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Reminders

* Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Fri, Sep. 15
— Due: Sat, Sep. 23 at 11:59pm
— (only two grace/late days permitted)

e Exam conflicts form




Q:

Q&A

| have a medical emergency or family emergency or disability or
other compelling reason and am unable to attend office hours
in-person this week. Can an exception be made so | can attend

office hours remotely?

Yes. Please email the Education Associate(s) and request a
period of remote office hours. We will reply with instructions on
how to utilize them during the approved time period.



Q&A

How do we build Decision Trees with real-valued features?

Great question! | made a 7 minute video about that.

How do we prove the Perceptron Mistake Bound?

Great question! I’'m going to make a 15 minute video about that.



DECISION TREES WITH
REAL-VALUED FEATURES



Q&A

Q: How do we learn a Decision Tree with real-
valued features?

A:
Decision Boundary Example

Dataset: Outputs {+,-}; Features x, and x,

In-Class Exercise

Question:

Question:
= Sva;tnhakI::“aecal:i:?ehi:i-gohggli:iLagsseh:::r A. Can aDecision Tree classifier achieve
on this dataset? zero training error on this dataset?
B. If ‘Yes’, draw the learned decision B. If ‘Yes’, draw the learned decision
boundary. If ‘No’, why not? boundary. If ‘No’, why not?
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Q&A

How do we learn a Decision Tree with real-
valued features?

Q

Make new discrete features out of the real-valued features and
then learn the Decision Tree as normal! Here’s an example...
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PERCEPTRON MISTAKE BOUND



Perceptron Mistake Bound

Guarantee: if some data has margin y and all points lie inside
a ball of radius R rooted at the origin, then the online
Perceptron algorithm makes < (R/y)? mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)
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Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.
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Linear Separability

Def: For a binary classification problem, a set of examples S
is linearly separable if there exists a linear decision boundary
that can separate the points

not linearly
separable



Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is
the distance from x to the plane w - x = 0 (or the negative if on
wrong side)

Margin of positive example x;

Slide from Nina Balcan



Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is
the distance from x to the plane w - x = 0 (or the negative if on

wrong side)
Definition: The margin y,, of a set of examples S w.r.t. a linear
separator w is the smallest margin over points x € S.

Slide from Nina Balcan -



Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is
the distance from x to the plane w - x = 0 (or the negative if on

wrong side)
Definition: The margin y,, of a set of examples S w.r.t. a linear
separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples § is the maximum y,,
over all linear separators w.

Slide from Nina Balcan



Perceptron Mistake Bound

Guarantee: if some data has margin y and all points lie inside
a ball of radius R rooted at the origin, then the online
Perceptron algorithm makes < (R/y)? mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Slide adapted from Nina Balcan



Perceptron Mistake Bound

Guarantee: if some data has margin y and all points lie inside
a ball of radius R rooted at the origin, then the online
Perceptron algorithm makes < (R/y)? mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)
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Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.
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PROOF OF THE MISTAKE BOUND



Analysis: Perceptron

Figure from Nina Balcan



Common
Misunderstanding:

: The radius is
Perceptron Mistake Boun centered at the

Theorem 0.1 (Block (1962), Novikoff (14 origin, not at the
Given dataset: D = {(x(9) y®)} N center of the
Suppose: & points.

Analysis: Percept

1. Finite size inputs: ||2V|| < R
2. Linearly separable data: 30 s.t. ||0*|| = 1 and
yD(0* - xM) > ~,Vi and somey > 0
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is ROTERAR

k< (R/v)?



Analysis: Perceptron




Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x¥, y())}N .

