

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Stochastic Gradient Descent

Probabilistic Learning (Binary Logistic Regression)

Matt Gormley Lecture 9 Sep. 27, 2023

Reminders

Practice Problems 1

released on course website

- Exam 1: Thu, Sep. 28
 - Time: 6:30 8:30pm
 - Location: Your room/seat assignment will be announced on Piazza
- Homework 4: Logistic Regression
 - Out: Fri, Sep. 29
 - Due: Mon, Oct. 9 at 11:59pm

OPTIMIZATION METHOD #3: STOCHASTIC GRADIENT DESCENT

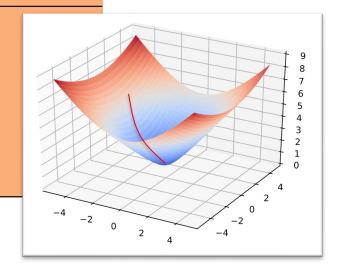
Gradient Descent

Algorithm 1 Gradient Descent

1: procedure $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$

2:
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$$

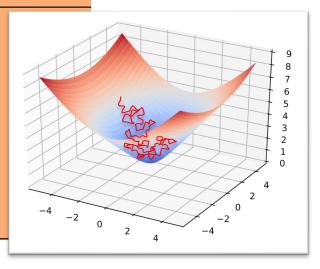
- 3: while not converged do 4: $\theta \leftarrow \theta - \gamma \nabla_{\theta} J(\theta)$
- 5: return θ



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD($\mathcal{D}, \theta^{(0)}$) 2: $\theta \leftarrow \theta^{(0)}$ 3: while not converged do 4: $i \sim \text{Uniform}(\{1, 2, \dots, N\})$ 5: $\theta \leftarrow \theta - \gamma \nabla_{\theta} J^{(i)}(\theta)$ 6: return θ

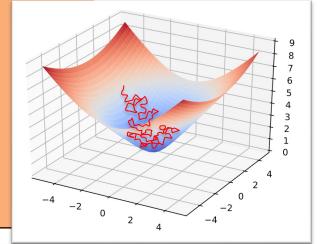


per-example objective: $J^{(i)}(\boldsymbol{\theta})$ original objective: $J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD($\mathcal{D}, \theta^{(0)}$) 2: $\theta \leftarrow \theta^{(0)}$ 3: while not converged do 4: for $i \in \text{shuffle}(\{1, 2, \dots, N\})$ do 5: $\theta \leftarrow \theta - \gamma \nabla_{\theta} J^{(i)}(\theta)$ 6: return θ



per-example objective: $J^{(i)}(\boldsymbol{\theta})$ original objective: $J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$ In practice, it is common to implement SGD using sampling **without** replacement (i.e. shuffle({1,2,...N}), even though most of the theory is for sampling **with** replacement (i.e. Uniform({1,2,...N}).

Why does SGD work?

Background: Expectation of a function of a random variable

For any discrete random variable X

$$E_X[f(X)] = \sum_{x \in \mathcal{X}} P(X = x)f(x)$$

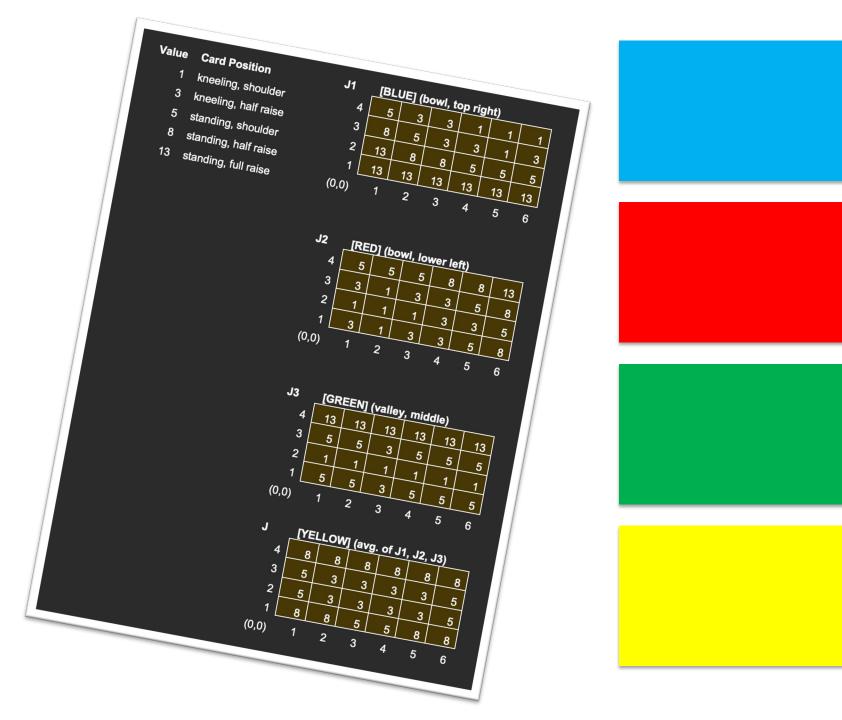
Objective Function for SGD

We assume the form to be:

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$
$$\nabla J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \nabla J^{(i)}(\boldsymbol{\theta})$$

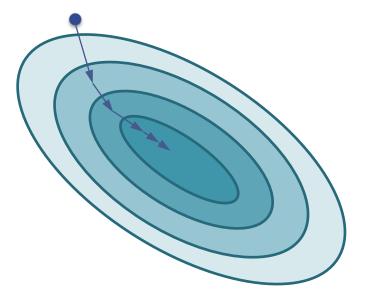
Expectation of a Stochastic Gradient:

- If the example is sampled uniformly at random, the expected value of ٠ the pointwise gradient is the same as the full gradient! N EI f(:)(2 $E\left[\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})\right] = \sum \left(\text{probability of selecting } \boldsymbol{x}^{(i)}, y^{(i)}\right) \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$ $\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$ $\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$ $= \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
- In practice, the data set is randomly shuffled then looped through so that each data point is used equally often

