10-301/601: Introduction to Machine Learning Lecture 6 – Perceptron

Henry Chai & Matt Gormley 9/15/23

Q & A: Suppose we do model selection using a validation dataset. For our final model, shouldn't we train using *both* the training and the validation datasets?

 Yes, absolutely! So really the sketch from last lecture should look something like:

- 1. Split \mathcal{D} into $\mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$
- 2. Learn classifiers using D_{train}
- 3. Evaluate models using \mathcal{D}_{val} and choose the one with lowest *validation* error:
- **4. Learn a new classifier from the best model using** $\mathcal{D}_{train} \cup \mathcal{D}_{val}$
- 5. Optionally, use D_{test} to estimate the true error

Q & A: Can we use k NNs with categorical features?

 Again, yes! We can either convert categorical features into binary ones or use a distance metric that works over categorical features e.g., the Hamming distance:

$$
d(\mathbf{x}, \mathbf{x}') = \sum_{d=1}^{D} \mathbb{1}(x_d = x'_d)
$$

• See HW3 for an example of this

Front Matter

- Announcements:
	- HW2 released 9/6, due 9/15 (today!) at 11:59 PM
	- HW3 will be released on 9/15 (today!), due 9/23 at 11:59 PM
		- HW3 is a written-only homework
		- **You may only use at most 2 late days on HW3**
	- The HW3 recitation has been moved to 9/20 (next Wednesday)

Recall: Fisher Iris Dataset

Linear Algebra Review

 Notation: in this class vectors will be assumed to be column vectors by default, i.e.,

$$
\boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_D \end{bmatrix} \text{ and } \boldsymbol{a}^T = \begin{bmatrix} a_1 & a_2 & \cdots & a_D \end{bmatrix}
$$

 \cdot The dot product between two D-dimensional vectors is $a^T b = \begin{bmatrix} a_1 & a_2 & \cdots & a_D \end{bmatrix}$ b_1 $b₂$ $\ddot{\bullet}$ b_D $=$ $\left\langle \right\rangle$ $\overline{d=1}$ \overline{D} $a_d b_d$

- The L2-norm of $\mathbf{a} = ||\mathbf{a}||_2 = \sqrt{\mathbf{a}^T \mathbf{a}}$
- Two vectors are *orthogonal* iff $a^T b = 0$

Geometry Warm-up

Linear Decision Boundaries

 \cdot In 2 dimensions, $w_1 x_1 + w_2 x_2 + b = 0$ defines a *line*

- \cdot In 3 dimensions, $w_1 x_1 + w_2 x_2 + w_3 x_3 + b = 0$ defines a *plane*
- \cdot In 4+ dimensions, $w^T x + b = 0$ defines a *hyperplane*
	- \cdot The vector w is always orthogonal to this hyperplane and always points in the direction where $w^T x + b > 0!$
- A hyperplane creates two *halfspaces*: $\cdot S_+ = \{x: w^T x + b > 0\}$ or all x s.t. $w^T x + b$ is positive $\cdot S_ = \{x: w^T x + b < 0\}$ or all x s.t. $w^T x + b$ is negative

Linear Decision Boundaries: Example

Goal: learn classifiers of the form $h(x) =$ $sign(w^T x + b)$ (assuming $y \in \{-1, +1\}$

Key question: how do we learn the *parameters*, w and b ?

Online Learning

- So far, we've been learning in the *batch* setting, where we have access to the entire training dataset at once
- A common alternative is the *online* setting, where data points arrive gradually over time and we learn continuously
- Examples of online learning:

Online Learning: Setup

- For $t = 1, 2, 3, ...$
	- Receive an unlabeled data point, $x^{(t)}$
	- Predict its label, $\hat{y} = h_{w,b}(x^{(t)})$
	- Observe its true label, $y^{(t)}$
	- Pay a penalty if we made a mistake, $\hat{y} \neq y^{(t)}$
	- Update the parameters, \boldsymbol{w} and \boldsymbol{b}

Goal: minimize the number of mistakes made

(Online) Perceptron Learning Algorithm

. Initialize the weight vector and intercept to all zeros:

