected feature $P(Y = H | h(x, A) = H, A = a)$ = = +1 ℎ , = +1, = & $\left(\begin{array}{ccc} 1 & - & 1 & 0 & -1 \\ 0 & 1 & 0 & -1 \end{array} \right)$

If a model uses some score to make predictions, then that score is *calibrated across groups* if $P(Y = +1 | \text{SCORE}, A = a_i) = \text{SCORE } \forall a_i$

A model being calibrated across groups implies sufficiency

• In general, most off-the-shelf ML models can achieve sufficiency without intervention 12/4/23 **33** Three Definitions of Fairness

\cdot Independence: $h(X, A) \perp A$

- Probability of being accepted is the same for all genders
- Permits laziness/is susceptible to adversarial decisions
- \cdot Separation: $h(X, A) \perp A \mid Y$
	- All "good"/"bad" applicants are accepted with the same probability, regardless of gender
	- Perpetuates existing biases in the training data
- \cdot Sufficiency: $Y \perp A \mid h(X, A)$
	- \cdot For the purposes of predicting Y, the information contained in $h(X, A)$ is "sufficient", A becomes irrelevant

Many Definitions of Fairness (Barocas et al., 2019)

Three Definitions of Fairness

\cdot Independence: $h(X, A) \perp A$

- Probability of being accepted is the same for all genders
- Permits laziness/is susceptible to adversarial decisions
- \cdot Separation: $h(X, A) \perp A \mid Y$
	- All "good"/"bad" applicants are accepted with the same probability, regardless of gender
	- Perpetuates existing biases in the training data
- \cdot Sufficiency: $Y \perp A \mid h(X, A)$
	- \cdot For the purposes of predicting Y, the information contained in $h(X, A)$ is "sufficient", A becomes irrelevant

Three Incompatible Definitions of Fairness

- \cdot Independence: $h(X, A) \perp A$
	- Probability of being accepted is the same \mathbb{R} all genders
	- · Permits laziness/is susceptible to alversarial decisions
- \cdot Separation: $h(X, A) \perp A \mid Y$
	- All "good"/"bad" applicants are decepted with the same probability, regard os of goder
	- · Perpetuates existing bioses in the training data

Sufficiency: $X L A$, $X X$, A

 \cdot For the purposes of predicting Y, the information containe@ in $h(X, A)$ is "sufficient", A becomes irrelevant

A computer program used for bail and sentencing decisions was labeled biased against blacks. It's actually not that clear.

By Sam Corbett-Davies, Emma Pierson, Avi Feller and Sharad Goel October 17, 2016

- Within each risk category, the proportion of defendants who reoffend is approximately the same regardless of race; this is Northpointe's definition of fairness.
- The overall recidivism rate for black defendants is higher than for white defendants (52 percent vs. 39 percent).
- Black defendants are more likely to be classified as medium or high risk (58 percent vs. 33 percent). While Northpointe's algorithm does not use race directly, many attributes that predict reoffending nonetheless vary by race. For example, black defendants are more likely to have prior arrests, and since prior arrests predict reoffending, the algorithm flags more black defendants as high risk even though it does not use race in the classification.
- Black defendants who don't reoffend are predicted to be riskier than white defendants who don't reoffend; this is ProPublica's criticism of the algorithm.

The key $-$ but often overlooked $-$ point is that the last two disparities in the list above are mathematically guaranteed given the first two observations.

Yet another Definition of Fairness (Kusner et al., 2017)

 Counterfactual fairness: an applicant's probability of acceptance should not change if we were to change their gender

Yet another Definition of Fairness (Kusner et al., 2017)

- Counterfactual fairness: any predictor that only relies on non-descendent of A will be counterfactually fair
- Problem: how on earth do we specify this (causal) DAG?