10-301/601: Introduction to Machine Learning Lecture 3 – Decision Trees

Henry Chai & Matt Gormley 9/6/23

Front Matter

- Announcements:
 - HW1 released 9/1, due 9/6 (today!) at 11:59 PM
 - Reminder: we will grant (basically) any extension requests for this assignment!
 - HW2 released 9/6 (today!), due 9/15 at 11:59 PM
 - Unlike HW1, you will only have:
 - 1 submission for the written portion
 - 10 submissions of the programming portion to our autograder

Q & A:

How do these in-class polls work? Open the poll, either by clicking the [Poll] link on the schedule page of our course website or going to <u>http://poll.mlcourse.org</u>

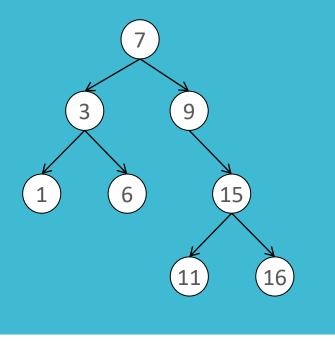
- Sign into Google Forms using your Andrew email
- Answer all poll questions during lecture for full credit or within 24 hours for half credit
- Avoid the toxic option (will be clearly specified in lecture) which gives negative poll points
- You have 8 free "poll points" for the semester that will excuse you from all polls from a single lecture; you cannot use more than 3 poll points consecutively.

Poll Question 1:

Which of the following did you bring to class today? Select all that apply

- A. A smartphone
- B. A flip phone
- C. A payphone
- D. No phone

Background: Recursion

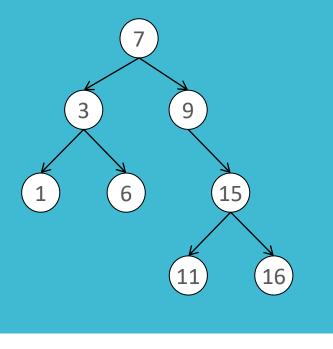


• A **binary search tree** (BST) consists of nodes, where each node:

- has a value, v
- up to 2 children, a left descendant and a right descendant
- all its left descendants have values less than v and its right descendants have values greater than v
- We like BSTs because they permit search in O(log(n)) time, assuming n nodes in the tree

```
def contains_iterative(node, key):
    cur = node
    while true:
        if key < cur.value & cur.left != null:
            cur = cur.left
        else if cur.value < key & cur.right != null:
            cur = cur.right
        else:
            break
    return key == cur.value</pre>
```

Background: Recursion



• A **binary search tree** (BST) consists of nodes, where each node:

- has a value, v
- up to 2 children, a left descendant and a right descendant
- all its left descendants have values less than v and its right descendants have values greater than v
- We like BSTs because they permit search in O(log(n)) time, assuming n nodes in the tree

```
def contains_recursive(node, key):
    if key < node.value & node.left != null:
        return contains(node.left, key)
    else if node.value < key & node.right != null:
        return contains(node.right, key)
    else:</pre>
```

```
return key == node.value
```

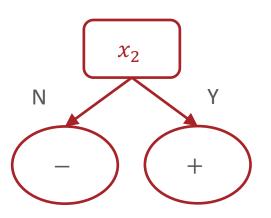
Recall: Decision Stumps <u>Algorithm 3</u>: based on a single feature, x_d , predict the most common label in the training dataset among all data points that have the same value for x_d

	У	x_1	x_2	x_3	x_4
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
—	—	Y	Ν	Ν	Ν
+	—	Ν	Y	Ν	Ν
+	+	Y	Y	Ν	Ν
—	—	Y	Ν	Y	Y
+	+	Ν	Y	Y	Ν

Nonzero training error, but perhaps still better than the memorizer Example decision stump: h(**x**) = [+ if sneezing = Y [- otherwise But why would we only use just one feature? <u>Algorithm 3</u>: based on a single feature, x_d , predict the most common label in the training dataset among all data points that have the same value for x_d

