

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Stochastic Gradient Descent

+

Probabilistic Learning

(Binary Logistic Regression)

Matt Gormley Lecture 9 Sep. 27, 2023

Reminders

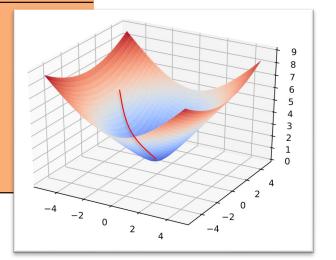
- Practice Problems 1
 - released on course website
- Exam 1: Thu, Sep. 28
 - Time: 6:30 8:30pm
 - Location: Your room/seat assignment will be announced on Piazza
- Homework 4: Logistic Regression
 - Out: Fri, Sep. 29
 - Due: Mon, Oct. 9 at 11:59pm

OPTIMIZATION METHOD #3: STOCHASTIC GRADIENT DESCENT

Gradient Descent

Algorithm 1 Gradient Descent

- 1: **procedure** $GD(\mathcal{D}, \boldsymbol{\theta}^{(0)})$
- 2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
- 3: while not converged do
- 4: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \boldsymbol{\gamma} \nabla_{\boldsymbol{\theta}} \tilde{J}(\boldsymbol{\theta})$
- 5: return θ



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: \operatorname{procedure} \operatorname{SGD}(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
3: \operatorname{while} \operatorname{not} \operatorname{converged} \operatorname{do}
4: i \sim \operatorname{Uniform}(\{1, 2, \dots, N\})
5: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \gamma \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})
6: \operatorname{return} \boldsymbol{\theta}
```

per-example objective:

$$J^{(i)}(oldsymbol{ heta})$$

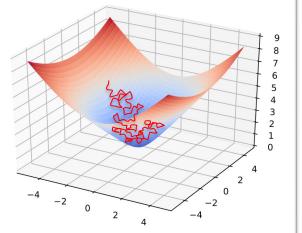
original objective:

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

