10-301/601: Introduction
to Machine Learning
Lecture 5 — KNNs &
Model Selection

Henry Chai & Matt Gormley
9/13/23

Front Matter

9/13/23

* Announcements:

* HW2 released 9/6, due 9/15 (Friday!) at 11:59 PM

* HW3 will be released on 9/15, due 9/23 at 11:59 PM
* HW3 is a written-only homework
* You may only use at most 2 late days on HW3

* Important scheduling note: we will have lecture on

9/15 (Friday!) in lieu of recitation

* This is to ensure that we cover enough material

for you all to make a meaningful start on HW3

* The HW3 recitation has been moved to 9/20
(next Wednesday)

Recall:
Nearest

Neighbor
Pseudocode

9/13/23

def train(D):
store D
def predict(x’):
find the nearest neighbor to x' in D, x®

return y®

Recall:
Nearest
Neighbor
Decision
Boundary

Decision

Boundary
S E (NS

9/13/23

* Requires no training!

- Always has zero training error!

The Nearest - A data point is always its own nearest neighbor

Neighbor
Model

* Always has zero training error...

9/13/23

* Claim: under certain conditions, as N — oo, with high

Generalization
of Nearest

Neighbor

probability, the true error rate of the nearest neighbor

model < 2 * the Bayes error rate (the optimal classifier)

(Cover and * Interpretation: “In this sense, it may be said that half the
Hart 1967) classification information in an infinite sample set is
V4

contained in the nearest neighbor.”

9/13/23 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964

Recall:
k-Nearest

Neighbors
(kKNN)
Pseudocode

9/13/23

def train(D):
store D
def predict(x’):

return majority vote(labels of the k
nearest neighbors to x' in D)

* Classify a point as the most common label among the

labels of the k nearest training points

k-Nearest * Tie-breaking (in case of even k and/or more than 2 classes)

Neighbors
(kKNN)

9/13/23

5.0 -

4.5 -

() () () ()
a0
[)
[)
[) [) [)
[)
[)
o0
() ® (]
(] o0 [)
o0
() () ()
(N} o0 0
(N} LN) (] (]
[) o0 [)
o000 [)
[) (N J (] [)
[) [)
[) L N]
® o000 LN}
o000 [)
[) LN)
[) [) [) [)
° —
o0 (]
o0 o0 0 (]
o000 00 [) (] [) __
o0 o0
[) LN)

4.0 -

1 1
< N
m o~

2.0 -
1.5-

1
0N
m

yi3ua| |edas

)
fo
-
Q
-
L
L

Data

1.0 -

sepal width

Figure courtesy of Matt Gormley

9/13/23

3-Class classification (k = 1, weights = 'uniform')

5.0 -

kNN on -

4.0 -

Fisher Iris

DEI N

1.0 -

9/13/23 Figure courtesy of Matt Gormley

3-Class classification (k = 2, weights = 'uniform')

5.0 -

kNN on -

4.0 -

Fisher Iris

DEI N

1.0 -

9/13/23 Figure courtesy of Matt Gormley

3-Class classification (k = 3, weights = 'uniform')

5.0 -

kNN on -

4.0 -

Fisher Iris

DEI N

1.0 -

9/13/23 Figure courtesy of Matt Gormley

3-Class classification (k = 5, weights = 'uniform')

5.0 -

kNN on -

4.0 -

Fisher Iris

DEI N

1.0 -

9/13/23 Figure courtesy of Matt Gormley

3-Class classification (k = 10, weights = 'uniform’)
5.0 -

kNN on -

4.0 -

Fisher Iris

DEI N

1.0 -

9/13/23 Figure courtesy of Matt Gormley

3-Class classification (k = 20, weights = 'uniform’)

5.0 -

kNN on -

4.0 -

Fisher Iris

Data)

1.0 - -

9/13/23 Figure courtesy of Matt Gormley

3-Class classification (k = 30, weights = 'uniform’)
5.0 -

kNN on -

4.0 -

Fisher Iris

DEI N

1.0 -

9/13/23 Figure courtesy of Matt Gormley

3-Class classification (k = 50, weights = 'uniform’)

5.0 -

kNN on -

4.0 -

Data §

1.0 -

9/13/23 Figure courtesy of Matt Gormley

3-Class classification (k = 100, weights = 'uniform’)

5.0 -

kNN on -

4.0 -

Fisher Iris

DEI N

1.0 -

9/13/23 Figure courtesy of Matt Gormley

3-Class classification (k = 120, weights = 'uniform’)

5.0 -

kNN on -

4.0 -

Fisher Iris

DEI N

1.0 -

9/13/23 Figure courtesy of Matt Gormley

3-Class classification (k = 150, = 'uniform’)

kNN on

Fisher Iris
Data

9/13/23 Figure courtesy of Matt Gormley

kNN with
Euclidean

Distance:
Inductive Bias

9/13/23

kKNN:
Pros and Cons

9/13/23

* Pros:

* Intuitive / explainable
* No training / retraining
* Provably near-optimal in terms of true error rate

* Cons:

- Computationally expensive
- Always needs to store all data: O(ND)

* Finding the k closest points in D dimensions:
O(ND + N log(k))

* Can be sped up through clever use of data
structures (trades off training and test costs)

- Can be approximated using stochastic methods
- Affected by feature scale

You should be able to...

