
10-301/601: Introduction
to Machine Learning
Lecture 3 – Decision
Trees
Henry Chai & Matt Gormley

9/6/23

Front Matter

� Announcements:

� HW1 released 9/1, due 9/6 (today!) at 11:59 PM

� Reminder: we will grant (basically) any extension
requests for this assignment!

� HW2 released 9/6 (today!), due 9/15 at 11:59 PM

� Unlike HW1, you will only have:

� 1 submission for the written portion

� 10 submissions of the programming portion to
our autograder

9/6/23

Q & A:

How do these
in-class polls
work?

� Open the poll, either by clicking the [Poll] link on the

schedule page of our course website or going to
http://poll.mlcourse.org

� Sign into Google Forms using your Andrew email

� Answer all poll questions during lecture for full credit
or within 24 hours for half credit

� Avoid the toxic option (will be clearly specified in
lecture) which gives negative poll points

� You have 8 free “poll points” for the semester that will
excuse you from all polls from a single lecture; you
cannot use more than 3 poll points consecutively.

9/6/23

http://poll.mlcourse.org/

Poll Question 1:

Which of the
following did
you bring to
class today?
Select all that
apply

A. A smartphone

B. A flip phone

C. A payphone (TOXIC)

D. No phone

9/6/23

Background:
Recursion

� A binary search tree (BST) consists of nodes, where each node:
� has a value, v
� up to 2 children, a left descendant and a right descendant
� all its left descendants have values less than v and its right

descendants have values greater than v

� We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree

def contains_iterative(node, key):
 cur = node
 while true:
 if key < cur.value & cur.left != null:
 cur = cur.left
 else if cur.value < key & cur.right != null:
 cur = cur.right
 else:
 break
 return key == cur.value

7

3

61

9

15

1611

9/6/23

Background:
Recursion

� A binary search tree (BST) consists of nodes, where each node:
� has a value, v
� up to 2 children, a left descendant and a right descendant
� all its left descendants have values less than v and its right

descendants have values greater than v

� We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree

7

3

61

9

15

1611

def contains_recursive(node, key):
 if key < node.value & node.left != null:
 return contains(node.left, key)
 else if node.value < key & node.right != null:
 return contains(node.right, key)
 else:
 return key == node.value

9/6/23

Recall:
Decision
Stumps

Algorithm 3: based on a single feature, 𝑥𝑑, predict the most
common label in the training dataset among all data points
that have the same value for 𝑥𝑑

𝑦 𝑥1 𝑥2 𝑥3 𝑥4
predictions allergic? hives? sneezing? red eye? has cat?

− − Y N N N

+ − N Y N N

+ + Y Y N N

− − Y N Y Y

+ + N Y Y N

Example
decision stump:
h(x) = + if sneezing = Y
 - otherwise

Nonzero training error, but
perhaps still better than the

memorizer
9/6/23

But why would
we only use
just one
feature?

Algorithm 3: based on a single feature, 𝑥𝑑, predict the most
common label in the training dataset among all data points
that have the same value for 𝑥𝑑

𝑦 𝑥1 𝑥2 𝑥3 𝑥4
predictions allergic? hives? sneezing? red eye? has cat?

− − Y N N N

+ − N Y N N

+ + Y Y N N

− − Y N Y Y

+ + N Y Y N

Example
decision stump:
h(x) = + if sneezing = Y
 - otherwise

Nonzero training error, but
perhaps still better than the

memorizer
9/6/23

From
Decision
Stump
…

9/6/23

𝑥!

−

N Y

+

𝑦 𝑥1 𝑥2 𝑥3 𝑥4
allergic? hives? sneezing? red eye? has cat?

− Y N N N

− N Y N N

+ Y Y N N

− Y N Y Y

+ N Y Y N

From
Decision
Stump
to
Decision
Tree

9/6/23

𝑦 𝑥1 𝑥2 𝑥3 𝑥4
allergic? hives? sneezing? red eye? has cat?

