10-301/601: Introduction
to Machine Learning
Lecture 3 — Decision
Trees

Henry Chai & Matt Gormley
9/6/23

Front Matter

9/6/23

* Announcements:

* HW1 released 9/1, due 9/6 (today!) at 11:59 PM

* Reminder: we will grant (basically) any extension

requests for this assignment!
* HW2 released 9/6 (today!), due 9/15 at 11:59 PM
* Unlike HW1, you will only have:
* 1 submission for the written portion

* 10 submissions of the programming portion to

our autograder

Q&A:

How do these
in-class polls
work?

9/6/23

* Open the poll, either by clicking the [Poll] link on the

schedule page of our course website or going to

http://poll.mlcourse.org

- Sign into Google Forms using your Andrew email

- Answer all poll questions during lecture for full credit

or within 24 hours for half credit

* Avoid the toxic option (will be clearly specified in

lecture) which gives negative poll points

* You have 8 free “poll points” for the semester that will

excuse you from all polls from a single lecture; you

cannot use more than 3 poll points consecutively.

http://poll.mlcourse.org/

Poll Question 1:

Which of the
following did

you bring to
class today?
Select all that

apply

9/6/23

. A smartphone
. Aflip phone
. A payphone

. No phone

* A binary search tree (BST) consists of nodes, where each node:
* has a value, v

* up to 2 children, a left descendant and a right descendant

Background:
Recursion

- all its left descendants have values less than v and its right
descendants have values greater than v

* We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree

def contains iterative(node, key):
cur = node
while true:

if key < cur.value & cur.left != null:
cur = cur.left

else if cur.value < key & cur.right != null:
cur = cur.right

else:
break

9/6/23 return key == cur.value

* A binary search tree (BST) consists of nodes, where each node:
* has a value, v

* up to 2 children, a left descendant and a right descendant

Background:
Recursion

- all its left descendants have values less than v and its right
descendants have values greater than v

* We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree

def contains recursive(node, key):
if key < node.value & node.left != null:
return contains(node.left, key)
else if node.value < key & node.right != null:
return contains(node.right, key)
else:
return key == node.value

9/6/23

Algorithm 3: based on a single feature, x,, predict the most
common label in the training dataset among all data points
that have the same value for x

y X1 X2 X3 X4

predictions allergic? hives? sneezing? redeye? hascat?

Recall: - _ Y N N N

Decision
Stumps _ _

+ +

+ +

I

Z < < Z
< zZz < <
< < Z Z
Z < zZz z

9/6/23

Algorithm 3: based on a single feature, x,, predict the most
common label in the training dataset among all data points
that have the same value for x

y X1 X2 X3 X4

predictions allergic? hives? sneezing? redeye? hascat?

But why would

— — Y N N N
we only use N _ N y N N
just one + + Y Y N N
feature?) : Y § Y Y
+ + N Y Y N

9/6/23

From
Decision
Stump

9/6/23

y
allergic?

X1
hives?
Y

Z < < Z

X2
sneezing?
N

< Z2 < <

X3
red eye?
N

< < Z2 Z

X4
has cat?
N

Z < Z2 Z

From
Decision
Stump

to
Decision
Tree

9/6/23

y

X1

X2

X3

X4

allergic? hives? sneezing? redeye? hascat?

i | B |

Y

Z < < Z

N

< Z2 < <

N

< < Z2 Z

N

Z < z Z
-
S
© N

def h(x'):

Decision

Tree:
Pseudocode

9/6/23

Learned from medical records of 1000 women
Negative examples are C-sections

[833+,167-] .83+ .17-

Fetal_Presentation = 1: [822+,116-] .88+ .12-
Decision Previous_Csection = 0: [767+,81-] .90+ .10-
Primiparous = 0: [399+,13-] .97+ .03-
Primiparous = 1: [368+,68-] .84+ .16-
Example | Fetal_Distress = 0: [334+,47-] .88+ .12-
| Fetal_Distress = 1: [34+,21-] .62+ .38-
Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-

Tree:

9/6/23 Figure courtesy of Tom Mitchell

1. How can we pick which feature to split on?

Decision Tree
Questions 2. How do we pick the order of the splits?