```
1: \operatorname{procedure} \operatorname{SGD}(\mathcal{D}, \boldsymbol{\theta}^{(0)})
2: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}
3: \operatorname{while} not converged \operatorname{do}
4: \operatorname{for} i \in \operatorname{shuffle}(\{1, 2, \dots, N\}) \operatorname{do}
5: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \gamma \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})
6: \operatorname{return} \boldsymbol{\theta}
```



per-example objective:

$$J^{(i)}(oldsymbol{ heta})$$

original objective:

$$J(\boldsymbol{\theta}) = \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

In practice, it is common to implement SGD using sampling without replacement (i.e. shuffle({1,2,...N}), even though most of the theory is for sampling with replacement (i.e. Uniform({1,2,...N}).

Why does SGD work?

Background: Expectation of a function of a random variable

For any discrete random variable X

$$E_X[f(X)] = \sum_{x \in \mathcal{X}} P(X = x) f(x)$$

Objective Function for SGD

We assume the form to be:

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$$

Expectation of a Stochastic Gradient:

• If the example is sampled uniformly at random, the expected value of the pointwise gradient is the same as the full gradient!

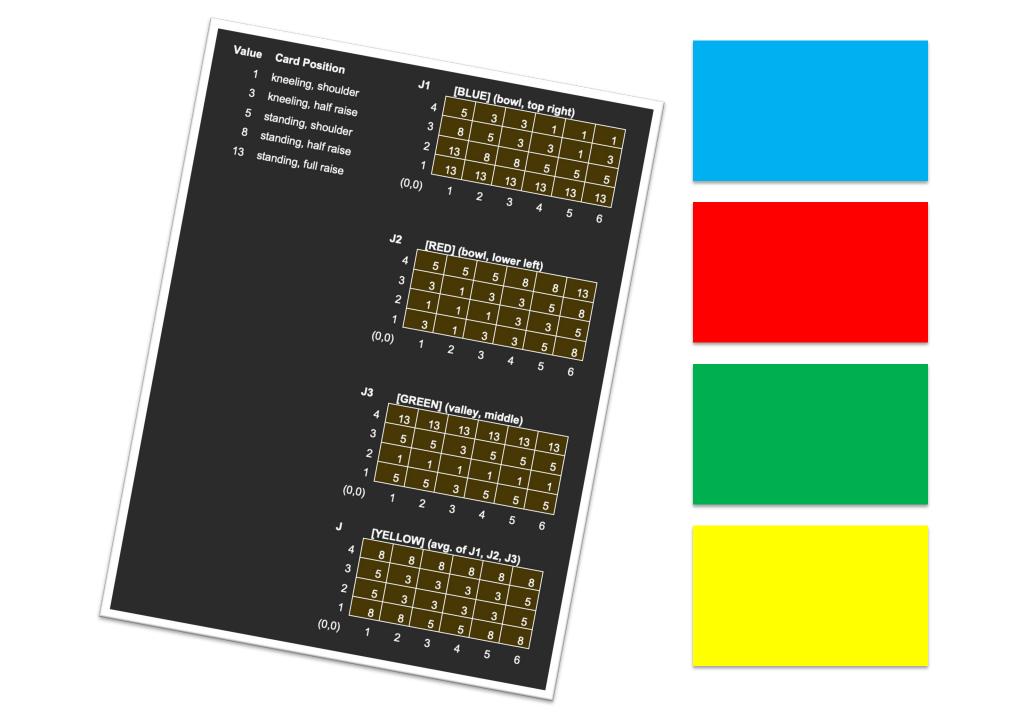
$$E[\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})] = \sum_{i=1}^{N} \left(\text{probability of selecting } \boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)} \right) \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$$

$$= \sum_{i=1}^{N} \left(\frac{1}{N} \right) \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$$

$$= \frac{1}{N} \sum_{i=1}^{N} \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$$

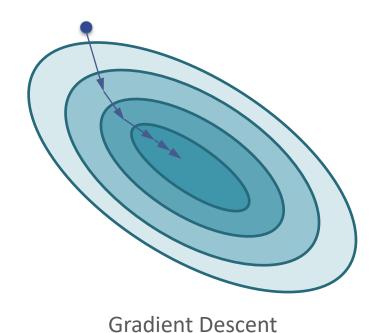
$$= \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

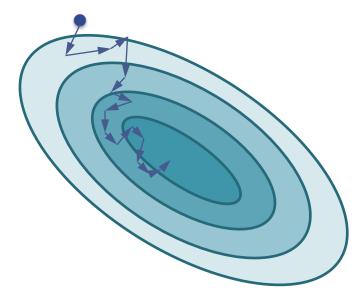
 In practice, the data set is randomly shuffled then looped through so that each data point is used equally often



SGD VS. GRADIENT DESCENT

SGD vs. Gradient Descent

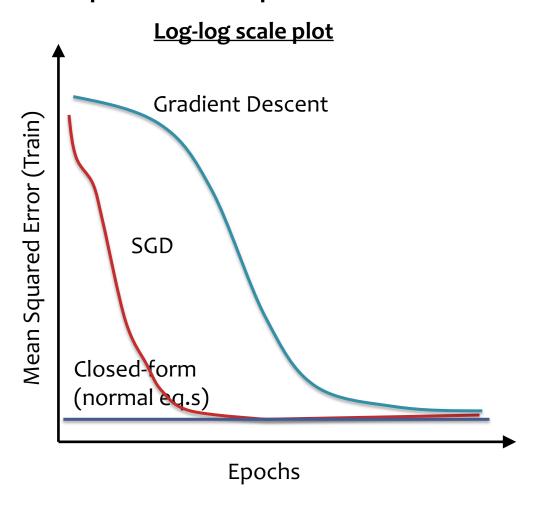




Stochastic Gradient Descent

SGD vs. Gradient Descent

• Empirical comparison:



- Def: an **epoch** is a single pass through the training data
- For GD, only one update per epoch
- For SGD, N updates
 per epoch
 N = (# train examples)
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

SGD vs. Gradient Descent

Theoretical comparison:

Define convergence to be when $J(\boldsymbol{\theta}^{(t)}) - J(\boldsymbol{\theta}^*) < \epsilon$

Method	Steps to Convergence	Computation per Step
Gradient descent	$O(\log 1/\epsilon)$	O(NM)
SGD	$o(1/\epsilon)$	O(M)

(with high probability under certain assumptions)

Main Takeaway: SGD has much slower asymptotic convergence (i.e. it's slower in theory), but is often much faster in practice.

SGD FOR LINEAR REGRESSION

Linear Regression as Function Approximation

$$\mathcal{D}=\{\mathbf{x}^{(i)},y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x}\in\mathbb{R}^M$ and $y\in\mathbb{R}$ 1. Assume \mathcal{D} generated as:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$