Suppose: | ;
1. Finite size inputs: ||[z(V|| < R 'l
2. Linearly separable data: 30 s.t. ||0"|| = 1 and

\

yD(0* - x(D) >~ Vi andsome~ > 0
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)’

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PERCEPTRON(D = {(x1), y (1)), (x(2) 42 . 1)
2 0—0,k=1 > Initialize parameters
3 foric {1,2,...} do > For each example
4 if 4 (0% . x(D) < 0 then > If mistake
5
6
7

gt  9k) 4 (D)%) > Update parameters
k< k+1
return 6




Analysis: Perceptron




Analysis: Perceptron




Analysis: Perceptron




Analysis: Perceptron

What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)

2. However, Freund & Schapire (1999) show that by projecting the
points (hypothetically) into a higher dimensional space, we can
achieve a similar bound on the number of mistakes made on

one pass through the sequence of examples

Theorem2. Let((X1, y1), ..., X, Ym)) beasequence of labeled examples with ||x; || < R.
Let u be any vector with ||u| = 1 and let y > 0. Define the deviation of each example as

d; = max{0, y — y;(u-x;)},

and define D = /> ", dl.z. Then the number of mistakes of the online perceptron algorithm
on this sequence is bounded by

20




Summary: Perceptron

Perceptron is a linear classifier

Simple learning algorithm: when a mistake is made, add /
subtract the features

Perceptron will converge if the data are linearly separable, it
will not converge if the data are linearly inseparable

For linearly separable and inseparable data, we can bound
the number of mistakes (geometric argument)

Extensions support nonlinear separators and structured
prediction



Perceptron Learning Objectives

You should be able to...

Explain the difference between online learning and batch learning
Implement the perceptron algorithm for binary classification [CIML]

Determine whether the perceptron algorithm will converge based on
properties of the dataset, and the limitations of the convergence
guarantees

Describe the inductive bias of perceptron and the limitations of linear
models

Draw the decision boundary of a linear model
|dentify whether a dataset is linearly separable or not
Defend the use of a bias term in perceptron



REGRESSION



Regression

National will Forecast

Goal:

— Given a training dataset of . y
pairs (x,y) where :

Weaghted %ILI

This is what * Xis avector —_—
differentiates |y is a scalar AR
regression from — Learna function (aka. curve
classification or line) y’ = h(x) that best fits

the training data

Example Applications:
— Stock price prediction
— Forecasting epidemics
— Speech synthesis

— Generation of images (e.g.
Deep Dream)
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Regression

Example: Dataset with only
one feature x and one scalar
outputy

b

>

Q: What is the function that
best fits these points?

34



K-NEAREST NEIGHBOR REGRESSION



K-NN Regression

Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest
output y Neighbor Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest x
PY in training data and return
itsy

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
o ® Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x(")
in training data and return

g the weighted average of

their y values



K-NN Regression

Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest
output y Neighbor Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest x
PY in training data and return
itsy

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
o ® Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x(")
in training data and return

g the weighted average of

their y values



K-NN Regression

Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest
output y Neighbor Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest x
® in training data and return
itsy

Algorithm 2: k=2 Nearest

Ay 1T-— —® | Neighbors Distance Weighted
@ """" 9 i Regression
po | ! * Train: store all (x, y) pairs
I ! * Predict: pick the nearest
] | two instances x(™ and x("2)
, . - in training data and return
| X () x| the weighted average of

— "’ their y values
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The distance
weighted
average of x(™)
and x(n2)

y (n1)

y
y (n2)

This tends
toward the
average
height of
the
leftmost
two points

)

{

K-NN Regression

Example: Dataset with only
one feature x and one scalar
outputy

j

>

XM ) x(2)

This region is closer to
the two points to the left

Algorithm 1: k=1 Nearest
Neighbor Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest x
in training data and return
itsy

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x(")
in training data and return
the weighted average of
their y values



DECISION TREE REGRESSION



Decision Tree Regression

Decision Tree for Classification Decision Tree for Regression
B B
/\ /\
A A A A
v C C 75 21 C C
74 VAN 74 VAN
+ + + 56 32 10 60




