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Front Matter

� Announcements: 

� HW1 released 9/1, due 9/6 (today!) at 11:59 PM

� Reminder: we will grant (basically) any extension 
requests for this assignment!

� HW2 released 9/6 (today!), due 9/15 at 11:59 PM

� Unlike HW1, you will only have: 

� 1 submission for the written portion 

� 10 submissions of the programming portion to 
our autograder
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Q & A: 

How do these 
in-class polls 
work?

� Open the poll, either by clicking the [Poll] link on the 

schedule page of our course website or going to 
http://poll.mlcourse.org

� Sign into Google Forms using your Andrew email

� Answer all poll questions during lecture for full credit 
or within 24 hours for half credit

� Avoid the toxic option (will be clearly specified in 
lecture) which gives negative poll points

� You have 8 free “poll points” for the semester that will 
excuse you from all polls from a single lecture; you 
cannot use more than 3 poll points consecutively.
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http://poll.mlcourse.org/


Poll Question 1:

Which of the 
following did 
you bring to 
class today? 
Select all that 
apply

A. A smartphone

B. A flip phone

C. A payphone (TOXIC)

D. No phone
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Background: 
Recursion

� A binary search tree (BST) consists of nodes, where each node:
� has a value, v 
� up to 2 children, a left descendant and a right descendant
� all its left descendants have values less than v and its right 

descendants have values greater than v

� We like BSTs because they permit search in O(log(n)) time, 
assuming n nodes in the tree

def contains_iterative(node, key):
 cur = node
 while true:
  if key < cur.value & cur.left != null:
   cur = cur.left 
  else if cur.value < key & cur.right != null:
   cur = cur.right
  else:
   break
 return key == cur.value
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def contains_recursive(node, key):
 if key < node.value & node.left != null:
  return contains(node.left, key)
 else if node.value < key & node.right != null:
  return contains(node.right, key)
 else:
  return key == node.value
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Recall: 
Decision 
Stumps

Algorithm 3: based on a single feature, 𝑥𝑑, predict the most 
common label in the training dataset among all data points 
that have the same value for 𝑥𝑑

𝑦 𝑥1 𝑥2 𝑥3 𝑥4
predictions allergic? hives? sneezing? red eye? has cat?

− − Y N N N

+ − N Y N N

+ + Y Y N N

− − Y N Y Y

+ + N Y Y N

Example 
decision stump: 
h(x) = + if sneezing = Y
  - otherwise

Nonzero training error, but 
perhaps still better than the 

memorizer
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But why would 
we only use 
just one 
feature?

Algorithm 3: based on a single feature, 𝑥𝑑, predict the most 
common label in the training dataset among all data points 
that have the same value for 𝑥𝑑

𝑦 𝑥1 𝑥2 𝑥3 𝑥4
predictions allergic? hives? sneezing? red eye? has cat?

− − Y N N N

+ − N Y N N

+ + Y Y N N

− − Y N Y Y

+ + N Y Y N

Example 
decision stump: 
h(x) = + if sneezing = Y
  - otherwise

Nonzero training error, but 
perhaps still better than the 

memorizer
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From 
Decision 
Stump 
…
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𝑥!

−

N Y

+

𝑦 𝑥1 𝑥2 𝑥3 𝑥4
allergic? hives? sneezing? red eye? has cat?

− Y N N N

− N Y N N

+ Y Y N N

− Y N Y Y

+ N Y Y N



From 
Decision 
Stump 
to 
Decision 
Tree
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𝑦 𝑥1 𝑥2 𝑥3 𝑥4
allergic? hives? sneezing? red eye? has cat?