9/6/23

* A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a

specified dataset

* Idea: when deciding which feature to split on, use the

one that optimizes the splitting criterion

Splitting
Criterion

9/6/23

Training
Error Rate

as a
Splitting
Criterion

9/6/23

X1 X3
Famlly History Restmg BIood Pressure | Cholesterol

No
No
Yes
Yes

Training error
rate:

Medium
Low
Medium
High

Normal
Normal
Abnormal
Normal

Abnormal

Training error
rate:

No
Yes

Yes
Yes

Training error
rate:

Poll Question 2: g™, T, 1

Which feature
would you split

=<

A. X1

. B. X9
on using

training error
rate as the
splitting
criterion?

C. Either x4 or x5

D. Neither x{ nor x,

S N N e

9/6/23

Splitting
Criterion

9/6/23

> A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a
specified dataset

* Idea: when deciding which feature to split on, use the

one that optimizes the splitting criterion

* Potential splitting criteria:

* Training error rate (minimize)
* Gini impurity (minimize) = CART algorithm

* Mutual information (maximize) — ID3 algorithm

9/6/23

* The entropy of a random variable describes the
uncertainty of its outcome: the higher the entropy, the

less certain we are about what the outcome will be.

HX) = — z P(X = v)log,(P(X =v))
vEV(X)
where X is a (discrete) random variable

V' (X) is the set of possible values X can take on

9/6/23

* The entropy of a set describes how uniform or pure it is:
the higher the entropy, the more impure or “mixed-up”

the set is

Z Syl Sy
H(S) = — —1 (_)
vEeV(S)

where S is a collection of values,

V' (S) is the set of unique values in S

S, is the collection of elements in S with value v

* If all the elements in S are the same, then

9/6/23

* The entropy of a set describes how uniform or pure it is:
the higher the entropy, the more impure or “mixed-up”

the set is

1Syl 1Syl

H(S) = — E Pol, (—)

(S) H 082 S|
vevV(S)

where S is a collection of values,

V' (S) is the set of unique values in S

S, is the collection of elements in S with value v

* If S is split fifty-fifty between two values, then

Mutual
Information

9/6/23

* The mutual information between two random variables
describes how much clarity knowing the value of one random

variables provides about the other
[(Y;X)=H{)—-H(Y|X)

=Hwy-§:Pa=umww=m
vEV(X)
where X and Y are random variables

V' (X) is the set of possible values X can take on

H(Y|X = v) is the conditional entropy of Y given X = v

Mutual
Information

9/6/23

* The mutual information between a feature and the label
describes how much clarity knowing the feature provides
about the label

I(y; xq) = H(y) — H(y|xq)

= H(y) — z fv(H(de=v))

veEV(xyq)

where x4 is a feature and y is the set of all labels
V(x4) is the set of possible values x4 can take on

f, is the fraction of data points where x; = v

Yy ,=v is the set of all labels where x4 = v

Mutual
Information:

1 1
1 1
0 0
0 0

Example

9/6/23

Mutual
Information:

1
0
1
0

©C O R R

Example

9/6/23

Poll Question 3: Cxn | o |y

Which feature
would you split

=<

Al xq

B. X9

on using mutual
information as
the splitting
criterion?

C. Either x; or x5

D. Neither x{ nor x,

e S N
_ R = = O O O O
T e Y ==y S S Y = W

9/6/23

1. How can we pick which feature to split on?

Decision Tree
Questions 2. How do we pick the order of the splits?

9/6/23

def train(D):

def tree recurse(D’):
g = new node()

base case - if (SOME CONDITION):

Decision recursion - else:

Tree:
Pseudocode

return g

9/6/23

def train(D):

store root = tree recurse(D)
def tree recurse(D’):

g = new node()

base case - if

Decision

Tree:
Pseudocode

recursion - else:

return g

9/6/23