$$y^{(i)} = h^*(\mathbf{x}^{(i)})$$

2. Choose hypothesis space, \mathcal{H} : all linear functions in M-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M \}$$

3. Choose an objective function: mean squared error (MSE)

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

- 4. Solve the unconstrained optimization problem via favorite method:
 - gradient descent
 - closed form
 - stochastic gradient descent

$$\hat{m{ heta}} = \operatorname*{argmin}_{m{ heta}} J(m{ heta})$$

5. Test time: given a new x, make prediction \hat{y}

$$\hat{y} = h_{\hat{oldsymbol{ heta}}}(\mathbf{x}) = \hat{oldsymbol{ heta}}^T \mathbf{x}$$

Gradient Calculation for Linear Regression

Derivative of $J^{(i)}(\boldsymbol{\theta})$:

$$\begin{split} \frac{d}{d\theta_k} J^{(i)}(\boldsymbol{\theta}) &= \frac{d}{d\theta_k} \frac{1}{2} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2 \\ &= \frac{1}{2} \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2 \\ &= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \\ &= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} \left(\sum_{j=1}^K \theta_j x_j^{(i)} - y^{(i)} \right) \\ &= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_k^{(i)} \end{split}$$

Derivative of $J(\theta)$:

$$egin{aligned} rac{d}{d heta_k}J(oldsymbol{ heta}) &= \sum_{i=1}^N rac{d}{d heta_k}J^{(i)}(oldsymbol{ heta}) \ &= \sum_{i=1}^N (oldsymbol{ heta}^T\mathbf{x}^{(i)} - y^{(i)})x_k^{(i)} \end{aligned}$$

Gradient of
$$J^{(i)}(\theta)$$
 [used by SGD]
$$\nabla_{\theta}J^{(i)}(\theta) = \begin{bmatrix} \frac{d}{d\theta_1}J^{(i)}(\theta) \\ \frac{d}{d\theta_2}J^{(i)}(\theta) \\ \vdots \\ \frac{d}{d\theta_M}J^{(i)}(\theta) \end{bmatrix} = \begin{bmatrix} (\theta^T\mathbf{x}^{(i)} - y^{(i)})x_1^{(i)} \\ (\theta^T\mathbf{x}^{(i)} - y^{(i)})x_2^{(i)} \\ \vdots \\ (\theta^T\mathbf{x}^{(i)} - y^{(i)})x_N^{(i)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^N (\theta^T\mathbf{x}^{(i)} - y^{(i)})x_1^{(i)} \\ \sum_{i=1}^N (\theta^T\mathbf{x}^{(i)} - y^{(i)})x_N^{(i)} \\ \vdots \\ \sum_{i=1}^N (\theta^T\mathbf{x}^{(i)} - y^{(i)})x_N^{(i)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^N (\theta^T\mathbf{x}^{(i)} - y^{(i)})x_1^{(i)} \\ \sum_{i=1}^N (\theta^T\mathbf{x}^{(i)} - y^{(i)})x_N^{(i)} \end{bmatrix} = \sum_{i=1}^N (\theta^T\mathbf{x}^{(i)} - y^{(i)})\mathbf{x}^{(i)}$$

$$\begin{aligned} & \text{Gradient of } J(\boldsymbol{\theta}) & \text{[used by Gradient Descent]} \\ & \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \begin{bmatrix} \frac{d}{d\theta_1} J(\boldsymbol{\theta}) \\ \frac{d}{d\theta_2} J(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_M} J(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_1^{(i)} \\ \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_2^{(i)} \\ \vdots \\ \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_N^{(i)} \end{bmatrix} \\ & = \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)} \end{aligned}$$

SGD for Linear Regression

SGD applied to Linear Regression is called the "Least Mean Squares" algorithm

