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Front Matter

� Announcements: 

� HW3 released 9/15, due 9/23 at 11:59 PM 

� Only two grace days allowed on HW3 →the latest 
you can submit HW3 is 9/25 (today!) at 11:59 PM

� Exam 1 on 9/28 (this Thursday!) from 6:30 PM - 8:30 PM
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Exam 1 
Logistics

� Location & Seats: You all will be split across multiple 

(large) rooms.

� Everyone will have an assigned seat

� Please watch Piazza carefully for more details

� If you have exam accommodations through ODR, 
they will be proctoring your exam on our behalf; 
you are responsible for submitting the exam 
proctoring request through your student portal. 
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Exam 1 
Logistics

� Format of questions:
� Multiple choice

� True / False (with justification)

� Derivations

� Short answers

� Drawing & Interpreting figures

� Implementing algorithms on paper

� No electronic devices (you won’t need them!)

� You are allowed to bring one letter-size sheet of notes; 
you can put whatever you want on both sides
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Exam 1 
Topics

� Covered material: Lectures 1 – 7
� Foundations

� Probability, Linear Algebra, Geometry, Calculus
� Optimization

� Important Concepts
� Overfitting
� Model selection / Hyperparameter optimization

� Decision Trees
� 𝑘-NN
� Perceptron
� Regression

� Decision Tree and 𝑘-NN Regression
� Linear Regression
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Exam 1 
Preparation

� Attend the review lecture (right now!) 

� Review the exam practice problems (released 9/18 on 
the course website, under Coursework)

� Rewatch the exam review recitation (held on 9/22)

� Review HWs 1 - 3

� Consider whether you have achieved the “learning 
objectives” for each lecture / section

� Write your one-page cheat sheet (back and front)
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Exam 1 
Tips

� Solve the easy problems first 

� If a problem seems extremely complicated, you might be 
missing something

� If you make an assumption, write it down

� Don’t leave any answer blank

� If you look at a question and don’t know the answer:

� just start trying things

� consider multiple approaches 

� imagine arguing for some answer and see if you like it
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Practice 
Problem 1a:
Decision Trees

9/25/23

•

subtree1 subtree2

•
log2 0.75 = �0.4 log2 0.25 = �2

�0.5 log2 0.5� 0.5 log2 0.5

�0.75 log2 0.75� 0.25 log2 0.25 ⇡
�0.75 log2 0.75� 0.25 log2 0.25 ⇡

>
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� What would be the effect of the “Weekend” attribute 
on the decision tree if we made it the root node? 
Explain your answer in terms of mutual information



Practice 
Problem 1b:
Decision Trees
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•

subtree1 subtree2

•
log2 0.75 = �0.4 log2 0.25 = �2

�0.5 log2 0.5� 0.5 log2 0.5

�0.75 log2 0.75� 0.25 log2 0.25 ⇡
�0.75 log2 0.75� 0.25 log2 0.25 ⇡

>
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� Which attribute would we split on first if we used 
mutual information as the splitting criterion? You may 

use log!
"
# ≈ −0.4 and log!

$
# ≈ −2



Practice 
Problem 2:
𝑘-NN 

� Consider the dataset below: 

� What is the leave-one-out cross-validation error for a 1-
NN model using the Euclidean distance?
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Practice 
Problem 3: 
Perceptron

� True or False: Consider two datasets 

𝒟$ = 𝒙$
$ , 𝑦$

$ , 𝒙$
! , 𝑦$

! , … , 𝒙$
%! , 𝑦$

%!  and 

𝒟! = 𝒙!
$ , 𝑦!

$ , 𝒙!
! , 𝑦!

! , … , 𝒙!
%" , 𝑦!

%"  where 

𝒙$
& ∈ ℝ'!  and 𝒙!

& ∈ ℝ'" . Suppose 𝑁$ > 𝑁! and 𝑑$ > 𝑑!. 
The maximum number of mistakes the Perceptron learning 
algorithm will make on 𝒟$ is higher than the maximum 
number of mistakes it will make on 𝒟!.
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Poll Question 1

� True or False: Consider two datasets 

𝒟$ = 𝒙$
$ , 𝑦$

$ , 𝒙$
! , 𝑦$

! , … , 𝒙$
%! , 𝑦$

%!  and 

𝒟! = 𝒙!
$ , 𝑦!

$ , 𝒙!
! , 𝑦!

! , … , 𝒙!
%" , 𝑦!

%"  where 

𝒙$
& ∈ ℝ'!  and 𝒙!