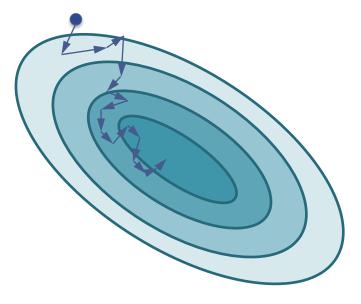


SGD VS. GRADIENT DESCENT

SGD vs. Gradient Descent



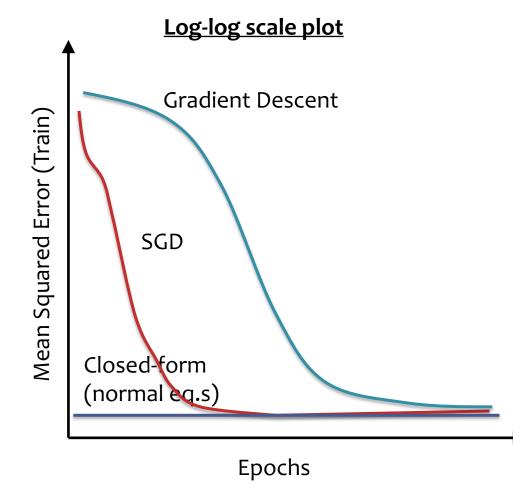
Gradient Descent



Stochastic Gradient Descent

SGD vs. Gradient Descent

• Empirical comparison:



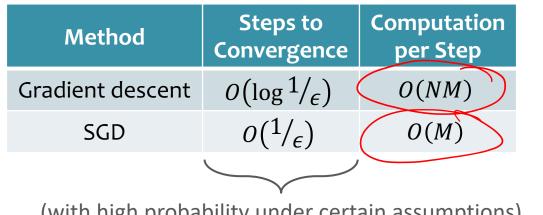
- Def: an epoch is a single pass through the training data
- 1. For GD, only **one update** per epoch
- For SGD, N updates
 per epoch
 N = (# train examples)
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

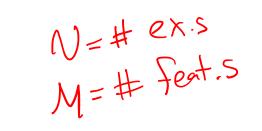
SGD vs. Gradient Descent

current arginin

• Theoretical comparison:

Define convergence to be when $J(\theta^{(t)}) - J(\theta^*) < \epsilon$



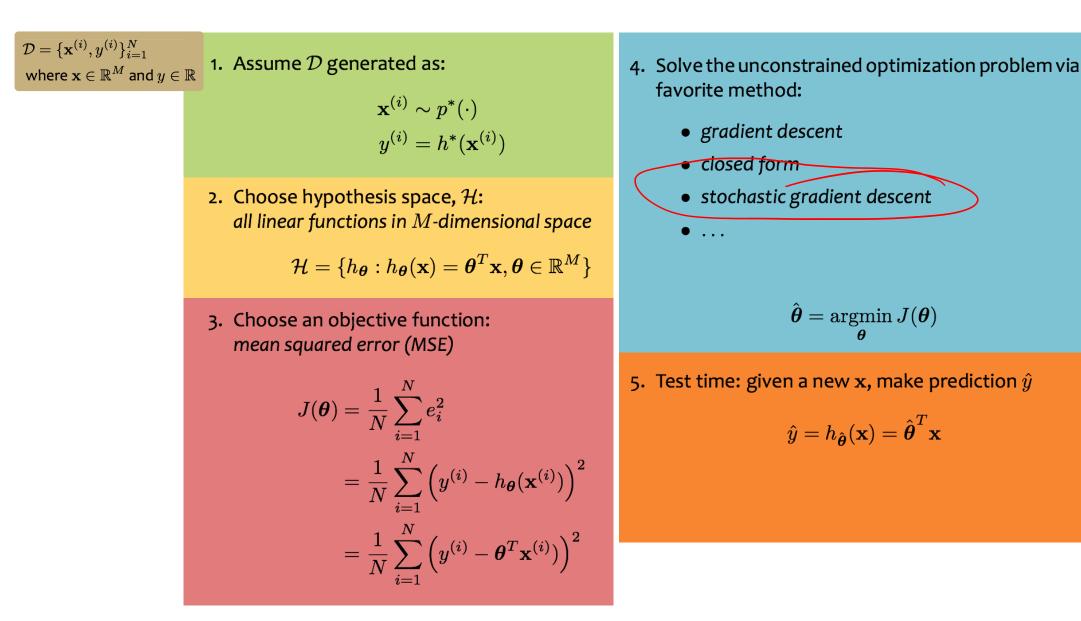


(with high probability under certain assumptions)

Main Takeaway: SGD has much slower asymptotic convergence (i.e. it's slower in theory), but is often much faster in practice.

SGD FOR LINEAR REGRESSION

Linear Regression as Function Approximation



Gradient Calculation for Linear Regression

Derivative of
$$J^{(i)}(\boldsymbol{\theta})$$
:

$$\frac{d}{d\theta_k} J^{(i)}(\boldsymbol{\theta}) = \frac{d}{d\theta_k} \frac{1}{2} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2$$

$$= \frac{1}{2} \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2$$

$$= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})$$

$$= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} \left(\sum_{j=1}^K \theta_j x_j^{(i)} - y^{(i)} \right)$$

$$= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_k^{(i)}$$

Derivative of $J(\boldsymbol{\theta})$:

$$egin{aligned} & rac{d}{d heta_k}J(oldsymbol{ heta}) = \sum_{i=1}^N rac{d}{d heta_k}J^{(i)}(oldsymbol{ heta}) \ & = \sum_{i=1}^N (oldsymbol{ heta}^T\mathbf{x}^{(i)} - y^{(i)})x_k^{(i)} \end{aligned}$$