− Y N N N

− N Y N N

+ Y Y N N

− Y N Y Y

+ N Y Y N

Decision
Tree:
Pseudocode

9/6/23

def ℎ(𝒙%):

 - walk from root node to a leaf node

 while(true):

 if current node is internal (non-leaf):

 check the associated attribute, 𝑥&
 go down branch according to 𝑥&%

 if current node is a leaf node:

 return label stored at that leaf

Decision
Tree:
Example

9/6/23

16

Decision Trees
Suppose X = <X1,… Xn>
where Xi are boolean-valued variables

How would you represent Y = X2 X5 ? Y = X2 ∨ X5

How would you represent X2 X5 ∨ X3X4(¬X1)

16

Decision Trees
Suppose X = <X1,… Xn>
where Xi are boolean-valued variables

How would you represent Y = X2 X5 ? Y = X2 ∨ X5

How would you represent X2 X5 ∨ X3X4(¬X1)

Figure courtesy of Tom Mitchell

Decision Tree
Questions

1. How can we pick which feature to split on?

2. How do we pick the order of the splits?

9/6/23

Splitting
Criterion

� A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a
specified dataset

� Idea: when deciding which feature to split on, use the
one that optimizes the splitting criterion

� Potential splitting criteria:

� Training error rate (minimize)

� Gini impurity (minimize) → CART algorithm

� Mutual information (maximize) → ID3 algorithm

9/6/23

Training
Error Rate
as a
Splitting
Criterion

9/6/23

𝑥"

𝑥"
Family History

𝑥!
Resting Blood Pressure

𝑥#
Cholesterol

𝑦
Heart Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

“Yes” “No”

𝑥!

“High”

𝑥#

“Abnormal” “Normal”

Training error
rate:

Training error
rate:

Training error
rate:

“Med.”
“Low”

𝑥' 𝑥(𝑦
1 0 0
1 0 0
1 0 1
1 0 1
1 1 1
1 1 1
1 1 1
1 1 1

A. 𝑥'

B. 𝑥(

C. Either 𝑥' or 𝑥(

D. Neither 𝑥' nor 𝑥((TOXIC)

9/6/23

Poll Question 2:

Which feature
would you split
on using
training error
rate as the
splitting
criterion?

Splitting
Criterion

� A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a
specified dataset

� Idea: when deciding which feature to split on, use the
one that optimizes the splitting criterion

� Potential splitting criteria:

� Training error rate (minimize)

� Gini impurity (minimize) → CART algorithm

� Mutual information (maximize) → ID3 algorithm

9/6/23

Entropy

9/6/23

� The entropy of a random variable describes the

uncertainty of its outcome: the higher the entropy, the
less certain we are about what the outcome will be.

𝐻 𝑋 = − .
)	∈	, -

𝑃 𝑋 = 𝑣 log(𝑃 𝑋 = 𝑣

where 𝑋 is a (discrete) random variable

 𝑉 𝑋 is the set of possible values 𝑋 can take on

 𝑆) is the collection of elements in 𝑆 with value 𝑣

� If all the elements in 𝑆 are the same, then
H 𝑆 = −1 log(1 = 0

Entropy

9/6/23

� The entropy of a set describes how uniform or pure it is:

the higher the entropy, the more impure or “mixed-up”
the set is

𝐻 𝑆 = − .
)	∈	, .

|𝑆)|
|𝑆|

log(
|𝑆)|
|𝑆|

where 𝑆 is a collection of values,

 𝑉 𝑆 is the set of unique values in 𝑆

 𝑆) is the collection of elements in 𝑆 with value 𝑣

� If all the elements in 𝑆 are the same, then
H 𝑆 = −1 log(1 = 0

Entropy

9/6/23

� The entropy of a set describes how uniform or pure it is:

the higher the entropy, the more impure or “mixed-up”
the set is

𝐻 𝑆 = − .
)	∈	, .