 $w = [0 \ 0 \ \cdots \ 0]$ and $b = 0$

• For $t = 1, 2, 3, ...$

- Receive an unlabeled data point, $x^{(t)}$
- Predict its label, $\hat{y} = sign(w^T x + b) = \begin{cases} +1 \text{ if } w^T x + b \ge 0 \\ 1 \text{ otherwise.} \end{cases}$ −1 otherwise
- Observe its true label, $y^{(t)}$
- If we misclassified a positive point $(y^{(t)} = +1, \hat{y} = -1)$: $\cdot w \leftarrow w + x^{(t)}$ $\cdot b \leftarrow b + 1$
- If we misclassified a negative point $(y^{(t)} = -1, \hat{y} = +1)$: $\cdot w \leftarrow w - x^{(t)}$ $\cdot b \leftarrow b - 1$

(Online) Perceptron Learning Algorithm

• Initialize the weight vector and intercept to all zeros:

 $w = [0 \ 0 \ ... \ 0]$ and $b = 0$

• For $t = 1, 2, 3, ...$

- Receive an unlabeled data point, $x^{(t)}$
- Predict its label, $\hat{y} = sign(w^T x + b) = \begin{cases} +1 \text{ if } w^T x + b \ge 0 \\ 1 \text{ otherwise.} \end{cases}$ −1 otherwise
- Observe its true label, $y^{(t)}$
- If we misclassified a point $(y^{(t)} \neq \hat{y})$:

• $w \leftarrow w + y^{(t)} x^{(t)}$ $\cdot b \leftarrow b + v^{(t)}$

 $w \leftarrow w + y^{(5)}x^{(5)} =$

x_1	x_2	\hat{y}	Mistake?	
-1	2	+	Yes	Decision
1	0	+	No	Decision
1	1	-	Yes	Boundary
1	1	-	Yes	Boundary
1	0	-	No	No
1	0	-	No	No
1	0	-	No	No
1	0	-	No	No
1	0	-	No	No
1	0	-	No	No
1	0	-	No	No
1	0	-	No	No
2	0	0	0	
2	0	0	0	
1	0	-	0	0
2	0	0	0	
2	0	0	0	
3	0	0	0	

Updating the Intercept

- The intercept shifts the decision boundary off the origin
	- \cdot Increasing b shifts the decision boundary towards the negative side
	- \cdot Decreasing b shifts the decision boundary towards the positive side

Notational **Hack**

• If we add a 1 to the beginning of every feature vector e.g.,

$$
x' = \begin{bmatrix} 1 \\ x \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \dots
$$

… we can just fold the intercept into the weight vector!

$$
\boldsymbol{\theta} = \begin{bmatrix} b \\ w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix} \rightarrow \boldsymbol{\theta}^T \boldsymbol{x}' = \boldsymbol{w}^T \boldsymbol{x} + b
$$

(Online) Perceptron Learning Algorithm

• Initialize the weight vector and intercept to all zeros:

 $w = [0 \ 0 \ ... \ 0]$ and $b = 0$

• For $t = 1, 2, 3, ...$

- Receive an unlabeled data point, $x^{(t)}$
- Predict its label, $\hat{y} = sign(w^T x + b) = \begin{cases} +1 \text{ if } w^T x + b \ge 0 \\ 1 \text{ otherwise.} \end{cases}$ −1 otherwise
- Observe its true label, $y^{(t)}$
- If we misclassified a point $(y^{(t)} \neq \hat{y})$:

• $w \leftarrow w + y^{(t)} x^{(t)}$ $\cdot b \leftarrow b + v^{(t)}$

(Online) Perceptron Learning Algorithm

. Initialize the parameters to all zeros:

 $\boldsymbol{\theta} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$ • For $t = 1, 2, 3, ...$ • Receive an unlabeled data point, $x^{(t)}$ Predict its label, $\hat{y} = \text{sign}\left(\boldsymbol{\theta}^T \boldsymbol{x'}^{(t)}\right) = \begin{cases} +1 \text{ if } \boldsymbol{\theta}^T \boldsymbol{x'}^{(t)} \geq 0 \end{cases}$ −1 otherwise 1 prepended to $\pmb{x}^{(t)}$