Gradient of
$$J(\theta)$$
 [used by Gradient Descent]

$$\nabla_{\theta} J(\theta) = \begin{bmatrix} \frac{d}{d\theta_1} J(\theta) \\ \frac{d}{d\theta_2} J(\theta) \\ \vdots \\ \frac{d}{d\theta_M} J(\theta) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} (\theta^T \mathbf{x}^{(i)} - y^{(i)}) x_1^{(i)} \\ \sum_{i=1}^{N} (\theta^T \mathbf{x}^{(i)} - y^{(i)}) x_2^{(i)} \\ \vdots \\ \sum_{i=1}^{N} (\theta^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)} \end{bmatrix}$$

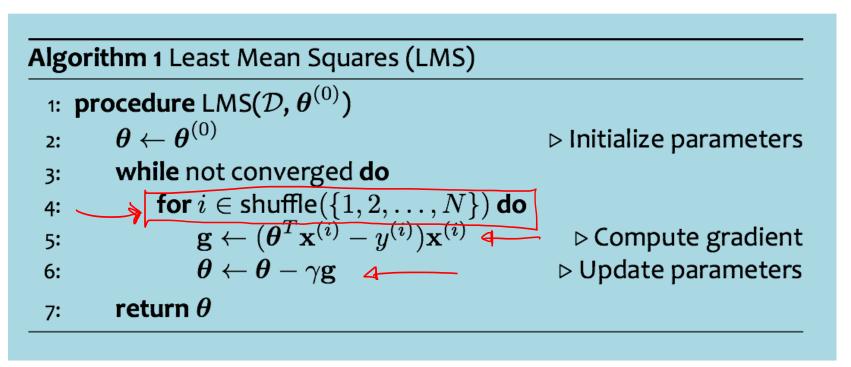
SGD

Gradient of
$$J^{(i)}(\boldsymbol{\theta})$$
 [used by SGD

$$\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{d}{d\theta_1} J^{(i)}(\boldsymbol{\theta}) \\ \frac{d}{d\theta_2} J^{(i)}(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_M} J^{(i)}(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_1^{(i)} \\ (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_2^{(i)} \\ \vdots \\ (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_N^{(i)} \end{bmatrix}$$

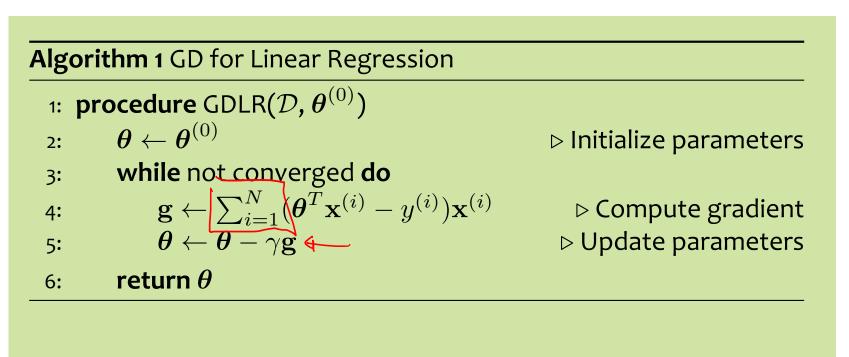
SGD for Linear Regression

SGD applied to Linear Regression is called the "Least Mean Squares" algorithm



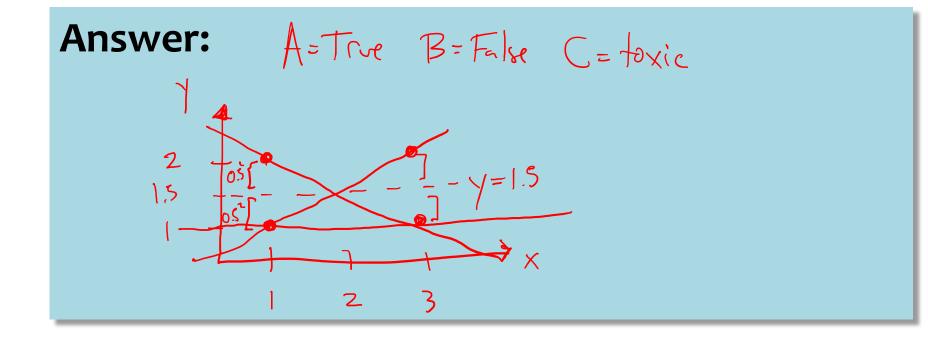
GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes steps opposite the gradient of the objective function



Solving Linear Regression

Question: $(1 \quad (i) \quad$



Optimization Objectives

You should be able to...

- Apply gradient descent to optimize a function
- Apply stochastic gradient descent (SGD) to optimize a function
- Apply knowledge of zero derivatives to identify a closedform solution (if one exists) to an optimization problem
- Distinguish between convex, concave, and nonconvex functions
- Obtain the gradient (and Hessian) of a (twice) differentiable function

PROBABILISTIC LEARNING

Probabilistic Learning

Function Approximation

Previously, we assumed that our output was generated using a **deterministic target function**:

 $\mathbf{x}^{(i)} \sim p^*(\cdot)$ $y^{(i)} = c^*(\mathbf{x}^{(i)})$

Our goal was to learn a hypothesis h(x) that best approximates $c^*(x)$

Probabilistic Learning

Today, we assume that our output is **sampled** from a conditional **probability distribution**:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$
$$y^{(i)} \sim p^*(\cdot | \mathbf{x}^{(i)})$$

Our goal is to learn a probability distribution $p(y|\mathbf{x})$ that best approximates $p^*(y|\mathbf{x})$

Robotic Farming

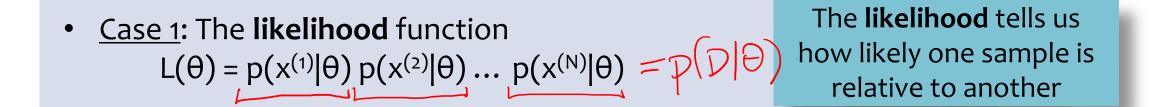
-		Deterministic	Probabilistic
	Classification (binary output)		Is this plant drought resistant?
	Regression (continuous	How many wheat kernels are in this	What will the yield of this plant be?
1	output)	picture?	