* Describe a dataset as points in a high dimensional space
[CIML]

* Implement k-Nearest Neighbors with O(N) prediction

. * Describe the inductive bias of a k-NN classifier and
KNN Learning relate it to feature scale [a la. CIML]

ObjECtiVES * Sketch the decision boundary for a learning algorithm
(compare k-NN and DT)

- State Cover & Hart (1967)'s large sample analysis of a
nearest neighbor classifier

* Invent "new" k-NN learning algorithms capable of
dealing with even k

9/13/23

* This is effectively a question of model selection: every
value of k corresponds to a different model.

* WARNING:
How on earth * In some sense, our discussion of model selection is
do we go about premature.
Setting Kk * The models we have considered thus far are fairly
simple.

* In the real world, the models and the many
decisions available to you will be much more
complex than what we’ve seen so far.

9/13/23

* Terminology:

* Model = the
hypothesis space in
which the learning
algorithm searches for
a classifier to return

- Example — Decision Trees:

* Model = the set of all
possible trees,
potentially limited by
some hyperparameter,
e.g., max depth (see

Model - Parameters = numeric below)

H values or structure
SElECtIOn * Parameters = structure

selected by the - .
learning aleorithm of a specific tree, i.e.,
5ot the order in which

" Hyperparameters = features are split on
tunable aspects of the
model that need to be
specified before
learning can happen,
set outside of the

0/13/23 training procedure

* Hyperparameters =
max depth, splitting
criterion, etc...

* Terminology:

* Model = the
hypothesis space in
which the learning
algorithm searches for
a classifier to return

|V|Od€| - Parameters = numeric

Selectlon values or structure . Parameters = none!
selected by the ,
kNN is a non-

learning algorithm ,
546 parametric model

* Example — kKNN:

* Model = the set of all
possible nearest
neighbor classifiers

* Hyperparameters =
tunable aspects of the
model that need to be
specified before
learning can happen,
set outside of the

0/13/23 training procedure

* Hyperparameters = k

- Parametric models (e.g., decision trees)

* Have a parametrized form with parameters learned
from training data

* Can discard training data after parameters have

been learned.

Parametric vs. * Cannot exactly model every target function

Nonparametric
Models * Nonparametric models (e.g., kNN)

* Have no parameters that are learned from training
data; can still have hyperparameters

* Training data generally needs to be stored in order
to make predictions

* Can recover any target function given enough data

9/13/23

Model
Selection vs

Hyperparameter
Optimization

9/13/23

- Hyperparameter optimization can be considered a

special case of model selection
* Changing the hyperparameters changes the
hypothesis space or the set of potential classifiers

returned by the learning algorithm

* Deciding between a decision tree and kNN (model

selection) vs. selecting a value of k for kNN

(hyperparameter optimization)

- Both model selection and hyperparameter optimization

happen outside the regular training procedure

Setting k

9/13/23

*Whenk = 1:

- many, complicated decision boundaries

* liable to overfit

*Whenk = N:

* no decision boundaries; always predicts the most

common label in the training data (majority vote)

* liable to underfit

* k controls the complexity of the hypothesis set = k

affects how well the learned hypothesis will generalize

* Theorem:

* If k is some function of N s.t. k(N) — oo and % -0
as N — oo ...

* ... then (under certain assumptions) the true error of a

Setting k kNN model — the Bayes error rate

* Practical heuristics:
k= |VN|
k=3

* Perform model selection!

9/13/23

Model
Selection

with
Test Sets?

9/13/23

* Given D = Diygin U Diest, SUpPOSe we have multiple

candidate models:
Hiy, Hs, ..., Hy

° Learn a classifier from each model using only D¢y qin:

hl (S Hl,hz S 7’[2, !hM (S }[M

* Evaluate each one using D;,s+ and choose the one with

lowest test error:

M = argmin err(hy, Diest)
me{1,...,M}

*Is err(his, Diest) a good estimate of err(hs)?

Model
Selection

with
Validation Sets

9/13/23

* Given D = Diygin U Dygr U Diest, SUppOSe we have

multiple candidate models:
Hiy, Hs, ..., Hy

° Learn a classifier from each model using only D¢y qin:

hl (S Hl,hz S 7’[2, !hM (S }[M

* Evaluate each one using D,,,; and choose the one with

lowest validation error:

m = argmin err(hm, Dval)
me{1,..,M}

Hyperparameter
Optimization

with
Validation Sets

9/13/23

* Given D = Diygin U Dygr U Diest, SUppOSe we have

multiple candidate hyperparameter settings:
64,0,,...,0y

* Learn a classifier for each setting using only D¢,-gin:

hi Ry, ..., Ry

* Evaluate each one using D,,,; and choose the one with

lowest validation error:

m = argmin err(hm, Dval)
me{1,..,M}

kNN train and validation errors on Fisher Iris data

07- ® train
v validation
0.6 -

Setting k .
for kNN _—
with o
Validation Sets 0'2

10° 10t 102

9/13/23 Figure courtesy of Matt Gormley

How should

we partition
our dataset?

