
10-301/601: Introduction
to Machine Learning
Lecture 3 – Decision
Trees
Henry Chai & Matt Gormley

9/6/23

Front Matter

 Announcements:

 HW1 released 9/1, due 9/6 (today!) at 11:59 PM

 Reminder: we will grant (basically) any extension

requests for this assignment!

 HW2 released 9/6 (today!), due 9/15 at 11:59 PM

 Unlike HW1, you will only have:

 1 submission for the written portion

 10 submissions of the programming portion to

our autograder

9/6/23

Q & A:

How do these
in-class polls
work?

 Open the poll, either by clicking the [Poll] link on the

schedule page of our course website or going to

http://poll.mlcourse.org

 Sign into Google Forms using your Andrew email

 Answer all poll questions during lecture for full credit

or within 24 hours for half credit

 Avoid the toxic option (will be clearly specified in

lecture) which gives negative poll points

 You have 8 free “poll points” for the semester that will

excuse you from all polls from a single lecture; you

cannot use more than 3 poll points consecutively.
9/6/23

http://poll.mlcourse.org/

Poll Question 1:

Which of the
following did
you bring to
class today?
Select all that
apply

A. A smartphone

B. A flip phone

C. A payphone (TOXIC)

D. No phone

9/6/23

Background:
Recursion

 A binary search tree (BST) consists of nodes, where each node:

 has a value, v

 up to 2 children, a left descendant and a right descendant

 all its left descendants have values less than v and its right
descendants have values greater than v

 We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree

def contains_iterative(node, key):

 cur = node

 while true:

 if key < cur.value & cur.left != null:

 cur = cur.left

 else if cur.value < key & cur.right != null:

 cur = cur.right

 else:

 break

 return key == cur.value

7

3

61

9

15

1611

9/6/23

Background:
Recursion

 A binary search tree (BST) consists of nodes, where each node:

 has a value, v

 up to 2 children, a left descendant and a right descendant

 all its left descendants have values less than v and its right
descendants have values greater than v

 We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree

7

3

61

9

15

1611

def contains_recursive(node, key):

 if key < node.value & node.left != null:

 return contains(node.left, key)

 else if node.value < key & node.right != null:

 return contains(node.right, key)

 else:

 return key == node.value

9/6/23

Recall:
Decision
Stumps

Algorithm 3: based on a single feature, 𝑥𝑑, predict the most
common label in the training dataset among all data points
that have the same value for 𝑥𝑑

𝑦 𝑥1 𝑥2 𝑥3 𝑥4

predictions allergic? hives? sneezing? red eye? has cat?

− − Y N N N

+ − N Y N N

+ + Y Y N N

− − Y N Y Y

+ + N Y Y N

Example
decision stump:
h(x) = + if sneezing = Y
 - otherwise

Nonzero training error, but
perhaps still better than the

memorizer
9/6/23

But why would
we only use
just one
feature?

Algorithm 3: based on a single feature, 𝑥𝑑, predict the most
common label in the training dataset among all data points
that have the same value for 𝑥𝑑

𝑦 𝑥1 𝑥2 𝑥3 𝑥4

predictions allergic? hives? sneezing? red eye? has cat?

− − Y N N N

+ − N Y N N

+ + Y Y N N

− − Y N Y Y

+ + N Y Y N

Example
decision stump:
h(x) = + if sneezing = Y
 - otherwise

Nonzero training error, but
perhaps still better than the

memorizer
9/6/23

From
Decision
Stump
…

9/6/23

𝑥2

−

N Y

+

𝑦 𝑥1 𝑥2 𝑥3 𝑥4

allergic? hives? sneezing? red eye? has cat?

− Y N N N

− N Y N N

+ Y Y N N

− Y N Y Y

+ N Y Y N

From
Decision
Stump
to
Decision
Tree

9/6/23

𝑦 𝑥1 𝑥2 𝑥3 𝑥4

allergic? hives? sneezing? red eye? has cat?

− Y N N N

− N Y N N

+ Y Y N N

− Y N Y Y

+ N Y Y N

Decision
Tree:
Pseudocode

9/6/23

def ℎ(𝒙′):

 - walk from root node to a leaf node

 while(true):

 if current node is internal (non-leaf):

 check the associated attribute, 𝑥𝑑

 go down branch according to 𝑥𝑑
′

 if current node is a leaf node:

 return label stored at that leaf

Decision
Tree:
Example

9/6/23

16

Decision Trees
Suppose X = <X1,… Xn>

where Xi are boolean-valued variables

How would you represent Y = X2 X5 ? Y = X2 Ú X5

How would you represent X2 X5 Ú X3X4(ØX1)