MAXIMUM LIKELIHOOD ESTIMATION

Likelihood Function

One R.V.

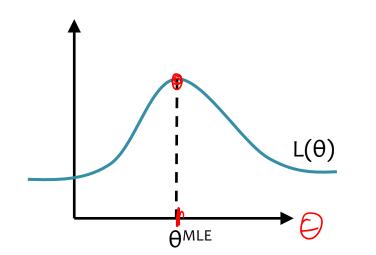
Given N **independent, identically distributed (iid)** samples $D = {x^{(1)}, x^{(2)}, ..., x^{(N)}}$ from a discrete **random variable** X with probability mass function (*pmf*) $p(x|\theta)$...

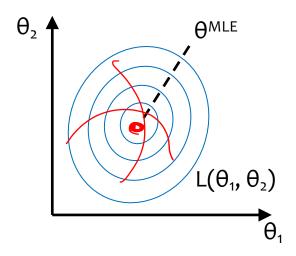


• <u>Case 2</u>: The **log-likelihood** function is $\log L(\theta) = \log p(x^{(1)}|\theta) + ... + \log p(x^{(N)}|\theta)$

Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$

Principle of Maximum Likelihood Estimation: Choose the parameters that maximize the likelihood of the data. $\theta^{MLE} = \operatorname*{argmax}_{\theta} \prod_{i=1}^{N} p(\mathbf{x}^{(i)} | \boldsymbol{\theta}) \not \Rightarrow$





Likelihood Function Two R.V.s

Given N iid samples D = { $(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})$ } from a pair of **random variables** X, Y where Y is **discrete** with probability mass function (pmf) p(y | x, θ)

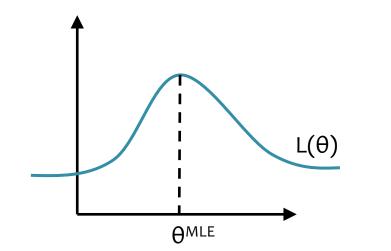
• <u>Case 3</u>: The **conditional likelihood** function: $L(\theta) = p(y^{(1)} | x^{(1)}, \theta) \dots p(y^{(N)} | x^{(N)}, \theta)$

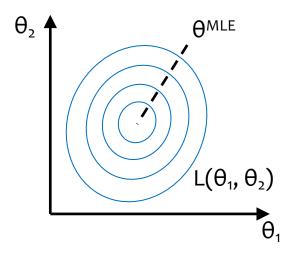
• <u>Case 4</u>: The **conditional log-likelihood** function is $\ell(\theta) = \log p(y^{(1)} | x^{(1)}, \theta) + ... + \log p(y^{(N)} | x^{(N)}, \theta)$

Maximum Likelihood Estimate (MLE)

Suppose we have data $\mathcal{D} = \{(y^{(i)}, \mathbf{x}^{(i)})\}_{i=1}^N$

Principle of Maximum Likelihood Estimation: Choose the parameters that maximize the conditional likelihood of the data. $\theta^{\text{MLE}} = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{N} p(y^{(i)} \mid \mathbf{x}^{(i)}, \theta)$



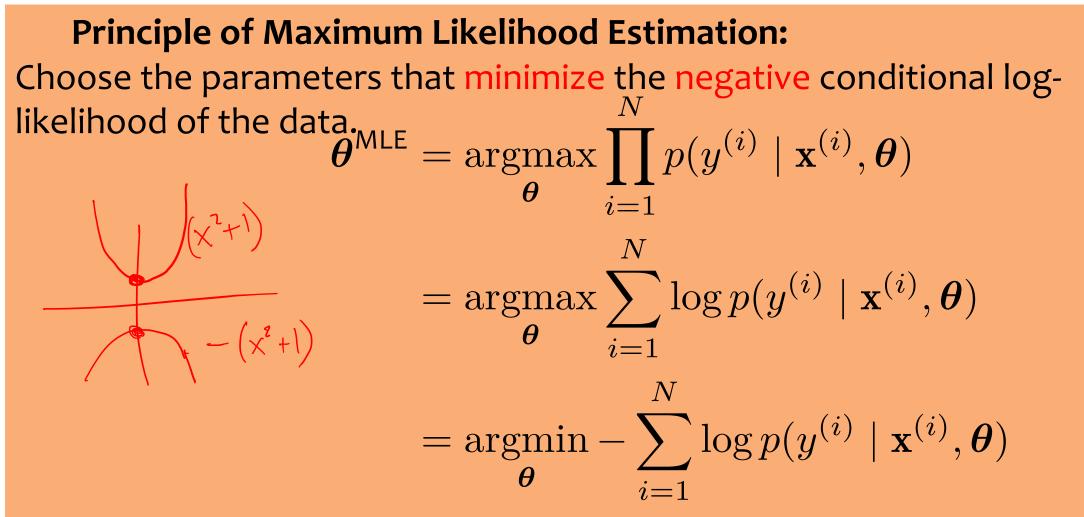


LO

Suppose we have data $\mathcal{D} = \{(y^{(i)}, \mathbf{x}^{(i)})\}_{i=1}^N$

Principle of Maximum Likelihood Estimation: Choose the parameters that maximize the conditional log-likelihood of the data. $\theta^{MLE} = \operatorname{argmax} \prod p(u^{(i)} | \mathbf{x}^{(i)}, \theta)$

Suppose we have data $\mathcal{D} = \{(y^{(i)}, \mathbf{x}^{(i)})\}_{i=1}^N$



What does maximizing likelihood accomplish?