 $\frac{1}{1}$ we misclassified a negative example ($\frac{1}{1}$

• Observe its true label, $y^{(t)}$

 $\cdot \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} \boldsymbol{x'}^{(t)}$

If we misclassified a point $(y^{(t)} \neq \hat{y})$:

```
Automatically handles
updating the intercept
```
(Online) Perceptron Learning Algorithm: Inductive Bias

(Online) Perceptron Learning Algorithm

· Initialize the parameters to all zeros:

 $\boldsymbol{\theta} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$

• For $t = 1, 2, 3, ...$

• Receive an unlabeled data point, $x^{(t)}$

• Predict its label, $\hat{y} = \text{sign}(\boldsymbol{\theta}^T {\boldsymbol{x}'}^{(t)})$

• Observe its true label, $y^{(t)}$

If we misclassified a point $(y^{(t)} \neq \hat{y})$:

 $\cdot \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} {\boldsymbol{x}'}^{(t)}$

(Batch) Perceptron Learning Algorithm

• Input: $\mathcal{D} = \{(\pmb{x}^{(1)}, y^{(1)}), (\pmb{x}^{(2)}, y^{(2)}), ..., (\pmb{x}^{(N)}, y^{(N)})\}$

 \cdot Initialize the parameters to all zeros:

 $\theta = [0 \ 0 \ \cdots \ 0]$

While NOT CONVERGED

• For $t \in \{1, ..., N\}$

• Predict the label of ${x'}^{(t)}$, $\hat{y} = \text{sign} ({{\boldsymbol{\theta}}^T}{x'}^{(t)})$

• Observe its true label, $y^{(t)}$

• If we misclassified $x'^{(t)}$ $(y^{(t)} \neq \hat{y})$:

 $\cdot \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} {\boldsymbol{x}'}^{(t)}$

Perceptron Mistake Bound

- Definitions:
	- A dataset is *linearly separable* if ∃ a linear decision boundary that perfectly classifies the data points in D
	- \cdot The margin, γ , of a dataset $\mathcal D$ is the greatest possible distance between a linear separator and the closest data point in D to that linear separator

Perceptron Mistake Bound

- Theorem: if the data points seen by the Perceptron Learning Algorithm (online and batch)
	- 1. lie in a ball of radius R (centered around the origin)
	- 2. have a margin of γ

then the algorithm makes at most $(R/\gamma)^2$ mistakes.

• Key Takeaway: if the training dataset is linearly separable, the batch Perceptron Learning Algorithm will converge (i.e., stop making mistakes on the training dataset or achieve 0 training error) in a finite number of steps!

- \cdot Let x' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}^n be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of $x'' - x'$ onto \boldsymbol{w} $\left.w\right\|_2$,
, the unit vector orthogonal to the hyperplane

- \cdot Let x' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}^n be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of $x'' - x'$ onto \boldsymbol{w} $w\Vert_2$,
, the unit vector orthogonal to the hyperplane

- \cdot Let x' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}^n be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of $x'' - x'$ onto \boldsymbol{w} $w\Vert_2$,
, the unit vector orthogonal to the hyperplane

 \cdot Let x' be an arbitrary point on the hyperplane and let x'' be an arbitrary point

• The distance between x" and $w^T x + b = 0$ is equal to the magnitude of the projection of $x'' - x'$ onto \boldsymbol{w} $w\Vert_2$,
, the unit vector orthogonal to the hyperplane

$$
\left|\frac{w^{T}(x''-x')}{\|w\|_{2}}\right| = \frac{|w^{T}x''-w^{T}x'|}{\|w\|_{2}} = \frac{|w^{T}x''+b|}{\|w\|_{2}}
$$

Model Selection Learning **Objectives** You should be able to…

- Explain the difference between online learning and batch learning
- Implement the perceptron algorithm for binary classification [CIML]
- Determine whether the perceptron algorithm will converge based on properties of the dataset, and the limitations of the convergence guarantees
- Describe the inductive bias of perceptron and the limitations of linear models
- Draw the decision boundary of a linear model
- Identify whether a dataset is linearly separable or not
- Defend the use of a bias term in perceptron (shifting points after projection onto weight vector)