Decision Tree Regression

Dataset for Regression Decision Tree for Regression /
%

m {4)1’3)77576’879}

4 1 0 0 B

0 1

1 1 0 1 {4,1,3,7} /\;{5,6,8,9}

3 1 0 ¢ a

7 ° ° | {7}/\{4, 1,3} {6} {5’ 9

5 1 1 0

A EEEEE {5,8}/\{9}

8 1 1 0 6.5 9
| 9 1 1 1 During learning, choose the attribute that

minimizes an appropriate splitting
criterion (e.g. mean squared error, mean
absolute error)”

43




LINEAR FUNCTIONS, RESIDUALS, AND MEAN
SQUARED ERROR



Linear Functions

Def: Regression is predicting real-valued outputs

D = {(xO,yO)}" withx® € R, y® € R

Y1 y=wx+b

L

45



Linear Functions

Def: Regression is predicting real-valued outputs

D = {(x®,yO)"  withx® e R, y® e R

Y1 Yy =wix; +wWyx, +b

* Ageneral linear functionis
y=wix+b

* Ageneral linear decision boundary is
y = sign(w'x + b)

46



Key Idea of Linear Regression

Residuals Key Idea of Linear Regression
Def: « cesdel 1o e ' Aol Fl dhe S Sorchn h (\A/Po.rm,c«)a‘s W L>
Com  observed Hiel w\v\\w% T sres o5 m\ao.ﬂym
b prdked vahe q Fealny \m\j .
o - \Y(;)_ NG
- )
> J - [ )| Mean squared error (15t)

Def MSE Oliedwe Fackon
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OPTIMIZATION FOR ML



Unconstrained Optimization

* Def: In unconstrained optimization, we try minimize (or
maximize) a function with no constraints on the inputs to the
function

Given a function J(H), J RM —S R
Our goal is to find 0 = argmin J(0)
O cRM
For ML, these are For ML, this is the

the parameters objective function



Optimization for ML

Not quite the same setting as other fields...

— Function we are optimizing might not be the true goal
(e.g. likelihood vs generalization error)

— Precision might not matter
(e.g. data is noisy, so optimal up to 1e-16 might not help)

— Stopping early can help generalization error
(i.e. “early stopping” is a technique for regularization — discussed
more next time)

51



min vs

.argmin

v¥* = min, f(x)

x* = argmin, f(x)

52



min vs

.argmin

v¥* = min, f(x)

x* = argmin, f(x)

53



OPTIMIZATION METHOD #o:
RANDOM GUESSING



Notation Trick:
Folding in the Intercept Term

X
/\w[\ —

1, 21,29,...,ZMm

X
- T

‘ 0= |bwy,...,wrl
v o

/

This convenience trick allows us to more compactly talk
about linear functions as a simple dot product (without
explicitly writing out the intercept term every time). 55

55



ression as Function Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {ho : ho(x) = 8Tx,0 ¢ RM}
I




Contour Plots

Contour Plots

1.

Each level curve labeled
with value

Value l[abel indicates the
value of the function for
all points lying on that
level curve

J(0)

Just like a topofg
map, but for a
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Optimization by Random Guessing

Optimization Method #o0:
Random Guessing

1.
P

3.

Pick a random 6
Evaluate J(0)

Repeat steps 1 and 2 many
times

Return O that gives
smallest J(0)

J(8) = (8, 6,) = (10(8, - 0.5)): + (6(8, - 0.4))’

1.0

0.8

0.6 1

0.4

0.2

0.0

0.00Q \
S oS
O
N
0.0 012 014 Or6 0i8 1.0
0,
t | 6, 0, J(6,, 6,)
0.2 | 0.2 10.4
> | 0.3 | 0.7 7.2
3) 0.6 | 0.4 1.0
4] 09| 07| 162
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Optimization by Random Guessing

Optimization Method #o:
Random Guessing

1.  Pickarandom ©
2.  Evaluate J(0)

3. Repeat steps1and 2 many
times

4. Return O that gives
smallest J(0)

For Linear Regression:

* objective function is Mean
Squared Error (MSE)

* MSE =J(w,b) & .