	У	x_1	x_2	x_3	x_4
predictions	allergic?	hives?	sneezing?	red eye?	has cat?
—	—	Y	Ν	Ν	Ν
+	—	Ν	Y	Ν	Ν
+	+	Y	Y	Ν	Ν
_	_	Y	Ν	Y	Y
+	+	Ν	Y	Y	Ν

Nonzero training error, but perhaps still better than the memorizer Example decision stump: h(**x**) = [+ if sneezing = Y [- otherwise



У	x_1	<i>x</i> ₂	x_3	x_4
allergic?	hives?	sneezing?	red eye?	has cat?
-	Y	Ν	Ν	Ν
-	Ν	Y	Ν	Ν
+	Y	Y	Ν	Ν
_	Y	Ν	Y	Y
+	Ν	Y	Y	Ν

From Decision Stump

...

У	x_1	x_2	x_3	x_4	
allergic?	hives?	sneezing?	red eye?	has cat?	Sucezing?
—	Y	Ν	Ν	Ν	
—	Ν	Y	Ν	Ν	γ / γ
+	Y	Y	Ν	Ν	
_	Y	Ν	Y	Y	itchy?/ itchy?
+	Ν	Y	Y	Ν	
					loctor? (fox?)
				E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

From Decision Stump to Decision Tree Decision Tree: Pseudocode

def h(x'):

Decision Tree: Example Learned from medical records of 1000 women Negative examples are C-sections

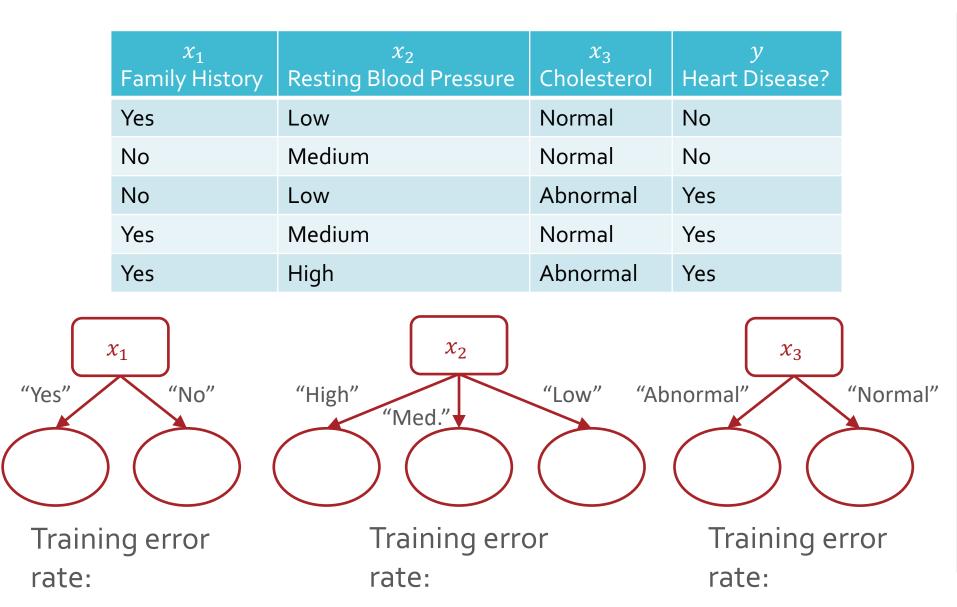
[833+,167-] .83+ .17-Fetal_Presentation = 1: [822+,116-] .88+ .12-| Previous_Csection = 0: [767+,81-] .90+ .10-| | Primiparous = 0: [399+,13-] .97+ .03-| | Primiparous = 1: [368+,68-] .84+ .16-| | | Fetal_Distress = 0: [334+,47-] .88+ .12-| | | Fetal_Distress = 1: [34+,21-] .62+ .38-| Previous_Csection = 1: [55+,35-] .61+ .39-Fetal_Presentation = 2: [3+,29-] .11+ .89-Fetal_Presentation = 3: [8+,22-] .27+ .73Decision Tree Questions 1. How can we pick which feature to split on?

