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Front Matter

9/25/23

* Announcements:

* HW3 released 9/15, due 9/23 at 11:59 PM

- Only two grace days allowed on HW3 —the latest
you can submit HW3 is 9/25 (today!) at 11:59 PM

* Exam 1 on 9/28 (this Thursday!) from 6:30 PM - 8:30 PM



* Location & Seats: You all will be split across multiple
(large) rooms.
* Everyone will have an assigned seat

Exam 1 - Please watch Piazza carefully for more details

LOgIStICS * If you have exam accommodations through ODR,
they will be proctoring your exam on our behalf;

you are responsible for submitting the exam

proctoring request through your student portal.
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* Format of questions:

- Multiple choice
* True / False (with justification)

* Derivations

Exam 1 - Short answers
Logistics ° Drawing & Interpreting figures

 Implementing algorithms on paper

* No electronic devices (you won’t need them!)

* You are allowed to bring one letter-size sheet of notes;

you can put whatever you want on both sides
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* Covered material: Lectures 1 —7
* Foundations

* Probability, Linear Algebra, Geometry, Calculus
* Optimization
* Important Concepts
* Overfitting
- Model selection / Hyperparameter optimization
* Decision Trees
* k-NN
* Perceptron
* Regression
* Decision Tree and k-NN Regression

* Linear Regression
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* Attend the review lecture (right now!)

* Review the exam practice problems (released 9/18 on
the course website, under Coursework)

Exam 1 - Rewatch the exam review recitation (held on 9/22)
Preparation - Review HWs 1 - 3

* Consider whether you have achieved the “learning
objectives” for each lecture / section

~ Write your one-page cheat sheet (back and front)
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http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html

* Solve the easy problems first

* If a problem seems extremely complicated, you might be
missing something

* If you make an assumption, write it down

* Don’t leave any answer blank
* If you look at a question and don’t know the answer:
* just start trying things
- consider multiple approaches

* imagine arguing for some answer and see if you like it
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Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we
have the training examples described in the Table 5.2.

Snowstorm Holiday Weekend Closed

T T F F

T T F T

F T F F

T T F F

. F F F F
Practice ¥ ¥ ¥ ;
T F F T

Problem 1a: g g F | T

Table 1: Training examples for decision tree

- What would be the effect of the “Weekend” attribute
on the decision tree if we made it the root node?

Decision Trees

Explain your answer in terms of mutual information

9/25/23



Practice
Problem 1b:

Decision Trees

9/25/23

Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we
have the training examples described in the Table 5.2.

Snowstorm Holiday } Weekend C@Q

—> T T F T — , T

F T F F
*‘>) T T F F <-’

F F F
5 g F F T 3 -r/

E— T F F T &

F F F T / \ F

Table 1: Training examples for decision tree

* Which attribute would we split on first if we used
mutual information as the splitting criterion? You may

use log, G) ~ —0.4 and log, (?1;) = —2



Practice

Problem 2:
k-NN

9/25/23

* Consider the dataset below:

A /
1N
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= 7\ %
o -

oJ

g

S

2

2 4 B 8 10

* What is the leave-one-out cross-validation error for a 1-

NN model using the Euclidean distance?
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Practice

Problem 3:
Perceptron

9/25/23

* True or False: Consider two datasets

Dy = {(x,y D), (x2,5), ., (), )} anc

D, = {(xgl),yz(l)) , (xgz)’yz(z)) ) e (ngZ),yz(NZ))} where

xgi) € R% and xg) € R%. Suppose N; > N, and d; > d,.
The maximum number of mistakes the Perceptron learning
algorithm will make on D4 is higher than the maximum
number of mistakes it will make on D,.

7

11



* True or False: Consider two datasets

Dy = {(x,y D), (x2,5), ., (), )} anc

D, = {(xgl),yz(l)) , (xgz)’yz(z)) ) e (ngZ),yz(NZ))} where

xgi) € R% and xgi) € R%. Suppose N; > N, and d; > d,.
Poll Question 1 The maximum number of mistakes the Perceptron learning
algorithm will make on D4 is higher than the maximum
number of mistakes it will make on D,.