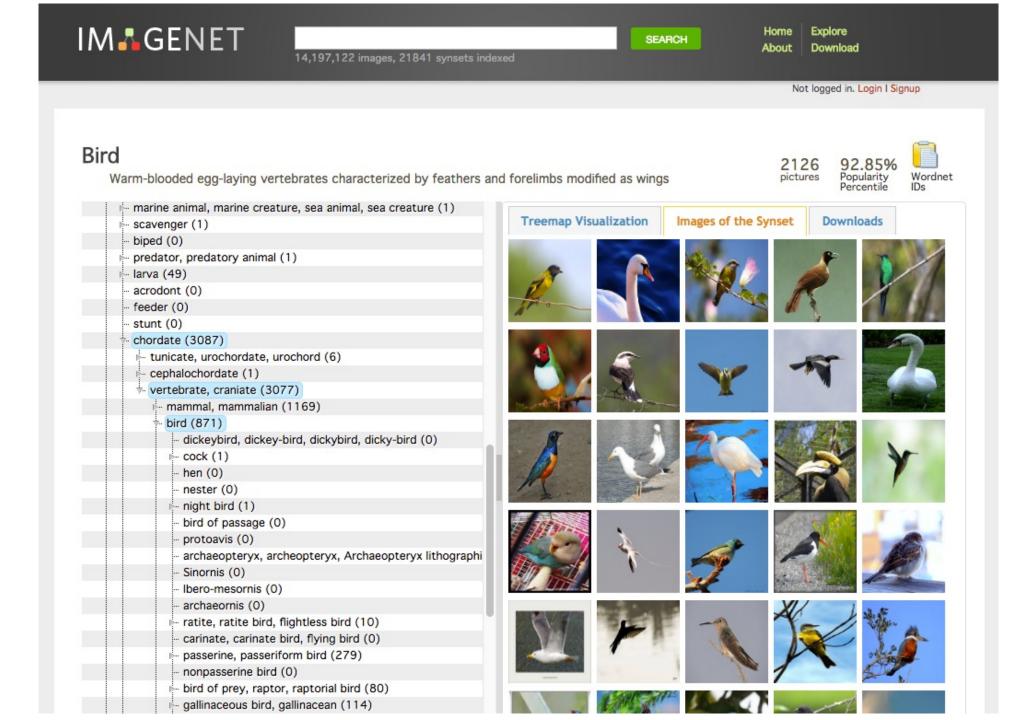
- There is only a finite amount of probability mass (i.e. sum-toone constraint)
- MLE tries to allocate as much probability mass as possible to the things we have observed...