```
Algorithm 1 Least Mean Squares (LMS)

1: procedure LMS(\mathcal{D}, \theta^{(0)})

2: \theta \leftarrow \theta^{(0)} > Initialize parameters

3: while not converged do

4: for i \in \text{shuffle}(\{1, 2, \dots, N\}) do

5: \mathbf{g} \leftarrow (\theta^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)} > Compute gradient

6: \theta \leftarrow \theta - \gamma \mathbf{g} > Update parameters

7: return \theta
```

GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes steps opposite the gradient of the objective function

Solving Linear Regression

Question:

True or False: If Mean Squared Error (i.e. $\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - h(\mathbf{x}^{(i)}))^2$) has a unique minimizer (i.e. argmin), then Mean Absolute Error (i.e. $\frac{1}{N} \sum_{i=1}^{N} |y^{(i)} - h(\mathbf{x}^{(i)})|$) must also have a unique minimizer.

Answer:

Optimization Objectives

You should be able to...

- Apply gradient descent to optimize a function
- Apply stochastic gradient descent (SGD) to optimize a function
- Apply knowledge of zero derivatives to identify a closedform solution (if one exists) to an optimization problem
- Distinguish between convex, concave, and nonconvex functions
- Obtain the gradient (and Hessian) of a (twice) differentiable function

PROBABILISTIC LEARNING

Probabilistic Learning

Function Approximation

Previously, we assumed that our output was generated using a **deterministic target function**:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$

$$y^{(i)} = c^*(\mathbf{x}^{(i)})$$

Our goal was to learn a hypothesis h(x) that best approximates $c^*(x)$

Probabilistic Learning

Today, we assume that our output is sampled from a conditional probability distribution:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$
$$y^{(i)} \sim p^*(\cdot|\mathbf{x}^{(i)})$$

Our goal is to learn a probability distribution p(y|x) that best approximates $p^*(y|x)$

Robotic Farming

	Deterministic	Probabilistic
Classification (binary output)	Is this a picture of a wheat kernel?	Is this plant drought resistant?
Regression (continuous output)	How many wheat kernels are in this picture?	What will the yield of this plant be?