A True

B False>

\/

(/True and False (TOXIC)

9/25/23

12



Practice

Problem 4a:
Linear
Regression

9/25/23

Consider the dataset plotted in the figure below along with
the line learned by linear regression.

.
*e
15 i’ 25 N\ ¢ 85 ¢ 45 8

4+

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

approximates the new line linear regression would learn

Obser ta Observed data
Linear regression prediction o Lin lon
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Practice
Problem 4b:

Linear
Regression

9/25/23

Consider the dataset plotted in the figure below along with
the line learned by linear regression.

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

approximates the new line linear regression would learn

Obser ta Observed data
Linear regression prediction o Lin lon
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Practice

Problem 4c:
Linear
Regression

9/25/23

Consider the dataset plotted in the figure below along with
the line learned by linear regression.

Now suppose we slightly alter the dataset in different ways:

for each new dataset, select the option below that best

approximates the new line linear regression would learn

Obser ta Observed data
Linear regression prediction o Lin lon

15



Poll Question 2

9/25/23

What questions do you have?
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Recall:
Gradient

Descent for
Linear
Regression
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* Gradient descent for linear regression repeatedly takes

steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression
procedure GDLR(D, )

1:

2 0 — 6% > Initialize parameters
3 while not converged do

4 g — SN (0T x) — (D)%) > Compute gradient
5 0<—0—~g > Update parameters
6 return 6

17
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Recall:

mean squared error

Gradient

N

1 . 2 1.0
J(6,,6,) = Nz(ya) — 97x®) /& 000, %)
A = 0.8-7 i

A
064 o § ‘G‘O % N
A Q
A N ‘ §
> 0.2 A
Descent for eration ¢ @

‘ T T T 1 ‘

4 y = c¢*(x) (unknown) o

0.0 0.2 0.4 0.6 0.8 1.0

Linear
Regression

7§(x; 0“4 0,
h(x; 9“))7
1

- , ) 0.01 0.02 25.2
g —~ h(x;g(Z))) 2 030 012 87
= h(x; 6MD) 3 051 030 1.5

> 4 059 043 0.2
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N
1 . 2 1.0

1(6,,6,) = Nz(ym _ g7x®) 7d 000 %
§ A i=1 0.8—7 / i
g N\ A o N
& 061 o § u;o _o%B
g § 02 ;{g o o OE

Why c A 04 Q,

' : “ A ‘ g
Gradient E L e 5
Descent for fteration ¢ e

- % 0.0+ , : , l ]
Llnear A y = c*(x) (unknown) 7;(x; 9(4)) 0.0 0.2 0.4 . 0.6 0.8 1.0
Regression? N

N h(x; 67 J(61,6,)
, 1 001 002 252
g — h(x;0®) 030 012 87

2
- h(x; 0D) 3 051 030 15
> 4 059 043 0.2
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Convexity

9/25/23

* A function f:RP - Riis vex if
v xD e RP, x(2 € RD an@?@
flex® + (1 -0)x@) < cf (W) + (1 = ) f(x?P)

h

A f

EEE——

cf(x®)+ (1 -o)f(x@)

flex® + (1 - c)x®@)

x @ x® (1-c)x® @
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Convexity
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* A function f:RP - Riis convex if
Ve eRP,x® eRPand0<c<1
flex® + (1 - )x@)[< ¥(x®) + (1 = ) f(x@P)

A f

cf(x®)+ (1 =) f(x@) - | }

flex® + (1 - c)x®@) I ’

@ ox® 4 (1 - 0)x®@ x@
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Convexity
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» A function f: RP — Ris strictly convex if
Vil e R x®D eRPand0<c< 1
flex® + (1 - )x@) < cf (x®) + (1 = ) f(x?P)

A f

cf(x®)+ (1 -o)f(x@)

flex® + (1 - c)x®@)

x @ x® (1-c)x® @
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Convexity
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¥  Convex functions

Non-convex functions

23



Convexity

9/25/23

r'
-
-

/-7 Given a function f: R” > R

* x* is a global minimum iff
fx)<f(x)vxeR?

* x* is a local minimum iff

Jest. f(x") < f(x)V

xst||lx—x"||, <€
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Convexity

9/25/23

Convex functions:
Each local minimum is a

global minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...

