
10-301/601: Introduction
to Machine Learning
Lecture 5 – KNNs &
Model Selection
Henry Chai & Matt Gormley

9/13/23

Front Matter

� Announcements:

� HW2 released 9/6, due 9/15 (Friday!) at 11:59 PM

� HW3 will be released on 9/15, due 9/23 at 11:59 PM

� HW3 is a written-only homework

� You may only use at most 2 late days on HW3

� Important scheduling note: we will have lecture on
9/15 (Friday!) in lieu of recitation

� This is to ensure that we cover enough material

for you all to make a meaningful start on HW3

� The HW3 recitation has been moved to 9/20
(next Wednesday)

9/13/23

Recall:
Nearest
Neighbor
Pseudocode

9/13/23

def train(𝒟):

 store 𝒟

def predict(𝒙′):

 find the nearest neighbor to 𝒙′ in 𝒟, 𝒙 !

 return 𝑦 !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-
-

--

-

9/13/23

Recall:
Nearest
Neighbor
Decision
Boundary

Decision
Boundary
Exercise

Poll Question 1:
Can a 1-Nearest Neighbor
classifier achieve zero training
error on this dataset? If so,
draw the decision boundary
and if not, briefly explain why.
A. Yes
B. No
C. Yes AND No (TOXIC)

𝑥1

𝑥2

𝑥1

𝑥2

Poll Question 2:
Can a Decision Tree classifier
achieve zero training error on
this dataset? If so, draw the
decision boundary and if not,
briefly explain why.
A. Yes
B. No
C. Yes AND No (TOXIC)

9/13/23

The Nearest
Neighbor
Model

� Requires no training!

� Always has zero training error!

� A data point is always its own nearest neighbor

⋮

� Always has zero training error…

9/13/23

Generalization
of Nearest
Neighbor
(Cover and
Hart, 1967)

� Claim: under certain conditions, as 𝑁 → ∞, with high

probability, the true error rate of the nearest neighbor
model ≤ 2	 ∗ the Bayes error rate (the optimal classifier)

� Interpretation: “In this sense, it may be said that half the

classification information in an infinite sample set is
contained in the nearest neighbor.”

9/13/23 Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964

Recall:
𝑘-Nearest
Neighbors
(𝑘NN)
Pseudocode

9/13/23

def train(𝒟):

 store 𝒟

def predict(𝒙′):

 return majority_vote(labels of the 𝑘
 nearest neighbors to 𝒙′ in 𝒟)

𝑘-Nearest
Neighbors
(𝑘NN)

� Classify a point as the most common label among the

labels of the 𝑘 nearest training points

� Tie-breaking (in case of even 𝑘 and/or more than 2 classes)

� Weight votes by distance

� Remove furthest neighbor

� Add next closest neighbor

� Use a different distance metric

9/13/23

𝑘NN on
Fisher Iris
Data

Figure courtesy of Matt Gormley9/13/23

sepal width

se
pa

l l
en

gt
h 𝑦 = 0

𝑦	 = 	1

𝑦 = 2

𝑘NN on
Fisher Iris
Data

Figure courtesy of Matt Gormley9/13/23

Figure courtesy of Matt Gormley9/13/23

𝑘NN on
Fisher Iris
Data

Figure courtesy of Matt Gormley9/13/23

𝑘NN on
Fisher Iris
Data

Figure courtesy of Matt Gormley9/13/23

𝑘NN on
Fisher Iris
Data

Figure courtesy of Matt Gormley9/13/23

𝑘NN on
Fisher Iris
Data

Figure courtesy of Matt Gormley9/13/23

𝑘NN on
Fisher Iris
Data

Figure courtesy of Matt Gormley9/13/23

𝑘NN on
Fisher Iris
Data

Figure courtesy of Matt Gormley9/13/23

𝑘NN on
Fisher Iris
Data

Figure courtesy of Matt Gormley9/13/23

𝑘NN on
Fisher Iris
Data

Figure courtesy of Matt Gormley9/13/23

𝑘NN on
Fisher Iris
Data

Figure courtesy of Matt Gormley9/13/23

𝑘NN on
Fisher Iris
Data

� Similar points should have similar labels and all features
are equivalently important for determining similarity

� Feature scale can dramatically influence results!