2. How do we pick the order of the splits?

Splitting Criterion

- A **splitting criterion** is a function that measures how good or useful splitting on a particular feature is *for a specified dataset*
- Idea: when deciding which feature to split on, use the one that optimizes the splitting criterion

Training Error Rate as a Splitting Criterion



Poll Question 2:

Which feature would you split on using training error rate as the splitting criterion?

<i>x</i> ₁	<i>x</i> ₂	У	
1	0	0	
1	0	0	Α.
1	0	1	В.
1	0	1	D.
1	1	1	С.
1	1	1	D.
1	1	1	
1	1	1	

$$x_1$$

 x_2
Fither x or x

Either
$$x_1$$
 or x_2

D. Neither
$$x_1$$
 nor x_2

Splitting Criterion

- A **splitting criterion** is a function that measures how good or useful splitting on a particular feature is *for a specified dataset*
- Idea: when deciding which feature to split on, use the one that optimizes the splitting criterion
- Potential splitting criteria:
 - Training error rate (minimize)
 - Gini impurity (minimize) \rightarrow CART algorithm
 - Mutual information (maximize) \rightarrow ID3 algorithm

Entropy

• The **entropy** of a *random variable* describes the uncertainty of its outcome: the higher the entropy, the less certain we are about what the outcome will be.

$$H(X) = -\sum_{v \in V(X)} P(X = v) \log_2(P(X = v))$$

where X is a (discrete) random variable

V(X) is the set of possible values X can take on

Entropy

 The entropy of a set describes how uniform or pure it is: the higher the entropy, the more impure or "mixed-up" the set is

$$H(S) = -\sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2\left(\frac{|S_v|}{|S|}\right)$$

where *S* is a collection of values,

V(S) is the set of unique values in S

 S_{v} is the collection of elements in S with value v

• If all the elements in *S* are the same, then

Entropy

 The entropy of a set describes how uniform or pure it is: the higher the entropy, the more impure or "mixed-up" the set is

$$H(S) = -\sum_{\nu \in V(S)} \frac{|S_{\nu}|}{|S|} \log_2\left(\frac{|S_{\nu}|}{|S|}\right)$$

where *S* is a collection of values,

V(S) is the set of unique values in S

 S_{v} is the collection of elements in S with value v

• If *S* is split fifty-fifty between two values, then

Mutual Information

• The **mutual information** between *two random variables* describes how much clarity knowing the value of one random variables provides about the other I(Y; X) = H(Y) - H(Y|X)

$$= H(Y) - \sum_{v \in V(X)} P(X = v)H(Y|X = v)$$

where *X* and *Y* are random variables

V(X) is the set of possible values X can take on

H(Y|X = v) is the conditional entropy of Y given X = v

Mutual Information • The **mutual information** between *a feature and the label* describes how much clarity knowing the feature provides about the label

$$I(y; x_d) = H(y) - H(y|x_d)$$

$$= H(y) - \sum_{v \in V(x_d)} f_v \left(H(Y_{x_d=v}) \right)$$

where x_d is a feature and y is the set of all labels

 $V(x_d)$ is the set of possible values x_d can take on

 f_{v} is the fraction of data points where $x_{d} = v$

 $Y_{x_d=v}$ is the set of all labels where $x_d = v$

Mutual Information: Example

x_d	у
1	1
1	1
0	0
0	0

Mutual Information: Example

x_d	у
1	1
0	1
1	0
0	0

Poll Question 3:

Which feature would you split on using mutual information as the splitting criterion?

<i>x</i> ₁	<i>x</i> ₂	у	
1	0	0	
1	0	0	Α.
1	0	1	D
1	0	1	Β.
1	1	1	С.
1	1	1	D.
1	1	1	
1	1	1	

$$x_1$$

 x_2
Either x_1 or x_2

D. Neither
$$x_1$$
 nor x_2

Decision Tree Questions 1. How can we pick which feature to split on?

2. How do we pick the order of the splits?

Decision Tree: Pseudocode def train(\mathcal{D}):

def tree_recurse(D'):
 q = new node()
 base case - if (SOME CONDITION):
 recursion - else:

Decision Tree: Pseudocode

def train(\mathcal{D}):

store root = tree_recurse(D)
def tree_recurse(D'):
 q = new node()
 base case - if

recursion - else:

return q