& ∈ ℝ'" . Suppose 𝑁$ > 𝑁! and 𝑑$ > 𝑑!. 
The maximum number of mistakes the Perceptron learning 
algorithm will make on 𝒟$ is higher than the maximum 
number of mistakes it will make on 𝒟!.

� True

� False

� True and False (TOXIC)
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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Regression line
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3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.

Consider the dataset plotted in the figure below along with 
the line learned by linear regression. 

Now suppose we slightly alter the dataset in different ways: 
for each new dataset, select the option below that best 
approximates the new line linear regression would learn

Practice 
Problem 4a: 
Linear 
Regression
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.

Consider the dataset plotted in the figure below along with 
the line learned by linear regression. 

Now suppose we slightly alter the dataset in different ways: 
for each new dataset, select the option below that best 
approximates the new line linear regression would learn

Practice 
Problem 4b: 
Linear 
Regression
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3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.

Consider the dataset plotted in the figure below along with 
the line learned by linear regression. 

Now suppose we slightly alter the dataset in different ways: 
for each new dataset, select the option below that best 
approximates the new line linear regression would learn

Practice 
Problem 4c: 
Linear 
Regression
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Poll Question 2 What questions do you have?
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Recall: 
Gradient 
Descent for 
Linear 
Regression

� Gradient descent for linear regression repeatedly takes 

steps opposite the gradient of the objective function
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𝜃2
Recall: 
Gradient 
Descent for 
Linear 
Regression
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𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )
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,𝜃

2)

𝐽 𝜃1, 𝜃2 =
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𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#	)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



𝜃2
Why
Gradient 
Descent for 
Linear 
Regression?
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� A function 𝑓:ℝ( → ℝ is strictly convex if 
∀	𝒙 $ ∈ ℝ(, 𝒙 ! ∈ ℝ( and 0 ≤ 𝑐 ≤ 1
𝑓 𝑐𝒙 $ + 1 − 𝑐 𝒙 ! ≤ 𝑐𝑓 𝒙 $ + 1 − 𝑐 𝑓 𝒙 !

𝑓 𝑐𝑥 " + 1 − 𝑐 𝑥 #

Convexity
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𝑓

𝑥 " 𝑥 #𝑐𝑥 " + 1 − 𝑐 𝑥 #

𝑐𝑓 𝑥 " + 1 − 𝑐 𝑓 𝑥 #



Convexity
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Convex functions

Non-convex functions
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Given a function 𝑓:ℝ( → ℝ 

• 𝒙∗ is a global minimum iff 
𝑓 𝒙∗ ≤ 𝑓 𝒙 	∀	𝒙 ∈ ℝ(

• 𝒙∗ is a local minimum iff 
∃	𝜖 s.t. 𝑓 𝒙∗ ≤ 𝑓 𝒙 	∀
𝒙 s.t. 𝒙 − 𝒙∗ ! < 𝜖



Convexity
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Convex functions:

Each local minimum is a 
global minimum!

Non-convex functions:
A local minimum may or may 
not be a global minimum…



Convexity
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Strictly convex functions:

There exists a unique global 
minimum!

Non-convex functions:
A local minimum may or may 
not be a global minimum…



Gradient 
Descent & 
Convexity

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Works great if the objective function is convex! 
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� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…
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𝜃2
Why
Gradient 
Descent for 
Linear 
Regression?
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𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m

ea
n 

sq
ua

re
d 

er
ro

r 
𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#	)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



𝜃2The mean 
squared 
error is 
convex (but 
not always 
strictly 
convex)
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𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m

ea
n 

sq
ua

re
d 

er
ro

r 
𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#	)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



𝜃2
Okay, fine 
but couldn’t 
we do 
something
simpler? 

Yes! 
(sometimes)
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𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m

ea
n 

sq
ua

re
d 

er
ro

r 
𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#	)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



Closed Form 
Optimization

� Idea: find the critical points of the objective function, 

specifically the ones where ∇𝐽 𝜃 = 𝟎 (the vector of all 
zeros), and check if any of them are local minima

� Notation: given training data 𝒟 = 𝒙 * , 𝑦 *
*+$
%

� 𝑋 =

1 𝒙 $ ,

1 𝒙 ! ,

⋮ ⋮
1 𝒙 % ,

=

1 𝑥$
$ ⋯ 𝑥(

$

1 𝑥$
! ⋯ 𝑥(

!