MAXIMUM LIKELIHOOD ESTIMATION

Likelihood Function

One R.V.

Given N independent, identically distributed (iid) samples $D = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$ from a discrete **random variable** X with probability mass function (pmf) $p(x|\theta)$...

• Case 1: The **likelihood** function $L(\theta) = p(x^{(1)}|\theta) p(x^{(2)}|\theta) \dots p(x^{(N)}|\theta)$ The **likelihood** tells us how likely one sample is relative to another

• <u>Case 2</u>: The **log-likelihood** function is $\ell(\theta) = \log p(x^{(1)}|\theta) + ... + \log p(x^{(N)}|\theta)$

MLE

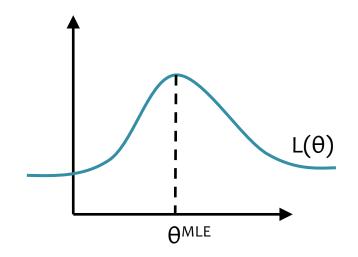
Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$

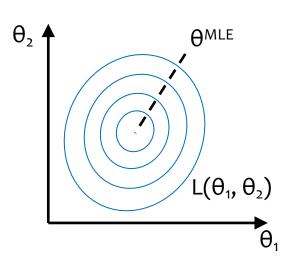
Principle of Maximum Likelihood Estimation:

Choose the parameters that maximize the likelihood of the data. N

$$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{n} p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$$

Maximum Likelihood Estimate (MLE)





Likelihood Function

Two R.V.s

Given N **iid** samples D = $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ from a pair of **random variables** X, Y where Y is **discrete** with probability mass function (pmf) $p(y \mid x, \theta)$

• <u>Case 3</u>: The **conditional likelihood** function:

$$L(\theta) = p(y^{(1)} | x^{(1)}, \theta) ... p(y^{(N)} | x^{(N)}, \theta)$$

• Case 4: The conditional log-likelihood function is $\ell(\theta) = \log p(y^{(1)} | x^{(1)}, \theta) + ... + \log p(y^{(N)} | x^{(N)}, \theta)$

MLE

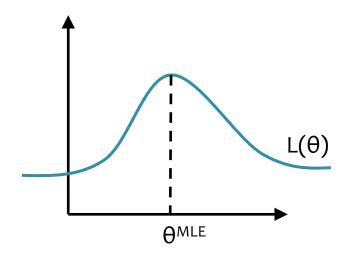
Suppose we have data $\mathcal{D} = \{(y^{(i)}, \mathbf{x}^{(i)})\}_{i=1}^{N}$

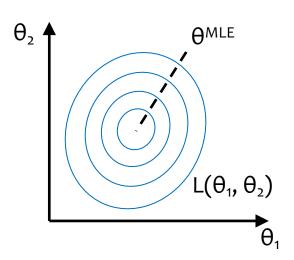
Principle of Maximum Likelihood Estimation:

Choose the parameters that maximize the conditional likelihood of the data. N

$$\boldsymbol{\theta}^{\mathsf{MLE}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i=1}^{n} p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$

Maximum Likelihood Estimate (MLE)





MLE

Suppose we have data $\mathcal{D} = \{(y^{(i)}, \mathbf{x}^{(i)})\}_{i=1}^N$