... at the expense of the things we have not observed

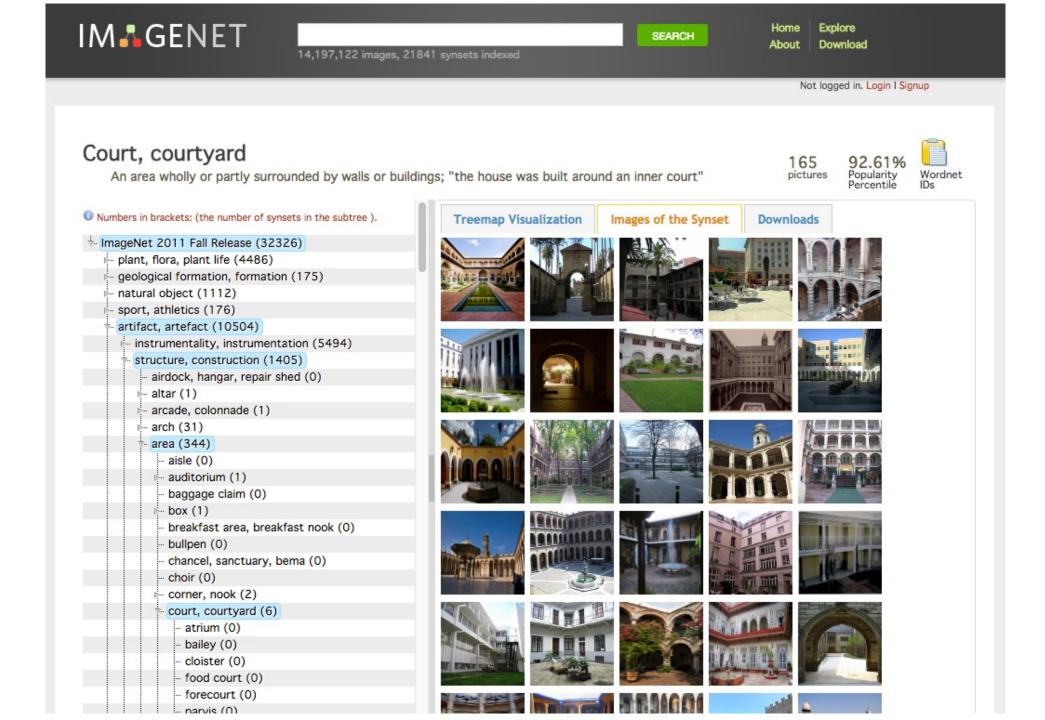
MOTIVATION: LOGISTIC REGRESSION

Example: Image Classification

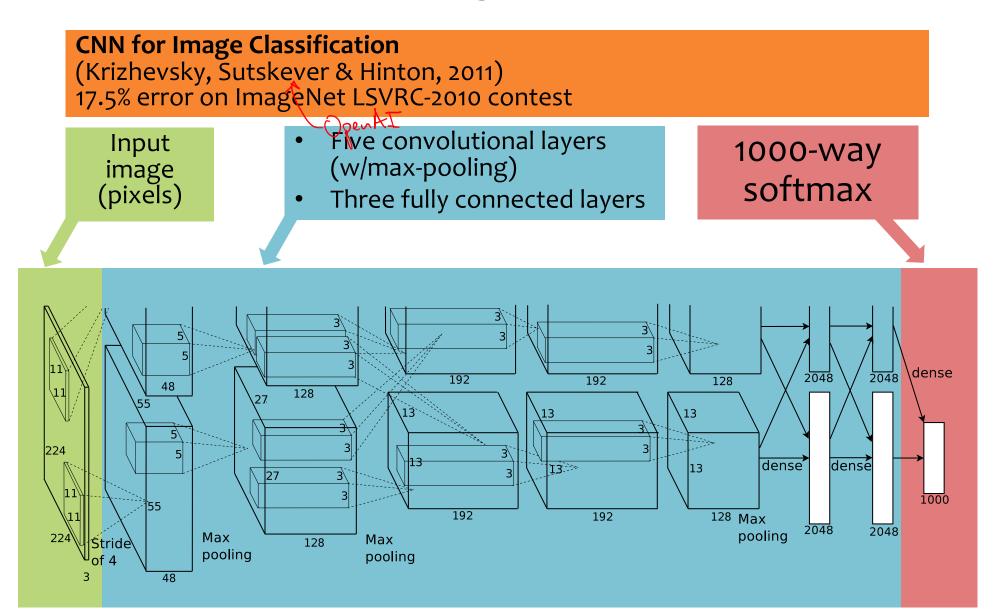
- ImageNet LSVRC-2010 contest:
 - Dataset: 1.2 million labeled images, 1000 classes
 - Task: Given a new image, label it with the correct class
 - Multiclass classification problem
- Examples from http://image-net.org/