= J(ev 0,)=n Zl (y(i) ; oTx(i)))

* contour plot: each line labeled with
MSE - lower means a better fit

* minimum corresponds to
parameters (w,b) = (6,, 6,) that
best fit some training dataset

J(8)= (8, 8,) =

N <
=1

1 3 <y(i) _ ng<z'>))2

1.0
0.000
0.8 A
"EES 38}
b S 3
N N q
0.4 1 @)
S
S
0.2 1 M
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1
6,
t| 6, 0, J(6,,8,)
1| 0.2 | 0.2 10.4
2 | 0.3 | 0.7 7.2
3| 0.6 | 04 1.0
4 | 0.9 | 0.7 16.2

.0



Linear Regression:
Running Example






Counting Butterflies

y = h*(x)
A (unknown)
wn h(x; 63))
L
v
|-
©
-
S
S
Y
’
2l
#* )
>/
>

X, # of mountains
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e e e B O E CCRTTIOVVSIVV R ETit et as icetagelenacdsand

MIGRATIQN_ ROUTES OF MONARCH BUTTERFLIES

@ Summer breeding area
@ Spring breeding area
@ Wintering area

Corn Belt region
—— Spring migration route
< Fall migration route

This map shows migration routes of fall and spring migrations, both east
and west of the Rocky Mountains.

the cold and glaciers

retreated, milkweed may

have gradually spread
northward, and monarchs

may have followed. But the
monarch butterfly remained

a tropical creature, unable to
survive the severe northern
winters. So every year as
winter approached, monarchs
left their summer fields of
milkweed and flew south again.
To this day, every spring and
summer, monarchs travel
north to their breeding grounds
across the eastern United
States and Canada. Every
winter, they return to Mexico.
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3
A
4
1
a

R st T T e TR

i -~ Tr=diabout the eastern monarchs?
Researchers began taking Measurements |

N 1993. The highest year on record

that represented, but

LOCATION OF MONARCH BUTTERFLY COLONIES one estimate is that there

. WINTERING IN MEXICO
AR were one billion monarchs in

the colonies that winter.

But as researchers
measured the colonies year
after year, they noticed
that the colonies were
shrinking. By 2014 the
colonies measured just
1.7 acres (0.7 ha), or less
than one and a half football

fields. That year there

% Capital
* City
@ Town

The eastern monarchs migrate to just twelve mountaintops, all located in
central Mexico.
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worried. The population of
Trees that appear orange are covered with butterflies tern monarchs had d
and roughly mark the border of this colony. easte el ad droppeq

more than 20 percent in just
seventeen years.

At the same time, scientists
in California reported that the
number of western monarchs
was dropping as well. From
1997 to 2014, the number of
monarchs overwintering along
the California coast had fallen
by 74 percent.

Populations of overwintering
monarchs were falling fast. By
2014 their numbers had fallen

so far that people wondered
whether the monarch butterfly should be listed as an endangered species—a species
in danger of becoming extinct, or disappearing forever.

R ay Losing monarchs could be bad for our world because monarchs play an important
P part in the food web. Despite the milkweed toxins in their bodies, they are food for
songbirds, spiders, and insects. Monarchs visit many f| owers and act as pollinators.
LUy i A 7% i

t

A Wi R I Y L A S N TS e s 0
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Counting Butterflies

y = h*(x)
A (unknown)
wn h(x; 63))
L
v
|-
©
-
S
S
Y
’
2l
#* )
>/
>

X, # of mountains
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Linear Regression in High Dimensions

* Inourdiscussions of linear regression, we
will always assume there is just one output,

y
* But our inputs will usually have many
features:
— T
X = [ X4y Xogeer yXpm]
* For example:

— suppose we had a drone take pictures of
each section of forest

— each feature could correspond to a pixel in
this image such that x,,, = 1if the pixel is
orange and x,, = 0 otherwise

— the output y would be the number of
butterflies in each picture

Q: How would you obtain ground truth
° data?
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1.
P

3.