Principle of Maximum Likelihood Estimation:

Choose the parameters that maximize the conditional log-likelihood

of the data.

$$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1} p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$

Suppose we have data $\mathcal{D} = \{(y^{(i)}, \mathbf{x}^{(i)})\}_{i=1}^{N}$

Principle of Maximum Likelihood Estimation:

Choose the parameters that minimize the negative conditional log-

likelihood of the data.
$$\pmb{\theta}^{\mathsf{MLE}} = \argmax_{\pmb{\theta}} \prod_{i=1}^N p(y^{(i)} \mid \mathbf{x}^{(i)}, \pmb{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} - \sum_{i=1}^{N} \log p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta})$$

MLE

What does maximizing likelihood accomplish?

- There is only a finite amount of probability mass (i.e. sum-to-one constraint)
- MLE tries to allocate as much probability mass as possible to the things we have observed...

... at the expense of the things we have not observed

MOTIVATION: LOGISTIC REGRESSION

Example: Image Classification

- ImageNet LSVRC-2010 contest:
 - Dataset: 1.2 million labeled images, 1000 classes
 - Task: Given a new image, label it with the correct class
 - Multiclass classification problem
- Examples from http://image-net.org/

Not logged in. Login I Signup

Bird

IM ... GENET

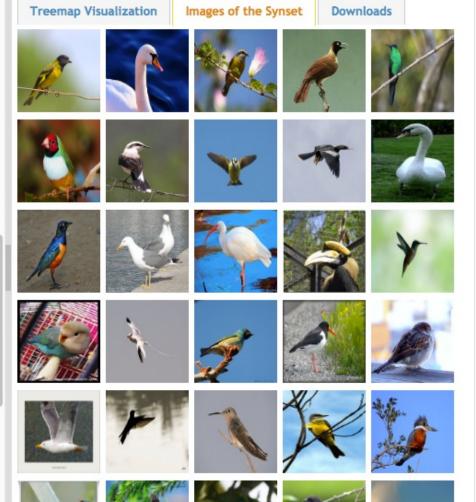
Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings

14,197,122 images, 21841 synsets indexed

2126 pictures

92.85% Popularity Percentile

marine animal, marine creature, sea animal, sea creature (1)
scavenger (1)
- biped (0)
predator, predatory animal (1)
i- larva (49)
- acrodont (0)
- feeder (0)
- stunt (0)
chordate (3087)
tunicate, urochordate, urochord (6)
rephalochordate (1)
vertebrate, craniate (3077)
- mammal, mammalian (1169)
bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)
- cock (1)
- hen (0) - nester (0)
hird of passage (0)
bird of passage (0)
- protoavis (0)
- archaeopteryx, archeopteryx, Archaeopteryx lithographi - Sinornis (0)
lbero-mesornis (0)
- archaeornis (0)
ratite, ratite bird, flightless bird (10)
carinate, carinate bird, flying bird (0)
passerine, passeriform bird (279)