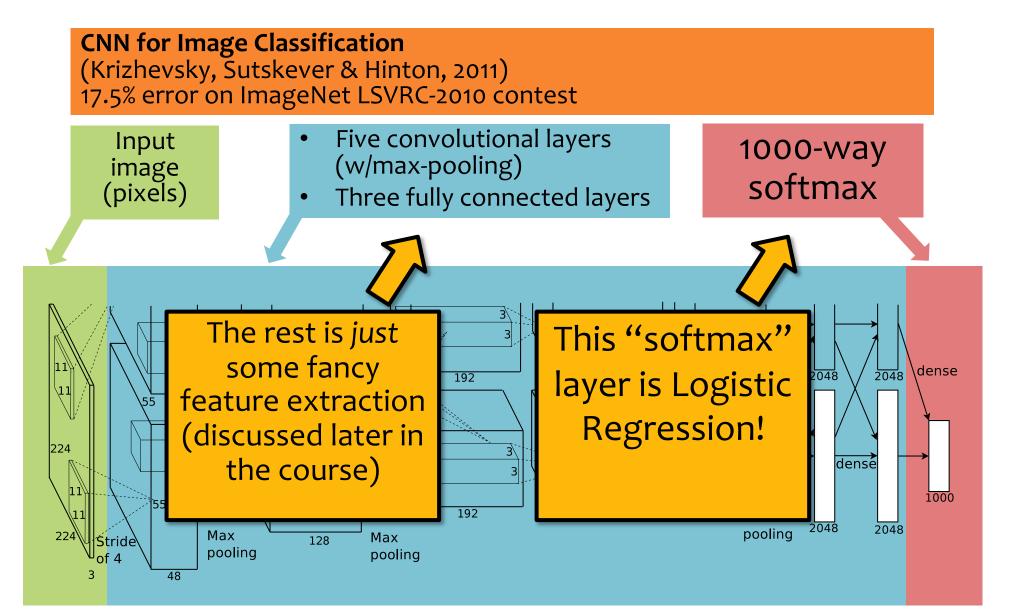




Example: Image Classification



Example: Image Classification



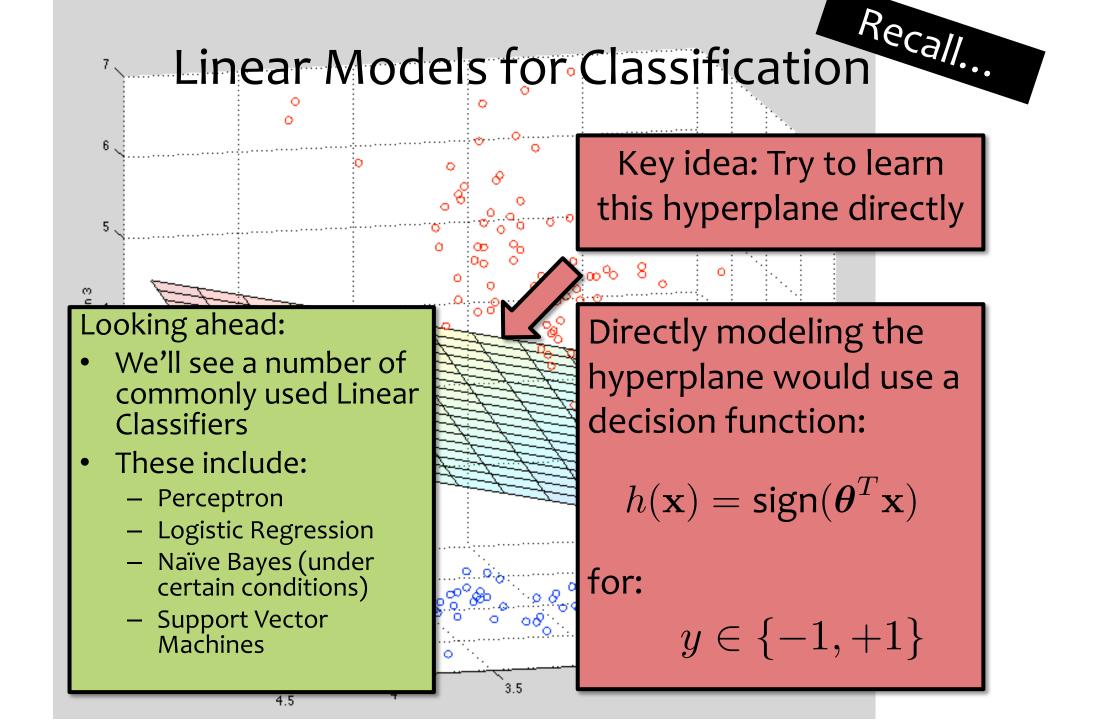
LOGISTIC REGRESSION

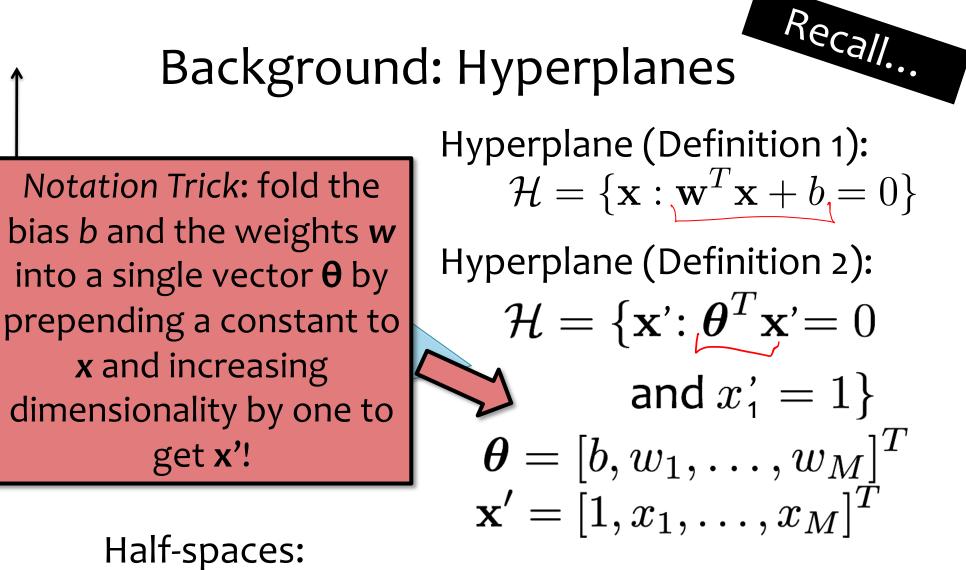
Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{0, 1\}$

We are back to classification.

Despite the name logistic **regression.**





$$\mathcal{H}^{+} = \{ \mathbf{x} : \boldsymbol{\theta}^{T} \mathbf{x} > 0 \text{ and } x_{0}^{1} = 1 \}$$
$$\mathcal{H}^{-} = \{ \mathbf{x} : \boldsymbol{\theta}^{T} \mathbf{x} < 0 \text{ and } x_{0}^{1} = 1 \}$$

Using gradient descent for linear classifiers

Key idea behind today's lecture:

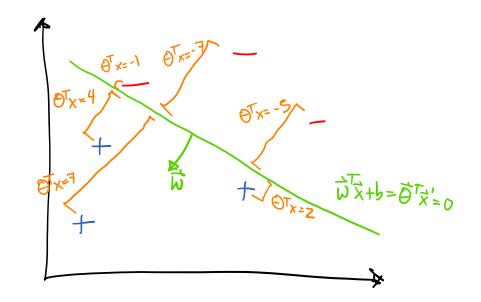
- 1. Define a linear classifier (logistic regression)
- 2. Define an objective function (likelihood)
- 3. Optimize it with gradient descent to learn parameters
- 4. Predict the class with highest probability under the model

Optimization for Linear Classifiers

MSE for [your favorite model]

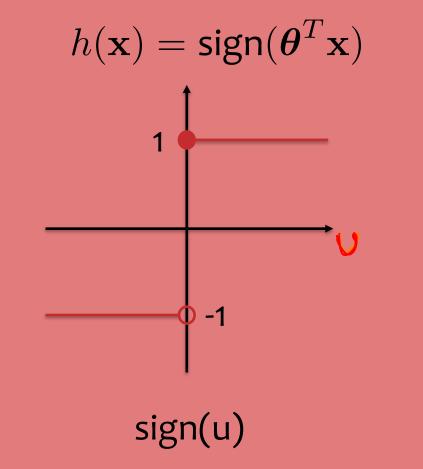
 $MSE \quad for \quad Lin. Reg.:$ $J(\Theta) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \overline{\Theta}^{T} \times^{(i)})^{2} \longrightarrow \nabla J(\overline{\Theta}) = \cdots \longrightarrow GD$ $MSE \quad for \quad Perception: \qquad \text{vot} \quad differentiable!$ $J(\Theta) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - sign(\overline{\Theta}^{T} \times^{(i)}))^{2} \longrightarrow \nabla J(\overline{\Theta}) = \overline{FATL}$ $MSE \quad for \quad Log. Reg.$ $J(\Theta) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \sigma(\overline{\Theta}^{T} \times^{0}))^{2} \longrightarrow \nabla J(\overline{\Theta}) = \cdots \longrightarrow GD$ (hoven to be) Jifferentiable

What is $\theta^T x$?



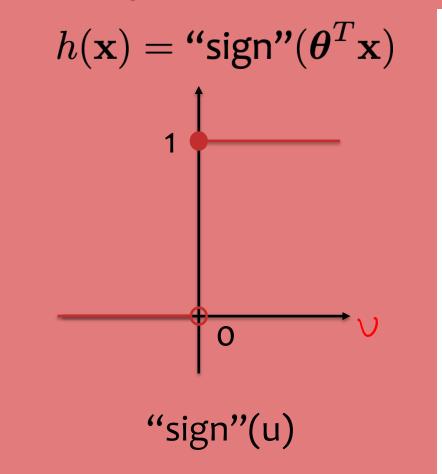
$$sign(\cdot) vs. sigmoid(\cdot)$$

Suppose we wanted to learn a linear classifier, but instead of predicting $y \in \{-1,+1\}$ we wanted to predict $y \in \{0,1\}$



 $sign(\cdot) vs. sigmoid(\cdot)$

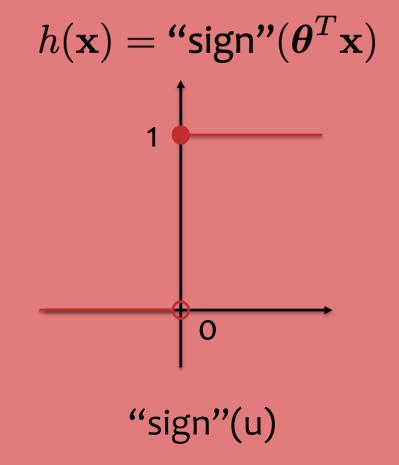
Suppose we wanted to learn a linear classifier, but instead of predicting $y \in \{-1,+1\}$ we wanted to predict $y \in \{0,1\}$