𝑘NN with
Euclidean
Distance:
Inductive Bias

9/13/23

se
pa

l l
en

gt
h

(c
m

)

sepal width (cm)

se
pa

l l
en

gt
h

(c
m

)

sepal width (m)

Figure courtesy of Matt Gormley

𝑘NN:
Pros and Cons

� Pros:
� Intuitive / explainable
� No training / retraining
� Provably near-optimal in terms of true error rate

� Cons:
� Computationally expensive

� Always needs to store all data: 𝑂 𝑁𝐷
� Finding the 𝑘	closest points in 𝐷 dimensions:
𝑂 𝑁𝐷 + 𝑁 log 𝑘
� Can be sped up through clever use of data

structures (trades off training and test costs)
� Can be approximated using stochastic methods

� Affected by feature scale
9/13/23

KNN Learning
Objectives

You should be able to…

� Describe a dataset as points in a high dimensional space
[CIML]

� Implement k-Nearest Neighbors with O(N) prediction
� Describe the inductive bias of a k-NN classifier and

relate it to feature scale [a la. CIML]

� Sketch the decision boundary for a learning algorithm
(compare k-NN and DT)

� State Cover & Hart (1967)'s large sample analysis of a
nearest neighbor classifier

� Invent "new" k-NN learning algorithms capable of
dealing with even k

9/13/23

How on earth
do we go about
setting 𝑘?

� This is effectively a question of model selection: every
value of 𝑘 corresponds to a different model.

� WARNING:
� In some sense, our discussion of model selection is

premature.
� The models we have considered thus far are fairly

simple.
� In the real world, the models and the many

decisions available to you will be much more
complex than what we’ve seen so far.

9/13/23

Model
Selection

� Terminology:
� Model ≈ the

hypothesis space in
which the learning
algorithm searches for
a classifier to return

� Parameters = numeric
values or structure
selected by the
learning algorithm

� Hyperparameters =
tunable aspects of the
model that need to be
specified before
learning can happen,
set outside of the
training procedure

� Example – Decision Trees:
� Model = the set of all

possible trees,
potentially limited by
some hyperparameter,
e.g., max depth (see
below)

� Parameters = structure
of a specific tree, i.e.,
the order in which
features are split on

� Hyperparameters =
max depth, splitting
criterion, etc…

9/13/23

Model
Selection

9/13/23

� Terminology:
� Model ≈ the

hypothesis space in
which the learning
algorithm searches for
a classifier to return

� Parameters = numeric
values or structure
selected by the
learning algorithm

� Hyperparameters =
tunable aspects of the
model that need to be
specified before
learning can happen,
set outside of the
training procedure

� Example – 𝑘NN:
� Model = the set of all

possible nearest
neighbor classifiers

� Parameters = none!
𝑘NN is a non-
parametric model

� Hyperparameters = 𝑘

Parametric vs.
Nonparametric
Models

� Parametric models (e.g., decision trees)
� Have a parametrized form with parameters learned

from training data

� Can discard training data after parameters have
been learned.

� Cannot exactly model every target function

� Nonparametric models (e.g., 𝑘NN)
� Have no parameters that are learned from training

data; can still have hyperparameters
� Training data generally needs to be stored in order

to make predictions
� Can recover any target function given enough data

9/13/23

Model
Selection vs
Hyperparameter
Optimization

9/13/23

� Hyperparameter optimization can be considered a

special case of model selection

� Changing the hyperparameters changes the
hypothesis space or the set of potential classifiers

returned by the learning algorithm

� Deciding between a decision tree and 𝑘NN (model

selection) vs. selecting a value of 𝑘 for 𝑘NN
(hyperparameter optimization)

� Both model selection and hyperparameter optimization
happen outside the regular training procedure

Setting 𝑘

� When 𝑘 = 1:

� many, complicated decision boundaries

� liable to overfit

� When 𝑘 = 𝑁:

� no decision boundaries; always predicts the most
common label in the training data (majority vote)

� liable to underfit

� 𝑘 controls the complexity of the hypothesis set ⟹ 𝑘
affects how well the learned hypothesis will generalize

9/13/23

Setting 𝑘

� Theorem:

� If 𝑘 is some function of 𝑁 s.t. 𝑘 𝑁 → ∞ and) *
* → 0

as 𝑁 → ∞ …

� … then (under certain assumptions) the true error of a
𝑘NN model →	the Bayes error rate

� Practical heuristics:

� 𝑘 = 𝑁

� 𝑘 = 3

� Perform model selection!