9/13/23

kNN train and validation errors on Fisher Iris data

07- ® train
v validation
0.6 -

10° 10t 102

Figure courtesy of Matt Gormley

K-fold

cross-validation

9/13/23

* Given D, split D into K equally sized datasets or folds:

Dy, Dy, ..., Dy

* Use each one as a validation set once:

* Let h_; be the classifier learned using

> Fold 1 D_; = D\D; (all folds other than D;)

Fold 2 and let e; = err(h_;, D;)

b
> Fold 3
b

- The K-fold cross validation error is

1
ertey, =—) e
Fold 4 “Vk KZ '
=

* Given D, split D into K equally sized datasets or folds:
D4,D,, ..., Dy

- Use each one as a validation set once:
* Let h_; be the classifier learned using
D_; = D\D; (all folds other than D)

and let e; = err(h_;, D;)

K-fold

cross-validation

- The K-fold cross validation error is

K
1
eTTevy =3) €i
i=1

9/13/23

* Given D, split D into K equally sized datasets or folds:
D4,D,, ..., Dy

- Use each one as a validation set once:
* Let h_; be the classifier learned using
D_; = D\D; (all folds other than D)

and let e; = err(h_;, D;)

K-fold

cross-validation

- The K-fold cross validation error is

K
1
eTTevy =3) €i
i=1

9/13/23

* Given D, split D into K equally sized datasets or folds:
D4,D,, ..., Dy

- Use each one as a validation set once:
* Let h_; be the classifier learned using
D_; = D\D; (all folds other than D)

and let e; = err(h_;, D;)

K-fold

cross-validation

- The K-fold cross validation error is

K
1
eTTevy =3) €i
i=1

9/13/23

* Given D, split D into K equally sized datasets or folds:
D4,D,, ..., Dy

- Use each one as a validation set once:
* Let h_; be the classifier learned using
D_; = D\D; (all folds other than D)

and let e; = err(h_;, D;)

K-fold

cross-validation

- The K-fold cross validation error is

K
1
eTTevy =3) €i
i=1

9/13/23

* Given D, split D into K equally sized datasets or folds:
D4,D,, ..., Dy

- Use each one as a validation set once:
* Let h_; be the classifier learned using
> Fold 1 D_; = D\D; (all folds other than D;)

> Fold 2 and lete; = err(h_;, D;)
* The K-fold cross validation error is
> Fold 3

K
1
> Fold 4 CMMev = EZ i
=

* Special case when K = N: Leave-one-out cross-validation

K-fold

cross-validation

- Choosing between m candidates requires training mK times

9/13/23

* training dataset best model

Training

* hyperparameters parameters
Hyperparameter ¢ training dataset * best

Summary Optimization validation dataset hyperparameters
. * training dataset e cross-validation

Cross-Validation : g

 validation dataset error

Testin » st daiiEset e test error
& e classifier

9/13/23

Hyperparameter

Optimization

9/13/23

* Given D = Diygin U Dygr U Diest, SUppOSe we have

multiple candidate hyperparameter settings:
64,0,,...,0y

* Learn a classifier for each setting using only D¢,-gin:

hi Ry, ..., Ry

* Evaluate each one using D,,,; and choose the one with

lowest validation error:

m = argmin err(hm, Dval)
me{1,..,M}

General
Methods for

Hyperparameter
Optimization

9/13/23

* ldea: set the hyperparameters to optimize some

performance metric of the model

* Issue: if we have many hyperparameters that can all

take on lots of different values, we might not be able to
test all possible combinations

- Commonly used methods:

* Grid search
- Random search

* Bayesian optimization (used by Google DeepMind
to optimize the hyperparameters of AlphaGo:
https://arxiv.org/pdf/1812.06855v1.pdf)

* Evolutionary algorithms

* Graduate-student descent

https://arxiv.org/pdf/1812.06855v1.pdf

Grid Search vs.
Random

Search
(Bergstra and
Bengio, 2012)

9/13/23

Grid Layout

Random Layout

Source: https://ijmlr.csail.mit.edu/papers/volume13/bergstrai2a/bergstrai2a.pdf

https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf

Model
Selection

Learning
Objectives

9/13/23

You should be able to...

* Plan an experiment that uses training, validation, and
test datasets to predict the performance of a classifier
on unseen data (without cheating)

* Explain the difference between (1) training error, (2)
validation error, (3) cross-validation error, (4) test error,
and (5) true error

* For a given learning technique, identify the model,
learning algorithm, parameters, and hyperparamters

* Select an appropriate algorithm for optimizing (aka.
learning) hyperparameters