16

Decision Trees
Suppose X = <X1,… Xn>

where Xi are boolean-valued variables

How would you represent Y = X2 X5 ? Y = X2 Ú X5

How would you represent X2 X5 Ú X3X4(ØX1)

Figure courtesy of Tom Mitchell

Decision Tree
Questions

1. How can we pick which feature to split on?

2. How do we pick the order of the splits?

9/6/23

Splitting
Criterion

 A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a

specified dataset

 Idea: when deciding which feature to split on, use the

one that optimizes the splitting criterion

 Potential splitting criteria:

 Training error rate (minimize)

 Gini impurity (minimize) → CART algorithm

 Mutual information (maximize) → ID3 algorithm

9/6/23

Training
Error Rate
as a
Splitting
Criterion

9/6/23

𝑥1

𝑥1

Family History
𝑥2

Resting Blood Pressure
𝑥3

Cholesterol
𝑦

Heart Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

“Yes” “No”

𝑥2

“High”

𝑥3

“Abnormal” “Normal”

Training error
rate:

Training error
rate:

Training error
rate:

“Med.”
“Low”

𝑥1 𝑥2 𝑦

1 0 0

1 0 0

1 0 1

1 0 1

1 1 1

1 1 1

1 1 1

1 1 1

A. 𝑥1

B. 𝑥2

C. Either 𝑥1 or 𝑥2

D. Neither 𝑥1 nor 𝑥2 (TOXIC)

9/6/23

Poll Question 2:

Which feature
would you split
on using
training error
rate as the
splitting
criterion?

𝑥1 𝑥2 𝑦

1 0 0

1 0 0

1 0 1

1 0 1

1 1 1

1 1 1

1 1 1

1 1 1

9/6/23

Poll Question 2:

Which feature
would you split
on using
training error
rate as the
splitting
criterion?

𝑥1

0 1

0 1

Training error rate: Τ2 8

𝑥2

0 1

0 1

Splitting
Criterion

 A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a

specified dataset

 Idea: when deciding which feature to split on, use the

one that optimizes the splitting criterion

 Potential splitting criteria:

 Training error rate (minimize)

 Gini impurity (minimize) → CART algorithm

 Mutual information (maximize) → ID3 algorithm

9/6/23

Splitting
Criterion

 A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a

specified dataset

 Idea: when deciding which feature to split on, use the

one that optimizes the splitting criterion

 Potential splitting criteria:

 Training error rate (minimize)

 Gini impurity (minimize) → CART algorithm

 Mutual information (maximize) → ID3 algorithm

9/6/23

Entropy

9/6/23

 The entropy of a random variable describes the

uncertainty of its outcome: the higher the entropy, the

less certain we are about what the outcome will be.

where 𝑋 is a (discrete) random variable

 𝑉 𝑋 is the set of possible values 𝑋 can take on

 𝑆𝑣 is the collection of elements in 𝑆 with value 𝑣

 If all the elements in 𝑆 are the same, then

H 𝑆 = −1 log2 1 = 0

Entropy

9/6/23

 The entropy of a set describes how uniform or pure it is:

the higher the entropy, the more impure or “mixed-up”

the set is

where 𝑆 is a collection of values,

 𝑉 𝑆 is the set of unique values in 𝑆

 𝑆𝑣 is the collection of elements in 𝑆 with value 𝑣

 If all the elements in 𝑆 are the same, then

H 𝑆 = −1 log2 1 = 0

Entropy

9/6/23

 The entropy of a set describes how uniform or pure it is:

the higher the entropy, the more impure or “mixed-up”

the set is

where 𝑆 is a collection of values,

 𝑉 𝑆 is the set of unique values in 𝑆

 𝑆𝑣 is the collection of elements in 𝑆 with value 𝑣

 If 𝑆 is split fifty-fifty between two values, then

 The mutual information between two random variables

describes how much clarity knowing the value of one random

variables provides about the other

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻 𝑌 𝑋

where 𝑋 and 𝑌 are random variables

 𝑉 𝑋 is the set of possible values 𝑋 can take on

 𝐻 𝑌 𝑋 = 𝑣 is the conditional entropy of 𝑌 given 𝑋 = 𝑣

Mutual
Information

9/6/23

Mutual
Information

9/6/23

 The mutual information between a feature and the label

describes how much clarity knowing the feature provides

about the label

𝐼 𝑦; 𝑥𝑑 = 𝐻 𝑦 − 𝐻 𝑦 𝑥𝑑

where 𝑥𝑑 is a feature and 𝑦 is the set of all labels

 𝑉 𝑥𝑑 is the set of possible values 𝑥𝑑 can take on

 𝑓𝑣 is the fraction of data points where 𝑥𝑑 = 𝑣

 𝑌𝑥𝑑=𝑣 is the set of all labels where 𝑥𝑑 = 𝑣

Mutual
Information:
Example

𝑥𝑑 𝑦

1 1

1 1

0 0

0 0

9/6/23

Mutual
Information:
Example

𝑥𝑑 𝑦

1 1

0 1

1 0

0 0

9/6/23

𝑥1 𝑥2 𝑦

1 0 0

1 0 0

1 0 1

1 0 1

1 1 1

1 1 1

1 1 1

1 1 1

9/6/23

Poll Question 3:

Which feature
would you split
on using mutual
information as
the splitting
criterion?