9/13/23

Model
Selection
with
Test Sets?

� Given 𝒟 = 𝒟+,-!. ∪ 𝒟+/0+, suppose we have multiple

candidate models:
ℋ1,ℋ2, … ,ℋ3

� Learn a classifier from each model using only 𝒟+,-!.:

ℎ1 ∈ ℋ1, ℎ2 ∈ ℋ2, … , ℎ3 ∈ ℋ3

� Evaluate each one using 𝒟+/0+ and choose the one with

lowest test error:

@𝑚 = argmin
4∈{1,…,3}

𝑒𝑟𝑟 ℎ4, 𝒟+/0+

� Is 𝑒𝑟𝑟 ℎ :4, 𝒟+/0+ 	a good estimate of 𝑒𝑟𝑟 ℎ :4 ?

9/13/23

Model
Selection
with
Validation Sets

� Given 𝒟 = 𝒟+,-!. ∪ 𝒟;-< ∪ 𝒟+/0+, suppose we have

multiple candidate models:
ℋ1,ℋ2, … ,ℋ3

� Learn a classifier from each model using only 𝒟+,-!.:

ℎ1 ∈ ℋ1, ℎ2 ∈ ℋ2, … , ℎ3 ∈ ℋ3

� Evaluate each one using 𝒟;-< and choose the one with

lowest validation error:

@𝑚 = argmin
4∈{1,…,3}

𝑒𝑟𝑟 ℎ4, 𝒟;-<

� Now 𝑒𝑟𝑟 ℎ :4, 𝒟+/0+ 	is a good estimate of 𝑒𝑟𝑟 ℎ :4 !

9/13/23

Hyperparameter
Optimization
with
Validation Sets

� Given 𝒟 = 𝒟+,-!. ∪ 𝒟;-< ∪ 𝒟+/0+, suppose we have

multiple candidate hyperparameter settings:
𝜃1, 𝜃2, … , 𝜃3

� Learn a classifier for each setting using only 𝒟+,-!.:

ℎ1, ℎ2, … , ℎ3

� Evaluate each one using 𝒟;-< and choose the one with

lowest validation error:

@𝑚 = argmin
4∈{1,…,3}

𝑒𝑟𝑟 ℎ4, 𝒟;-<

� Now 𝑒𝑟𝑟 ℎ :4, 𝒟+/0+ 	is a good estimate of 𝑒𝑟𝑟 ℎ :4 !

9/13/23

Setting 𝑘
for 𝑘NN
with
Validation Sets

9/13/23 Figure courtesy of Matt Gormley

𝑘NN train and validation errors on Fisher Iris data

9/13/23 Figure courtesy of Matt Gormley

𝑘NN train and validation errors on Fisher Iris data

How should
we partition
our dataset?

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟1, 𝒟2, … , 𝒟=

� Use each one as a validation set once:

� Let ℎ>! be the classifier learned using
𝒟>! = 𝒟\𝒟! (all folds other than 𝒟!)
and let 𝑒! = 𝑒𝑟𝑟 ℎ>!, 𝒟!

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟?;!=
1
𝐾L
!@1

=

𝑒!

9/13/23

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟1, 𝒟2, … , 𝒟=

� Use each one as a validation set once:

� Let ℎ>! be the classifier learned using
𝒟>! = 𝒟\𝒟! (all folds other than 𝒟!)
and let 𝑒! = 𝑒𝑟𝑟 ℎ>!, 𝒟!

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟?;!=
1
𝐾L
!@1

=

𝑒!

