10-301/601: Introduction to Machine Learning Lecture 5 – KNNs & Model Selection

Henry Chai & Matt Gormley

9/13/23

Front Matter

- Announcements:
	- HW2 released 9/6, due 9/15 (Friday!) at 11:59 PM
	- HW3 will be released on 9/15, due 9/23 at 11:59 PM
		- HW3 is a written-only homework
		- **You may only use at most 2 late days on HW3**
	- **Important scheduling note:** we will have lecture on 9/15 (Friday!) in lieu of recitation
		- This is to ensure that we cover enough material for you all to make a meaningful start on HW3
		- The HW3 recitation has been moved to 9/20 (next Wednesday)

Recall: Nearest Neighbor Pseudocode def $train(D)$: store $\mathcal D$ def predict (x') : find the nearest neighbor to x' in D , $x^{(i)}$ return $y^{(i)}$

Recall: Nearest Neighbor Decision Boundary

Decision Boundary Exercise

The Nearest Neighbor Model

Requires no training!

- Always has zero training error!
	- *A data point is always its own nearest neighbor*

 $\ddot{\cdot}$

Always has zero training error…

Generalization of Nearest Neighbor (Cover and Hart, 1967)

- Claim: under certain condition probability, the true error rate model ≤ 2 * the Bayes error
- \cdot Interpretation: "In this sense, classification information in a contained in the nearest neig

Recall: -Nearest **Neighbors** (kNN) Pseudocode def train (D) : store D def predict (x') : return majority_vote(labels of the k nearest neighbors to x' in D)

-Nearest **Neighbors** (kNN)

 Classify a point as the most common label among the labels of the k nearest training points

 \cdot Tie-breaking (in case of even k and/or more than 2 classes)

3-Class classification ($k = 1$, weights = 'uniform')

3-Class classification ($k = 2$, weights = 'uniform')

3-Class classification ($k = 3$, weights = 'uniform')

3-Class classification ($k = 5$, weights = 'uniform')

3-Class classification ($k = 10$, weights = 'uniform')

3-Class classification ($k = 20$, weights = 'uniform')

3-Class classification ($k = 30$, weights = 'uniform')

3-Class classification ($k = 50$, weights = 'uniform')

3-Class classification ($k = 100$, weights = 'uniform')

3-Class classification ($k = 120$, weights = 'uniform')

3-Class classification ($k = 150$, weights = 'uniform')

 kNN with Euclidean Distance: Inductive Bias

kNN : Pros and Cons

• Pros:

- Intuitive / explainable
- No training / retraining
- Provably near-optimal in terms of true error rate
- Cons:
	- Computationally expensive
		- Always needs to store all data: $O(ND)$
		- \cdot Finding the k closest points in D dimensions: $O(ND + N \log(k))$
			- Can be sped up through clever use of data structures (trades off training and test costs)
			- Can be approximated using stochastic methods
	- Affected by feature scale

KNN Learning **Objectives**

You should be able to…

- Describe a dataset as points in a high dimensional space [CIML]
- \cdot Implement k-Nearest Neighbors with $O(N)$ prediction
- Describe the inductive bias of a k-NN classifier and relate it to feature scale [a la. CIML]
- Sketch the decision boundary for a learning algorithm (compare k-NN and DT)
- State Cover & Hart (1967)'s large sample analysis of a nearest neighbor classifier
- Invent "new" k-NN learning algorithms capable of dealing with even k

How on earth do we go about setting k ?

- This is effectively a question of model selection: every value of k corresponds to a different model.
- **WARNING**:
	- \cdot In some sense, our discussion of model selection is premature.
	- The models we have considered thus far are fairly simple.
	- . In the real world, the models and the many decisions available to you will be much more complex than what we've seen so far.

Model Selection

- Terminology:
	- **Model** ≈ the hypothesis space in which the learning algorithm searches for a classifier to return
	- **Parameters** = numeric values or structure selected by the learning algorithm
	- **Hyperparameters** = tunable aspects of the model that need to be specified before learning can happen, set outside of the training procedure
- Example Decision Trees:
	- Model = the set of all possible trees, potentially limited by some hyperparameter, e.g., max depth (see below)
	- Parameters = structure of a specific tree, i.e., the order in which features are split on
	- Hyperparameters = max depth, splitting criterion, etc …

Model Selection

- Terminology:
	- **Model** ≈ the hypothesis space in which the learning algorithm searches for a classifier to return
	- **Parameters** = numeric values or structure selected by the learning algorithm
	- **Hyperparameters** = tunable aspects of the model that need to be specified before learning can happen, set outside of the training procedure
- \cdot Example kNN :
	- Model = the set of all possible nearest neighbor classifiers