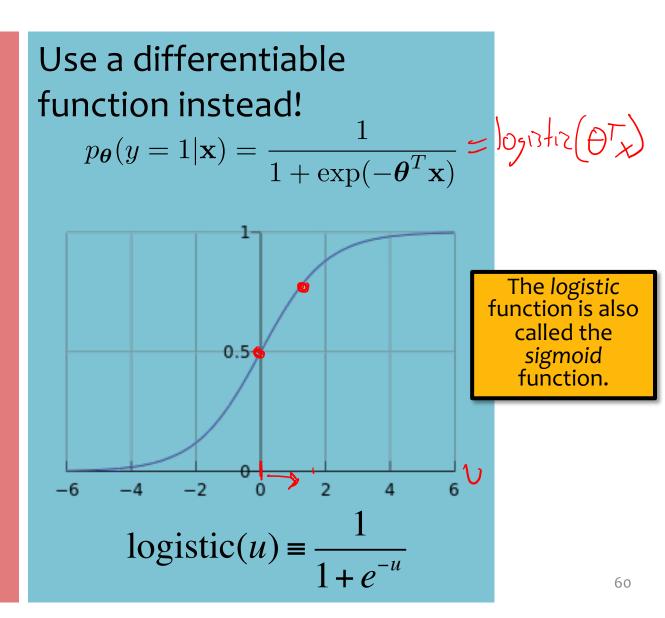


Goal: Learn a linear classifier with Gradient Descent

$sign(\cdot) vs. sigmoid(\cdot)$

But this decision function isn't differentiable...





Data: Inputs are continuous vectors of length M. Outputs are discrete.

 $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$ where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{0, 1\}$

Model: Logistic function applied to dot product of parameters with input vector. $p_{\theta}(y = 1 | \mathbf{x}) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})}$

Learning: finds the parameters that minimize some objective function. $\theta^* = \operatorname*{argmin}_{\theta} J(\theta)$

Prediction: Output is the most probable class.

$$y = \operatorname*{argmax}_{y \in \{0,1\}} p_{\theta}(y|\mathbf{x})$$

1. Model

$$y \sim \text{Bernolli}(\emptyset)$$

$$\emptyset = \sigma(\vec{\Theta}^{T}\vec{x}) \quad \text{where} \quad \sigma(\upsilon) = \frac{1}{1 + exp(-\upsilon)}$$

$$P(y \otimes |\vec{x}, \Theta) = \xi \quad \sigma(\Theta^{T}\vec{x}) \quad i\xi \quad y = 1$$

$$f = \sigma(\Theta^{T}\vec{x}) \quad i\xi \quad y = 0$$

2. Objective

$$\begin{split} \mathcal{L}(\vec{\Theta}) &= \log p(D|\vec{\Theta}) = \log \prod_{i=1}^{N} p(y^{(i)} | \vec{x}^{(i)}, \vec{\Theta}) \\ &= \sum_{i=1}^{N} \log p(y^{(i)} | \vec{x}^{(i)}, \vec{\Theta}) \end{split}$$

$$\mathcal{J}(\Theta) = -\frac{1}{N} \mathcal{J}(\overline{\Theta}) = \frac{1}{N} \sum_{i=1}^{N} -\log_{\Theta}(\gamma^{(i)}/\overline{x}^{(i)}, \Theta)$$

$$\overline{\mathcal{J}}^{(i)}(\overline{\Theta})$$

3A. Derivatives

$$\frac{\delta \mathcal{I}^{(i)}(\Theta)}{\delta \Theta_{m}} = \frac{\delta}{\delta \Theta_{m}} \left(-\log p(y^{(i)}|_{X}^{(i)}, \vec{\Theta}) \right)$$

$$= \frac{\delta}{\delta \Theta_{m}} \left(-\log p(y^{(i)}|_{X}^{(i)}, \vec{\Theta}) \right) \quad iS \quad y^{(i)} = 1$$

$$= \frac{\delta}{\delta \Theta_{m}} \left(-\log p(1 - \sigma(\hat{\Theta}^{T} \vec{X}^{(i)})) + iS \quad y^{(i)} = 0 \right)$$

$$= \frac{\delta}{\delta \Theta_{m}} \left(-\log p(1 - \sigma(\hat{\Theta}^{T} \vec{X}^{(i)})) + iS \quad y^{(i)} = 0 \right)$$

$$= \frac{\delta}{\delta \Theta_{m}} \left(-\log p(1 - \sigma(\hat{\Theta}^{T} \vec{X}^{(i)})) + iS \quad y^{(i)} = 0 \right)$$

$$= -\left(y^{(i)} - \sigma(\hat{\Theta}^{T} \vec{X}^{(i)}) \right) \times \mathbf{X}_{m}^{(i)}$$

3B. Gradients

$$\nabla J^{(i)}(\vec{\Theta}) = \begin{bmatrix} \bullet \\ \bullet \\ \bullet \end{bmatrix} = - \left(\gamma^{(i)} - \sigma(\vec{\Theta}^{T} \vec{x}^{(i)}) \right) \vec{x}^{(i)}$$

$$\nabla J^{(i)}(\vec{\Theta}) = \begin{bmatrix} \bullet \\ \bullet \\ \bullet \end{bmatrix} = \frac{1}{N} \bigotimes_{c=1}^{N} \nabla J^{(i)}(\vec{\Theta})$$

4. Optimization

5. Prediction

Predict
$$\hat{y} = \arg \max_{y \in \{0,1\}} p(y|\vec{x})$$

= "sign" $(\vec{\Theta}^T \vec{x})$