|𝑆)|
|𝑆|

log(
|𝑆)|
|𝑆|

where 𝑆 is a collection of values,

 𝑉 𝑆 is the set of unique values in 𝑆

 𝑆) is the collection of elements in 𝑆 with value 𝑣

� If 𝑆 is split fifty-fifty between two values, then

H 𝑆 = −
1
2
log(

1
2
−
1
2
log(

1
2

= −log(
1
2

= 1

� The mutual information between two random variables

describes how much clarity knowing the value of one random
variables provides about the other

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻 𝑌 𝑋

𝐼 𝑌; 𝑋 	= 	𝐻 𝑌 − .
)	∈	, -

𝑃 𝑋 = 𝑣 𝐻 𝑌 𝑋 = 𝑣

where 𝑋 and 𝑌 are random variables

 𝑉 𝑋 is the set of possible values 𝑋	can take on

 𝐻 𝑌 𝑋 = 𝑣 is the conditional entropy of 𝑌 given 𝑋 = 𝑣

Mutual
Information

9/6/23

Mutual
Information

9/6/23

� The mutual information between a feature and the label
describes how much clarity knowing the feature provides
about the label

𝐼 𝑦; 𝑥& = 𝐻 𝑦 − 𝐻 𝑦 𝑥&

𝐼 𝑦; 𝑥& = 	𝐻 𝑦 − .
)	∈	, /!

𝑓) 𝐻 𝑌/!0)

where 𝑥& is a feature and 𝑦 is the set of all labels

 𝑉 𝑥& is the set of possible values 𝑥&	can take on

 𝑓) is the fraction of data points where 𝑥& = 𝑣

 𝑌/!0)	is the set of all labels where 𝑥& = 𝑣

Mutual
Information:
Example

𝑥& 𝑦
1 1
1 1
0 0
0 0

𝐼 𝑥&, 𝑌 = 𝐻 𝑌 − .
)	∈	, /!

𝑓) 𝐻 𝑌/!0)

9/6/23

𝐼 𝑥&, 𝑦 = 1 −
1
2𝐻 𝑌/!01 −

1
2𝐻 𝑌/!0'

𝐼 𝑥&, 𝑦 = 1 −
1
2
0 −

1
2
0 = 1

Mutual
Information:
Example

𝑥& 𝑦
1 1
0 1
1 0
0 0

𝐼 𝑥&, 𝑌 = 𝐻 𝑌 − .
)	∈	, /!

𝑓) 𝐻 𝑌/!0)

9/6/23

𝐼 𝑥&, 𝑦 = 1 −
1
2𝐻 𝑌/!01 −

1
2𝐻 𝑌/!0'

𝐼 𝑥&, 𝑦 = 1 −
1
2
1 −

1
2
1 = 0

𝑥' 𝑥(𝑦
1 0 0
1 0 0
1 0 1
1 0 1
1 1 1
1 1 1
1 1 1
1 1 1

9/6/23

Poll Question 3:

Which feature
would you split
on using mutual
information as
the splitting
criterion?

A. 𝑥'

B. 𝑥(

C. Either 𝑥' or 𝑥(

D. Neither 𝑥' nor 𝑥((TOXIC)

Decision Tree
Questions

1. How can we pick which feature to split on?

2. How do we pick the order of the splits?

9/6/23

Decision
Tree:
Pseudocode

9/6/23

def train(𝒟):

 store root = tree_recurse(𝒟)

def tree_recurse(𝒟%):

 q = new node()

 base case – if (SOME CONDITION):

 recursion – else:

 find best attribute to split on, 𝑥&
 q.split = 𝑥&
 for 𝑣 in 𝑉 𝑥& , all possible values of 𝑥&:

 𝒟) = 𝑥 2 , 𝑦 2 ∈ 𝒟	|	𝑥&
2 = 𝑣

 q.children(𝑣) = tree_recurse(𝒟))

 return q

Decision
Tree:
Pseudocode

9/6/23

def train(𝒟):

 store root = tree_recurse(𝒟)

def tree_recurse(𝒟%):

 q = new node()

 base case – if (𝒟%	 is empty OR

 all labels in 𝒟% are the same OR

 all features in 𝒟% are identical OR

 some other stopping criterion):

 q.label = majority_vote(𝒟%)

 recursion – else:

 return q