nonpasserine bird (0)
bird of prey, raptor, raptorial bird (80)
gallinaceous bird, gallinacean (114)
gaminacous bira; gaminacour (1117)



Not logged in. Login I Signup

German iris, Iris kochii

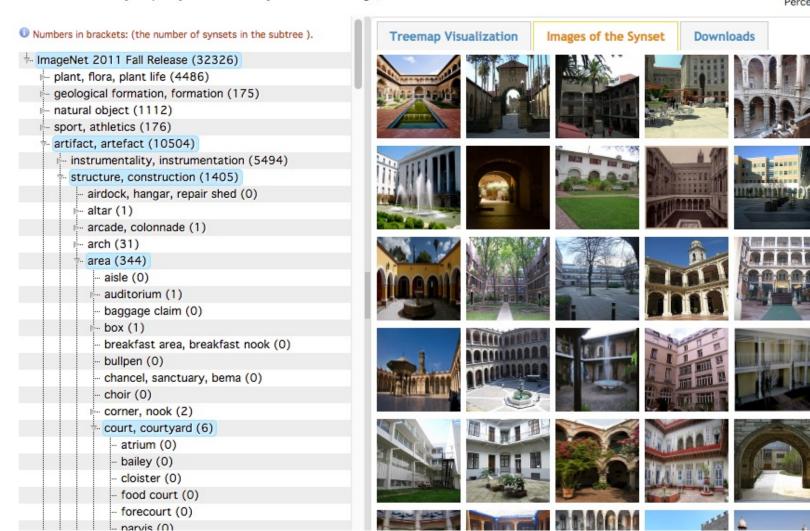
Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica

469 pictures 49.6% Popularity Percentile

Court, courtyard

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court"

165 pictures 92.61% Popularity Percentile



Example: Image Classification

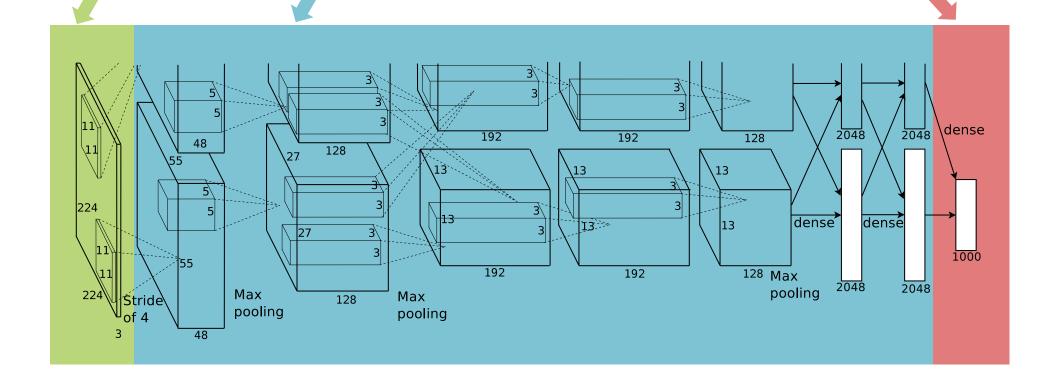
CNN for Image Classification

(Krizhevsky, Sutskever & Hinton, 2011) 17.5% error on ImageNet LSVRC-2010 contest

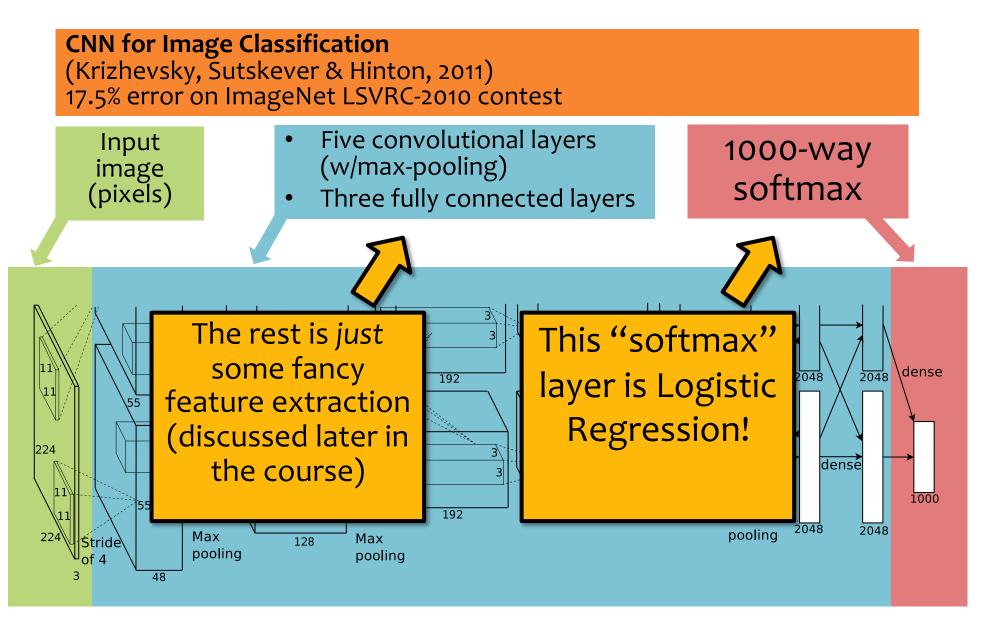
Input image (pixels)

- Five convolutional layers (w/max-pooling)
- Three fully connected layers

1000-way softmax



Example: Image Classification



LOGISTIC REGRESSION

Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N \text{ where } \mathbf{x} \in \mathbb{R}^M \text{ and } y \in \{0, 1\}$$

We are back to classification.

Despite the name logistic **regression**.

Linear Models for Classification

Key idea: Try to learn this hyperplane directly

Looking ahead:

- We'll see a number of commonly used Linear Classifiers
- These include:
 - Perceptron
 - Logistic Regression
 - Naïve Bayes (under certain conditions)
 - Support Vector Machines

Directly modeling the hyperplane would use a decision function:

$$h(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

for:

$$y \in \{-1, +1\}$$

Background: Hyperplanes

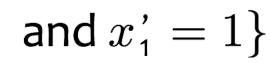
Notation Trick: fold the bias b and the weights w into a single vector $\boldsymbol{\theta}$ by prepending a constant to x and increasing dimensionality by one to get x'!

Hyperplane (Definition 1):

$$\mathcal{H} = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} + b = 0 \}$$

Hyperplane (Definition 2):

$$\mathcal{H} = \{\mathbf{x}': \boldsymbol{\theta}^T \mathbf{x}' = 0$$



$$oldsymbol{ heta} = [b, w_1, \dots, w_M]^T \\ \mathbf{x}' = [1, x_1, \dots, x_M]^T$$

Half-spaces:

$$\mathcal{H}^+ = \{\mathbf{x} : \boldsymbol{\theta}^T \mathbf{x} > 0 \text{ and } x_0^1 = 1\}$$