Linear Regression by Rand. Guessing

Optimization Method #o:
Random Guessing

Pick a random 6
Evaluate J(0)

Repeat steps 1 and 2 many
times

Return O that gives
smallest J(0)

y=h*(x) g
(unknown)
7 .
pr<d
o ~@ .
2
7 .

For Linear Regression:

target function h*(x) is unknown
only have access to h*(x) through
training examples (x(,y()

want h(x; W) that best
approximates h*(x)

enable generalization w/inductive
bias that restricts hypothesis class
to linear functions



Linear Regression by Rand. Guessing

J(O)=J(6,6,) =~ (@) _ gy
Optimization Method #o: (0)=1(6,6.)= 5 §(y )

Random Guessing H0

1 Pick arandom ©

2. Evaluate J(0) o8

3. Repeat steps1and 2 many !

times 0.6
4. Return O that gives 0, |

' G B
6h o S A
o 28!
0.4 1 @)
h(x; 64) y= h*(X) S
R (x; 69) (unknown) | “
h(x; 8%) -
h(x’ 6(3))
0j6

smallest J(0)
0.0

Uy
20.000
ann'C7

=7

0.8 1.0

0.0 0i2 0i4
W b e1
t] 6 | O, | J6,86,)
/' o 1] 02 ] 02| /10.4)
h(x; 6) 2| 03|07 | Fx
o 3| 0.6 | 04 1.0
X > 4 |1 0.9 | 0.7 16.2




OPTIMIZATION METHOD #1:
GRADIENT DESCENT
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Mt. Washington

Franconia Ridge day hike
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Gradients
~ )(®)=1®,6,)
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J(8)=J(6,,6,)

Gradients
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These are the gradients that
Gradient Ascent would follow.




~J(0)=1(8,6)

0.8

0.6

0.4

0.2

Gradients

l\ \
0200

In this picture, each arrow is a 2D
vector consisting of two partial

derivatives.
- O0J
~

v‘](917 92) —
BIN
L 005

The vector is evaluat the
point [0,, 6,]" and plotted with its
origin there as well.

o©

These are the gradients that
Gradient Ascent would follow.
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gatlve) Gradients

)(8) = J(91, 0
0

0.8} In this picture, each arrow is a 2D
vector consisting of two partial
derivatives.

__ﬂ_

0.6} 001

—VJ(01,05) =
_90J
L 003

041 The vector is evaluated at the
point [0,, 6,]" and plotted with its
origin there as well.
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These are the negative gradients that
Gradient Descent would follow.
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Gradient Descent would follow.
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ative) Gradient Paths
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Shown are the paths that Gradient Descent
would follow if it were making infinitesimally

small steps.



Gradient Descent

Gradient Descent Algorithm
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Gradient Descent: Step Size

Question:

In gradient descent, what could go wrong if
we always use the same step size (or step size
schedule) for every problem we encounter?

Answer:



Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, %)

1:

2 6 — 60V

% while not converged do
RN B 7 (0}
5 return 6

In order to apply GD to Linear

Regression all we need is the

gradient of the objective Vo J(0)
function (i.e. vector of partial |- ~)
derivatives).




Gradient Descent

Algorithm 1 Gradient Descent

1. procedure GD(D, ')

2. 0+ 09

% while not converged do
4.

5)

0« 60— YVeJ(0)

return 0

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

Ve J(0)]]2 < €

Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.



GRADIENT DESCENT FOR
LINEAR REGRESSION



ression as Function Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {ho : ho(x) = 8Tx,0 ¢ RM}




Linear Regression by Gradient Desc.
J()=1(8,,8,) = 13 (40— o7x)’

Optimization Method #1:
Gradient Descent

1.
P

Pick a random 6

Repeat:
a. Evaluate gradient VJ(0)
b. Step opposite gradient

Return O that gives
smallest J(0)

i=1

1.0

1.0
0.000
0.8 A
0.6 S o=
"EES 38}
b S 3
N N q
Q
S
d s
0.2 1 M
@,
0.0 T T T T
0.0 0.2 0.4 0.6 0.8
6,
t | 6, 0, J(6,, 6,)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2
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Linear Regression by Gradient Desc.