− Y N N N

− N Y N N

+ Y Y N N

− Y N Y Y

+ N Y Y N



Decision 
Tree: 
Pseudocode
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def ℎ(𝒙%):

 - walk from root node to a leaf node

   while(true):

 if current node is internal (non-leaf):

  check the associated attribute, 𝑥&
  go down branch according to 𝑥&%

 if current node is a leaf node: 

  return label stored at that leaf



Decision 
Tree: 
Example
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Decision Trees 
Suppose X = <X1,… Xn>  
where Xi are boolean-valued variables 
 
 
How would you represent Y = X2 X5 ?     Y = X2 ∨ X5 

How would you represent  X2 X5  ∨ X3X4(¬X1) 
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Figure courtesy of Tom Mitchell



Decision Tree 
Questions

1. How can we pick which feature to split on?

2. How do we pick the order of the splits?
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Splitting 
Criterion

� A splitting criterion is a function that measures how 

good or useful splitting on a particular feature is for a 
specified dataset

� Idea: when deciding which feature to split on, use the 
one that optimizes the splitting criterion 

� Potential splitting criteria:

� Training error rate (minimize)

� Gini impurity (minimize) → CART algorithm

� Mutual information (maximize) → ID3 algorithm
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Training 
Error Rate 
as a 
Splitting 
Criterion
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𝑥"

𝑥"
Family History

𝑥!
Resting Blood Pressure

𝑥#
Cholesterol 

𝑦
Heart Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

“Yes” “No”

𝑥!

“High”

𝑥#

“Abnormal” “Normal”

Training error 
rate:

Training error 
rate:

Training error 
rate:

“Med.”
“Low”



𝑥' 𝑥( 𝑦
1 0 0
1 0 0
1 0 1
1 0 1
1 1 1
1 1 1
1 1 1
1 1 1

A.  𝑥'

B.  𝑥(

C.  Either 𝑥' or 𝑥(

D.  Neither 𝑥' nor 𝑥( (TOXIC)
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Poll Question 2: 

Which feature 
would you split 
on using 
training error 
rate as the 
splitting 
criterion?



Splitting 
Criterion

� A splitting criterion is a function that measures how 

good or useful splitting on a particular feature is for a 
specified dataset

� Idea: when deciding which feature to split on, use the 
one that optimizes the splitting criterion 

� Potential splitting criteria:

� Training error rate (minimize)

� Gini impurity (minimize) → CART algorithm

� Mutual information (maximize) → ID3 algorithm
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Entropy
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� The entropy of a random variable describes the 

uncertainty of its outcome: the higher the entropy, the 
less certain we are about what the outcome will be.

𝐻 𝑋 = − .
)	∈	, -

𝑃 𝑋 = 𝑣 log( 𝑃 𝑋 = 𝑣

where 𝑋 is a (discrete) random variable

             𝑉 𝑋  is the set of possible values 𝑋 can take on

             𝑆) is the collection of elements in 𝑆 with value 𝑣 

� If all the elements in 𝑆 are the same, then              
H 𝑆 = −1 log( 1 = 0



Entropy
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� The entropy of a set describes how uniform or pure it is: 

the higher the entropy, the more impure or “mixed-up” 
the set is

𝐻 𝑆 = − .
)	∈	, .

|𝑆)|
|𝑆|

log(
|𝑆)|
|𝑆|

where 𝑆 is a collection of values,

             𝑉 𝑆  is the set of unique values in 𝑆  

             𝑆) is the collection of elements in 𝑆 with value 𝑣 

� If all the elements in 𝑆 are the same, then              
H 𝑆 = −1 log( 1 = 0



Entropy
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� The entropy of a set describes how uniform or pure it is: 

the higher the entropy, the more impure or “mixed-up” 
the set is

𝐻 𝑆 = − .
)	∈	, .

|𝑆)|
|𝑆|

log(
|𝑆)|
|𝑆|

where 𝑆 is a collection of values,

             𝑉 𝑆  is the set of unique values in 𝑆  

             𝑆) is the collection of elements in 𝑆 with value 𝑣 

� If 𝑆 is split fifty-fifty between two values, then 

H 𝑆 = −
1
2
log(

1
2
−
1
2
log(

1
2

= −log(
1
2

= 1



� The mutual information between two random variables 

describes how much clarity knowing the value of one random 
variables provides about the other