9/13/23

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4

𝒟1

𝒟>1

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟1, 𝒟2, … , 𝒟=

� Use each one as a validation set once:

� Let ℎ>! be the classifier learned using
𝒟>! = 𝒟\𝒟! (all folds other than 𝒟!)
and let 𝑒! = 𝑒𝑟𝑟 ℎ>!, 𝒟!

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟?;!=
1
𝐾L
!@1

=

𝑒!

9/13/23

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4
𝒟>2

𝒟2

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟1, 𝒟2, … , 𝒟=

� Use each one as a validation set once:

� Let ℎ>! be the classifier learned using
𝒟>! = 𝒟\𝒟! (all folds other than 𝒟!)
and let 𝑒! = 𝑒𝑟𝑟 ℎ>!, 𝒟!

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟?;!=
1
𝐾L
!@1

=

𝑒!

9/13/23

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4

𝒟A

𝒟>A

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟1, 𝒟2, … , 𝒟=

� Use each one as a validation set once:

� Let ℎ>! be the classifier learned using
𝒟>! = 𝒟\𝒟! (all folds other than 𝒟!)
and let 𝑒! = 𝑒𝑟𝑟 ℎ>!, 𝒟!

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟?;!=
1
𝐾L
!@1

=

𝑒!

9/13/23

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4𝒟B

𝒟>B

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟1, 𝒟2, … , 𝒟=

� Use each one as a validation set once:

� Let ℎ>! be the classifier learned using

𝒟>! = 𝒟\𝒟! (all folds other than 𝒟!)
and let 𝑒! = 𝑒𝑟𝑟 ℎ>!, 𝒟!

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟?;!=
1
𝐾
L
!@1

=

𝑒!

� Special case when 𝐾 = 𝑁: Leave-one-out cross-validation

� Choosing between 𝑚 candidates requires training 𝑚𝐾 times
9/13/23

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4

Summary

Input Output

Training • training dataset
• hyperparameters

• best model
parameters

Hyperparameter
Optimization

• training dataset
• validation dataset

• best
hyperparameters

Cross-Validation • training dataset
• validation dataset

• cross-validation
error

Testing • test dataset
• classifier • test error

9/13/23

Hyperparameter
Optimization

� Given 𝒟 = 𝒟+,-!. ∪ 𝒟;-< ∪ 𝒟+/0+, suppose we have

multiple candidate hyperparameter settings:
𝜃1, 𝜃2, … , 𝜃3

� Learn a classifier for each setting using only 𝒟+,-!.:

ℎ1, ℎ2, … , ℎ3

� Evaluate each one using 𝒟;-< and choose the one with

lowest validation error:

@𝑚 = argmin
4∈{1,…,3}

𝑒𝑟𝑟 ℎ4, 𝒟;-<

� Now 𝑒𝑟𝑟 ℎ :4, 𝒟+/0+ 	is a good estimate of 𝑒𝑟𝑟 ℎ :4 !

9/13/23

General
Methods for
Hyperparameter
Optimization

� Idea: set the hyperparameters to optimize some
performance metric of the model

� Issue: if we have many hyperparameters that can all
take on lots of different values, we might not be able to
test all possible combinations

� Commonly used methods:
� Grid search

� Random search
� Bayesian optimization (used by Google DeepMind

to optimize the hyperparameters of AlphaGo:
https://arxiv.org/pdf/1812.06855v1.pdf)

� Evolutionary algorithms

� Graduate-student descent
9/13/23

https://arxiv.org/pdf/1812.06855v1.pdf

Grid Search vs.
Random
Search
(Bergstra and
Bengio, 2012)

9/13/23 Source: https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf

https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf

Model
Selection
Learning
Objectives

You should be able to…
� Plan an experiment that uses training, validation, and

test datasets to predict the performance of a classifier
on unseen data (without cheating)

� Explain the difference between (1) training error, (2)
validation error, (3) cross-validation error, (4) test error,
and (5) true error

� For a given learning technique, identify the model,
learning algorithm, parameters, and hyperparamters

� Select an appropriate algorithm for optimizing (aka.
learning) hyperparameters

9/13/23