⋮ ⋮ ⋱ ⋮
1 𝑥$

% ⋯ 𝑥(
%

∈ ℝ%×(.$	

is the design matrix

� 𝒚 = 𝑦 $ , … , 𝑦 % ,
∈ ℝ% is the target vector
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𝐽 𝜽 =
1
𝑁
M
&+$

%
1
2
𝑦 & − 𝜽,𝒙 & !

=
1
2𝑁

M
&+$

%

𝒙 & ,𝜽 − 𝑦 &
!

Minimizing the 
Mean Squared 
Error

39

=
1
2𝑁

𝑋𝜃 − 𝒚 , 𝑋𝜃 − 𝒚

9/25/23

∇𝜽𝐽 𝜽 =
1
2𝑁

2𝑋,𝑋𝜽 − 2𝑋,𝒚

=
1
2𝑁

𝜽,𝑋,𝑋𝜽 − 2𝜽,𝑋,𝒚 + 𝒚,𝒚

∇𝜽𝐽 N𝜽 =
1
2𝑁

2𝑋,𝑋N𝜽 − 2𝑋,𝒚 = 0

→ 𝑋,𝑋N𝜽 = 𝑋,𝒚

→ N𝜽 = 𝑋,𝑋 0$𝑋,𝒚



𝜃2

Closed Form 
Optimization
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𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)
ℎ(𝑥; ?𝜽)

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#	)
1 0.59 0.43 0.2

N𝜽 = 𝑋,𝑋 0$𝑋,𝒚



Closed Form 
Solution

419/25/23

1. Is 𝑋,𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋,𝑋	is (almost always) full rank and 
therefore, invertible!
• If 𝑋,𝑋	is not invertible (occurs when one of the 

features is a linear combination of the others) then 
there are either 0 or infinitely many solutions!

2. If so, how computationally expensive is inverting 𝑋,𝑋?
• 𝑋,𝑋 ∈ ℝ(.$×(.$ so inverting 𝑋,𝑋	takes 𝑂 𝐷"  time… 

• Can use gradient descent to speed things up!

N𝜽 = 𝑋,𝑋 0$𝑋,𝒚



Linear 
Regression: 
Uniqueness

42

𝑦

𝑥

� Consider a 1D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset?
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𝑦

𝑥

� Consider a 1D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset?
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Poll Question 3

45

𝑦

𝑥

� Consider a 1D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset?

A. -1 (TOXIC)  B. 0  C. 1  D. 2  E. ∞
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Linear 
Regression: 
Uniqueness

46

� Consider a 2D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset? 

𝑦

𝑥1

𝑥2
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� Consider a 2D linear 

regression model trained 
to minimize the mean 
squared error: how many 
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sets of parameters 𝜃) are 
there for the given 
dataset? 

𝑦
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� Consider a 2D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset? 

𝑦

𝑥1

𝑥2
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Closed Form 
Solution
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1. Is 𝑋,𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋,𝑋	is (almost always) full rank and 
therefore, invertible!
• If 𝑋,𝑋	is not invertible (occurs when one of the 

features is a linear combination of the others) then 
there are either 0 or infinitely many solutions

2. If so, how computationally expensive is inverting 𝑋,𝑋?
• 𝑋,𝑋 ∈ ℝ(.$×(.$ so inverting 𝑋,𝑋	takes 𝑂 𝐷"  time…

• Computing 𝑋,𝑋 takes 𝑂 𝑁𝐷!  time
• Can use gradient descent to (potentially) speed things 

up when 𝑁 and 𝐷 are large!

N𝜽 = 𝑋,𝑋 0$𝑋,𝒚
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1. Is 𝑋,𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋,𝑋	is (almost always) full rank and 
therefore, invertible!
• If 𝑋,𝑋	is not invertible (occurs when one of the 
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there are infinitely many solutions

2. If so, how computationally expensive is inverting 𝑋,𝑋?
• 𝑋,𝑋 ∈ ℝ(.$×(.$ so inverting 𝑋,𝑋	takes 𝑂 𝐷"  time…

• Computing 𝑋,𝑋 takes 𝑂 𝑁𝐷!  time
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Linear 
Regression 
Learning 
Objectives

You should be able to…
� Design k-NN Regression and Decision Tree Regression 
� Implement learning for Linear Regression using 

gradient descent or closed form optimization
� Choose a Linear Regression optimization technique 

that is appropriate for a particular dataset by 
analyzing the tradeoff of computational complexity 
vs. convergence speed 

� Identify situations where least squares regression has 
exactly one solution or infinitely many solutions

519/25/23