A. 𝑥1

B. 𝑥2

C. Either 𝑥1 or 𝑥2

D. Neither 𝑥1 nor 𝑥2 (TOXIC)

𝑥1 𝑥2 𝑦

1 0 0

1 0 0

1 0 1

1 0 1

1 1 1

1 1 1

1 1 1

1 1 1

9/6/23

Poll Question 3:

Which feature
would you split
on using mutual
information as
the splitting
criterion?

𝑥1

0 1

0 1

𝑥2

0 1

0 1

Mutual Information: 0

Mutual Information: 𝐻 𝑌 −
1

2
𝐻 𝑌𝑥2=0 −

1

2
𝐻 𝑌𝑥2=1

𝑥1 𝑥2 𝑦

1 0 0

1 0 0

1 0 1

1 0 1

1 1 1

1 1 1

1 1 1

1 1 1

9/6/23

Poll Question 3:

Which feature
would you split
on using mutual
information as
the splitting
criterion?

𝑥1

0 1

0 1

𝑥2

0 1

0 1

Mutual Information: 0

Mutual Information: −
2

8
log2

2

8
−

6

8
log2

6

8
−

1

2
1 −

1

2
0 ≈ 0.31

Decision Tree
Questions

1. How can we pick which feature to split on?

2. How do we pick the order of the splits?

9/6/23

Decision
Tree:
Pseudocode

9/6/23

def train(𝒟):

 store root = tree_recurse(𝒟)

def tree_recurse(𝒟′):

 q = new node()

 base case – if (SOME CONDITION):

 recursion – else:

 find best attribute to split on, 𝑥𝑑

 q.split = 𝑥𝑑

 for 𝑣 in 𝑉 𝑥𝑑 , all possible values of 𝑥𝑑:

 𝒟𝑣 = 𝑥 𝑛 , 𝑦 𝑛 ∈ 𝒟 | 𝑥𝑑
𝑛 = 𝑣

 q.children(𝑣) = tree_recurse(𝒟𝑣)

 return q

Decision
Tree:
Pseudocode

9/6/23

def train(𝒟):

 store root = tree_recurse(𝒟)

def tree_recurse(𝒟′):

 q = new node()

 base case – if (𝒟′ is empty OR

 all labels in 𝒟′ are the same OR

 all features in 𝒟′ are identical OR

 some other stopping criterion):

 q.label = majority_vote(𝒟′)

 recursion – else:

 return q

	Slide 1: 10-301/601: Introduction to Machine Learning Lecture 3 – Decision Trees
	Slide 2: Front Matter
	Slide 3: Q & A: How do these in-class polls work?
	Slide 4: Poll Question 1: Which of the following did you bring to class today? Select all that apply
	Slide 5: Background: Recursion
	Slide 6: Background: Recursion
	Slide 7: Recall: Decision Stumps
	Slide 8: But why would we only use just one feature?
	Slide 9: From Decision Stump …
	Slide 10: From Decision Stump to Decision Tree
	Slide 11: Decision Tree: Pseudocode
	Slide 12: Decision Tree: Example
	Slide 13: Decision Tree Questions
	Slide 14: Splitting Criterion
	Slide 15: Training Error Rate as a Splitting Criterion
	Slide 16: Poll Question 2: Which feature would you split on using training error rate as the splitting criterion?
	Slide 17: Poll Question 2: Which feature would you split on using training error rate as the splitting criterion?
	Slide 18: Splitting Criterion
	Slide 19: Splitting Criterion
	Slide 20: Entropy
	Slide 21: Entropy
	Slide 22: Entropy
	Slide 23: Mutual Information
	Slide 24: Mutual Information
	Slide 25: Mutual Information: Example
	Slide 26: Mutual Information: Example
	Slide 27: Poll Question 3: Which feature would you split on using mutual information as the splitting criterion?
	Slide 28: Poll Question 3: Which feature would you split on using mutual information as the splitting criterion?
	Slide 29: Poll Question 3: Which feature would you split on using mutual information as the splitting criterion?
	Slide 30: Decision Tree Questions
	Slide 31: Decision Tree: Pseudocode
	Slide 32: Decision Tree: Pseudocode