- Parameters = none! kNN is a nonparametric model
- Hyperparameters = k

Parametric vs. Nonparametric **Models**

- Parametric models (e.g., decision trees)
	- Have a parametrized form with parameters learned from training data
	- Can discard training data after parameters have been learned.
	- Cannot exactly model every target function
- Nonparametric models (e.g., kNN)
	- Have no parameters that are learned from training data; can still have *hyperparameters*
	- Training data generally needs to be stored in order to make predictions
	- Can recover any target function given enough data

Model Selection vs Hyperparameter **Optimization**

 Hyperparameter optimization can be considered a special case of model selection

- Changing the hyperparameters changes the hypothesis space or the set of potential classifiers returned by the learning algorithm
- \cdot Deciding between a decision tree and kNN (model selection) vs. selecting a value of k for kNN (hyperparameter optimization)
- Both model selection and hyperparameter optimization happen outside the regular training procedure

Setting k

- \cdot When $k = 1$:
	- many, complicated decision boundaries
	- · liable to overfit
- \cdot When $k = N$:
	- no decision boundaries; always predicts the most common label in the training data (majority vote)
	- liable to underfit
- \cdot k controls the complexity of the hypothesis set \Longrightarrow k affects how well the learned hypothesis will generalize

Setting k

- Theorem:
	- \cdot If k is some function of N s.t. $k(N) \rightarrow \infty$ and $\frac{k(N)}{N}$ \overline{N} $\rightarrow 0$ as $N \to \infty$...
	- … then (under certain assumptions) the true error of a kNN model \rightarrow the Bayes error rate
- Practical heuristics:
	- $\cdot k = |\sqrt{N}|$
	- $\cdot k = 3$
- Perform model selection!

Model **Selection** with Test Sets? Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models:

 $\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_M$

• Learn a classifier from each model using only \mathcal{D}_{train} : $h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$

Evaluate each one using D_{test} and choose the one with lowest test error:

> $\widehat{m} = \text{ argmin_err}(h_m, \mathcal{D}_{test})$ $m \in \{1, ..., M\}$

Is err($h_{\hat{m}}$, \mathcal{D}_{test}) a good estimate of err($h_{\hat{m}}$)?

Model **Selection** with Validation Sets Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models: $\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_M$

• Learn a classifier from each model using only \mathcal{D}_{train} : $h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$

Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

> $\widehat{m} = \text{ argmin}_{\ell} err(h_m, \mathcal{D}_{val})$ $m \in \{1, ..., M\}$

Hyperparameter **Optimization** with Validation Sets

Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate hyperparameter settings: $\theta_1, \theta_2, ..., \theta_M$

- Learn a classifier for each setting using only \mathcal{D}_{train} : $h_1, h_2, ..., h_M$
- Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

 $\widehat{m} = \text{ argmin}_{\ell} err(h_m, \mathcal{D}_{val})$ $m \in \{1, ..., M\}$

Setting k for kNN with Validation Sets

k NN train and validation errors on Fisher Iris data

How should we partition our dataset?

k NN train and validation errors on Fisher Iris data

Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $D_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, D_i)$
- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

- Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$
- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

• Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$

Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$
- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

- Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$
- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

• Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$

Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$
- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

- Given $\mathcal D$, split $\mathcal D$ into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $D_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, D_i)$
- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

 \cdot Special case when $K = N$: Leave-one-out cross-validation

• Choosing between m candidates requires training mK times

Summary

Hyperparameter **Optimization**

Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate hyperparameter settings: $\theta_1, \theta_2, ..., \theta_M$

• Learn a classifier for each setting using only \mathcal{D}_{train} : $h_1, h_2, ..., h_M$

Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

> $\widehat{m} = \text{ argmin}_{\ell} err(h_m, \mathcal{D}_{val})$ $m \in \{1, ..., M\}$

General Methods for Hyperparameter **Optimization**

- · Idea: set the hyperparameter performance metric of the model
- . Issue: if we have many hyper take on lots of different value test all possible combinations
- Commonly used methods:
	- Grid search
	- Random search
	- · Bayesian optimization (us to optimize the hyperpara https://arxiv.org/pdf/181
	- Evolutionary algorithms
	- · Graduate-student descen

Grid Search vs. Random Search (Bergstra and Bengio, 2012)

Grid Layout

Model **Selection** Learning **Objectives** You should be able to…

- Plan an experiment that uses training, validation, and test datasets to predict the performance of a classifier on unseen data (without cheating)
- Explain the difference between (1) training error, (2) validation error, (3) cross-validation error, (4) test error, and (5) true error
- For a given learning technique, identify the model, learning algorithm, parameters, and hyperparamters
- Select an appropriate algorithm for optimizing (aka. learning) hyperparameters