Optimization Method #1:
Gradient Descent

1. Pick a random 6

2. Repeat:
a. Evaluate gradient VJ(0)
b. Step opposite gradient

3.  Return O that gives
smallest J(0)

y =h*(x)
A (unljnown)
//
Y 4
;’&/’
&
/

-, ! t| 6 6, | J6,6,)
/' “*-g 1 | 0.01 | 0.02 25.2
‘ 2 | 0.30 | 0.12 8.7

3 | 0.51 | 0.30 1.5
N > 4 | 0.59 | 0.43 0.2




Linear Regression by Gradient Desc.

Optimization Method #1:
Gradient Descent

1.
P

Pick a random 6
Repeat:

a. Evaluate gradient VJ(0)

b. Step opposite gradient

Return O that gives
smallest J(0)

1=

@) _ gTx®))"
1(y 0" x ))

J(8)=1(6,8,)=+>

1.0
0.00q
0.8 1
M50§ %%n
o i
e
y = () l s
(unknown) “
, 0.2-
/
>0 0.2 0.4 0.6 0.8 1.0
h(x; 63)) : : : : : :
Wb 6
t | 6, e, | J©,6,)
_ h(x; ) 1]0.01]0.02] 252\
2 030 0.12)] ( 87D
h(x; 80) 3 | 0.51 | 0.30 1.5
> 4 | 0.59 | 0.43 0.2
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Linear Regression by Gradient Desc.

o~ A
o
-
v
o 2
Yo
5 g
T= PN
-
(go)
)
=
, , >
Iteration, t
y = h*(x)
A (unknown)
’
/
- 003
. h(x; 65))
’
¥ — h(x; 62)
/
— h(x; 61)
>

t | 6, 0, J(6,, 6,)
1 | 0.01 | 0.02 25.2

2 | 0.30 | 0.12 8.7

3 | 0.51 | 0.30 1.5

4 | 0.59 | 0.43 0.2
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Linear Regression by Gradient Desc.

o~ A
O
5 A
o 2
YV oo
5 g
T= A
-
@ A
= A
0,
, , >
Iteration, t
y = h*(x)
A (unknown)
’
/
- 003
o h(x; 63))
’
¥ — h(x; 60)
/
— h(x; 6)
>

J(8)= (8, 8,) =

1
N

1=

1 @ _ gTx )’
$5 4007

1.0
0.000
0.8 A
0.6 4 S o=
£S5 23"
b S 3
N N q
Q
S
d s
0.2 1 M
@,
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
O,
t | 6, 0, J(6,, 6,)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2
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O Lo Gradlent Calculation for Linear Regression
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Gradient Calculation for Linear Regression

Derivative of J(*)(8):
d d 1
- (Z) T (z)
dgk / (0) d@k 2 (6
_1d

"2 dOx

= (ng(z) _

— (eTx(i) (’t) de (Zg w(z) _ y( ))
=il

— (QTX(Z') _ y(i))xl(:)

y)—

d
doy,

y(i))2

AP UNONINON

(9T (4) _

(%’))

Derivative of J(0):
N
d d
—J(0) = — 7@
a0, ) ; 5.7 (0)
N .
— Z(QTX(Z) y(z))m( )
i=1
Gradient of J(0) [used by Gradient Descent]
_f‘él!}(e)_ —vazl(gix(i) Y ) E;
2070 V(0T x () _ ()0
VQJ(H) _ dfs . ( ) _ Zz_l( X . Yy )
| Tov J(0). N 1(3TX<> oo]
N
= (07x) — )x®



GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, 0(0))
2 0 — 6 > Initialize parameters
3 while not converged do

: N 9T x () — 4,(0))x(9) i
4: gD .10 x y\)x > Compute gradient
5
6

0<—0—~g > Update parameters
return 6