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻 𝑌 𝑋

𝐼 𝑌; 𝑋 	= 	𝐻 𝑌 − .
)	∈	, -

𝑃 𝑋 = 𝑣 𝐻 𝑌 𝑋 = 𝑣

where 𝑋 and 𝑌 are random variables

             𝑉 𝑋  is the set of possible values 𝑋	can take on

             

 𝐻 𝑌 𝑋 = 𝑣  is the conditional entropy of 𝑌 given 𝑋 = 𝑣 

Mutual 
Information
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Mutual 
Information
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� The mutual information between a feature and the label 
describes how much clarity knowing the feature provides 
about the label

𝐼 𝑦; 𝑥& = 𝐻 𝑦 − 𝐻 𝑦 𝑥&

𝐼 𝑦; 𝑥& = 	𝐻 𝑦 − .
)	∈	, /!

𝑓) 𝐻 𝑌/!0)

where 𝑥& is a feature and 𝑦 is the set of all labels

             𝑉 𝑥&  is the set of possible values 𝑥&	can take on

             𝑓) is the fraction of data points where 𝑥& = 𝑣 

 𝑌/!0)	is the set of all labels where 𝑥& = 𝑣 



Mutual 
Information:
Example

𝑥& 𝑦
1 1
1 1
0 0
0 0

𝐼 𝑥&, 𝑌 = 𝐻 𝑌 − .
)	∈	, /!

𝑓) 𝐻 𝑌/!0)
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𝐼 𝑥&, 𝑦 = 1 −
1
2𝐻 𝑌/!01 −

1
2𝐻 𝑌/!0'

𝐼 𝑥&, 𝑦 = 1 −
1
2
0 −

1
2
0 = 1



Mutual 
Information:
Example

𝑥& 𝑦
1 1
0 1
1 0
0 0

𝐼 𝑥&, 𝑌 = 𝐻 𝑌 − .
)	∈	, /!

𝑓) 𝐻 𝑌/!0)
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𝐼 𝑥&, 𝑦 = 1 −
1
2𝐻 𝑌/!01 −

1
2𝐻 𝑌/!0'

𝐼 𝑥&, 𝑦 = 1 −
1
2
1 −

1
2
1 = 0



𝑥' 𝑥( 𝑦
1 0 0
1 0 0
1 0 1
1 0 1
1 1 1
1 1 1
1 1 1
1 1 1
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Poll Question 3: 

Which feature 
would you split 
on using mutual 
information as 
the splitting 
criterion?

A.  𝑥'

B.  𝑥(

C.  Either 𝑥' or 𝑥(

D.  Neither 𝑥' nor 𝑥( (TOXIC)



Decision Tree 
Questions

1. How can we pick which feature to split on?

2. How do we pick the order of the splits?

9/6/23



Decision 
Tree: 
Pseudocode
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def train(𝒟):

   store root = tree_recurse(𝒟)

def tree_recurse(𝒟%):

   q = new node()

   base case – if (SOME CONDITION):

   recursion – else:

 find best attribute to split on, 𝑥&
 q.split = 𝑥&
 for  𝑣  in 𝑉 𝑥& , all possible values of  𝑥&:

      𝒟) = 𝑥 2 , 𝑦 2 ∈ 𝒟	|	𝑥&
2 = 𝑣

  q.children(𝑣) = tree_recurse(𝒟))

   return q



Decision 
Tree: 
Pseudocode
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def train(𝒟):

   store root = tree_recurse(𝒟)

def tree_recurse(𝒟%):

   q = new node()

   base case – if (𝒟%	 is empty OR

 all labels in 𝒟% are the same OR

 all features in 𝒟% are identical OR

 some other stopping criterion):

 q.label = majority_vote(𝒟%)

  

   recursion – else:

   return q