25



Convexity
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Strictly convex functions:

There exists a unique global

minimum/!

Non-convex functions:
A local minimum may or may

not be a global minimum...

26



- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

\

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

9/25/23
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

9/25/23
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

9/25/23 34



N
1 . 2 1.0

1(6,,6,) = Nz(ym _ g7x®) 7d 000 %
§ A i=1 0.8—7 / i
g N\ A o N
& 061 o § u;o _o%B
g § 02 ;{g o o OE

Why c A 04 Q,

' : “ A ‘ g
Gradient E L e 5
Descent for fteration ¢ e

- % 0.0+ , : , l ]
Llnear A y = c*(x) (unknown) 7;(x; 9(4)) 0.0 0.2 0.4 . 0.6 0.8 1.0
Regression? N

N h(x; 67 J(61,6,)
, 1 001 002 252
g — h(x;0®) 030 012 87

2
- h(x; 0D) 3 051 030 15
> 4 059 043 0.2

9/25/23 35



N
5 4 - 0af k
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The mean S 0, [ TV
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N
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* Idea: find the critical points of the objective function,
specifically the ones where VJ(8) = 0 (the vector of all

zeros), and check if any of them are local minima

 Notation: given training data D = {(x(n)’y(n))}ij:l

Closed Form g e "
Optimization RO L R B s
1 @71 2@ e x@| s
e X = X — ! 5 c R ){)+)
N . : . . . :
? : - P
-1 x(N)T- 1 xiN) xl()N)-

is the design matrix

cy =[yW, ...,y(N)]T € RY is the target vector

9/25/23



/—_\
2N > N
) =5 9500 70" = ',\Z (X(‘ré C\)
N = -
S L2 /

T )

o > »\T i \0? -
0= 5 (X6 -7) (o)) (6"
570 :le“ @@f_é —2?<7> SR
5

L (X6 ~ K775 = O
2Mf~ & T T 1=
= K‘X@—-X/v =) 7<7<6:><y
s P@Sf‘?\rﬁ S_cﬁjﬂé’fm&’ﬁ =) ébi’ (XTX\~ \7< 1’/~> .

Minimizing the

Mean Squared
Error




1.0 //C(
0=XTX)"1xTy "1 /

Closed Form \

Optimization

0.0 0.2 0.4 0.6 0.8 1.0

0.2

1 0.59 0.43
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Closed Form

Solution

9/25/23

1.

2.

J

0=XTX)"xTy

Is XT X invertible?

If so, how computationally expensive is inverting XT X?

41



Linear

Regression:
Unigqueness

9/25/23

* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

Y a

=Y
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Linear

Regression:
Unigqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?
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Linear

Regression:
Unigqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

=Y

44



Poll Question 3

9/25/23

* Consider a 1D linear

regression model trained

to minimize the mean

—

squared error: how many

;ptimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

A. -1 (TOXIC) B. 0
157,

D. 2

=Y
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Linear

Regression:
Unigqueness

9/25/23

* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,
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Linear

Regression:
Unigqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,
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Linear

Regression:
Unigqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,
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Closed Form

Solution
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1.

2.

0=XTX)"xTy

Is XT X invertible?

If so, how computationally expensive is inverting XT X?
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Closed Form

Solution

9/25/23

0=XTX)"xTy

Is XTX invertible?

*« When N >» D + 1, XTX is (almost always) full rank and
therefore, invertible!

* If XTX is not invertible (occurs when one of the
features is a linear combination of the others), then
there are infinitely many solutions

If so, how computationally expensive is inverting XT X?

« XTX € RPH1XP+1 o5 inverting XT X takes O(D3) time...

————————)

« Computing XT X takes O(ND?) time
* Can use gradient descent to (potentially) speed things

up when N and D are large!
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Linear
Regression

Learning
Objectives

9/25/23

You should be able to...

* Design k-NN Regression and Decision Tree Regression

* Implement learning for Linear Regression using
gradient descent or closed form optimization

* Choose a Linear Regression optimization technique
that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
VS. convergence speed

* Identify situations where least squares regression has
exactly one solution or infinitely many solutions
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