$$\mathcal{H}^- = \{\mathbf{x} : \boldsymbol{\theta}^T \mathbf{x} < 0 \text{ and } x_0^1 = 1\}$$

Using gradient descent for linear classifiers

Key idea behind today's lecture:

- 1. Define a linear classifier (logistic regression)
- 2. Define an objective function (likelihood)
- 3. Optimize it with gradient descent to learn parameters
- 4. Predict the class with highest probability under the model

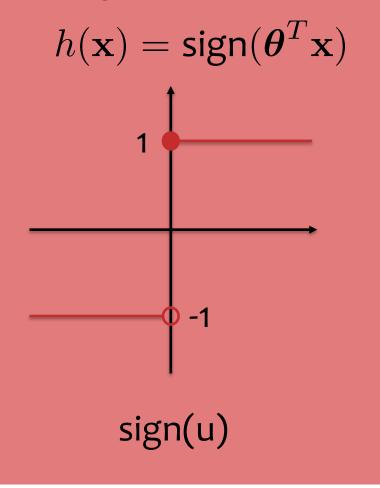
Optimization for Linear Classifiers

MSE for [your favorite model]

What is $\theta^T x$?

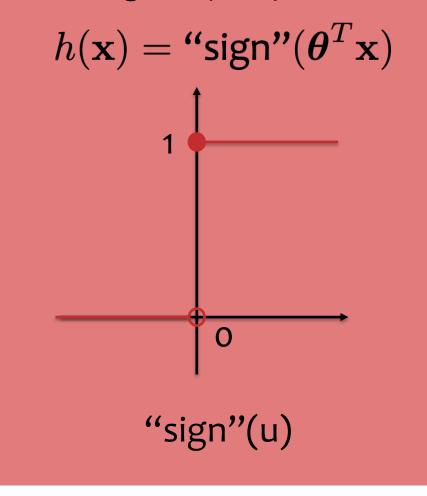
$sign(\cdot) vs. sigmoid(\cdot)$

Suppose we wanted to learn a linear classifier, but instead of predicting $y \in \{-1,+1\}$ we wanted to predict $y \in \{0,1\}$



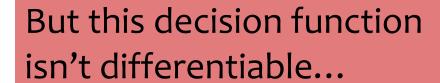
$sign(\cdot) vs. sigmoid(\cdot)$

Suppose we wanted to learn a linear classifier, but instead of predicting $y \in \{-1,+1\}$ we wanted to predict $y \in \{0,1\}$

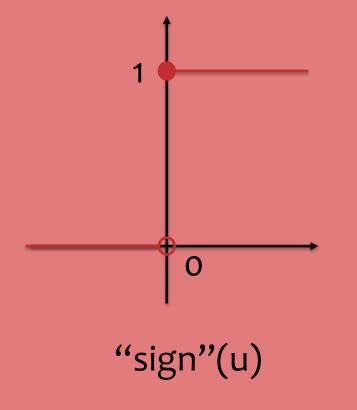


Goal: Learn a linear classifier with Gradient Descent

$sign(\cdot) vs. sigmoid(\cdot)$

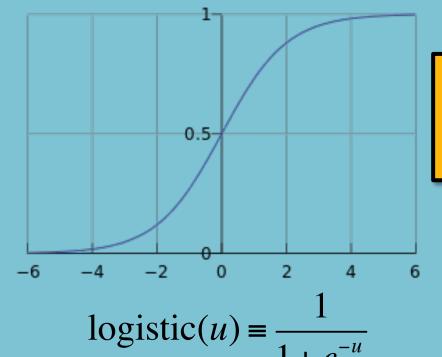


$$h(\mathbf{x}) = \text{"sign"}(\boldsymbol{\theta}^T \mathbf{x})$$



Use a differentiable function instead!

$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$



The logistic function is also called the sigmoid function.

Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{0, 1\}$

Model: Logistic function applied to dot product of parameters with input vector.

$$p_{\boldsymbol{\theta}}(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^T \mathbf{x})}$$

Learning: finds the parameters that minimize some objective function. $m{ heta}^* = \operatorname*{argmin} J(m{ heta})$

Prediction: Output is the most probable class.

$$\hat{y} = \operatorname*{argmax} p_{\boldsymbol{\theta}}(y|\mathbf{x})$$
$$y \in \{0,1\}$$

1. Model 2. Objective

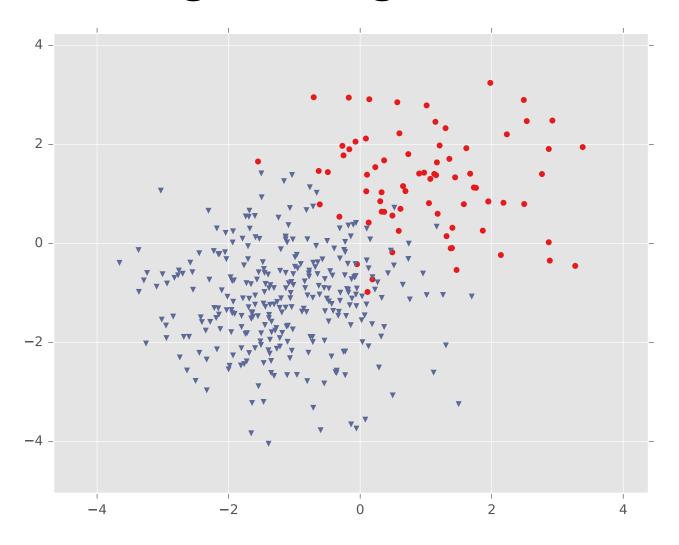
3A. Derivatives

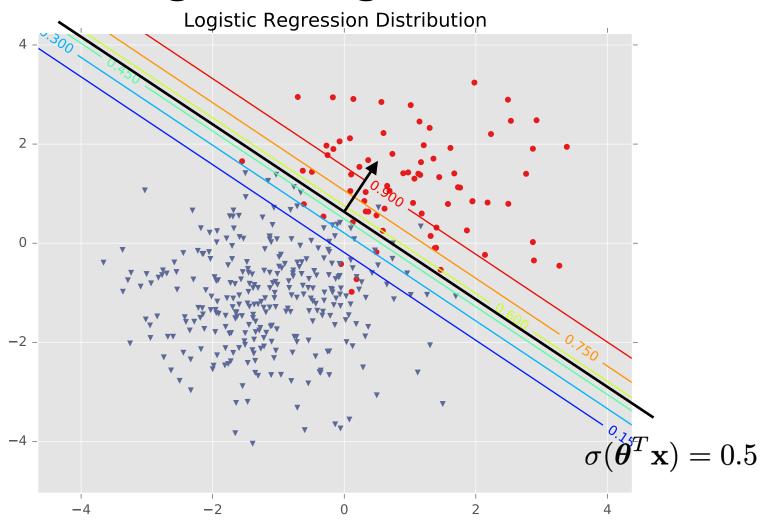
3B. Gradients

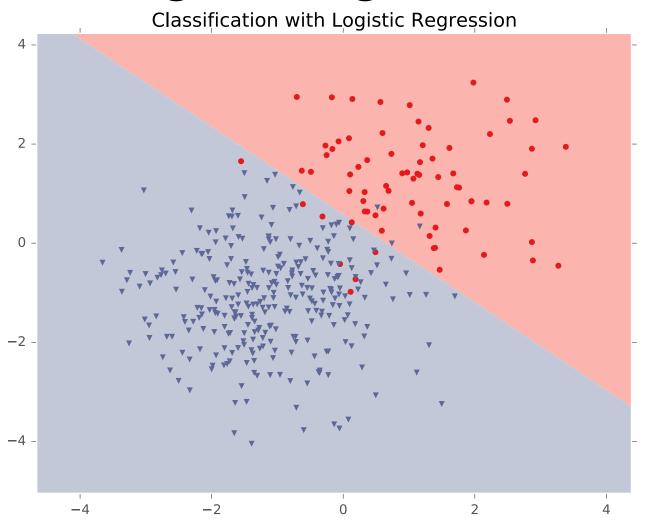
4. Optimization

5. Prediction

LOGISTIC REGRESSION ON GAUSSIAN DATA







LEARNING LOGISTIC REGRESSION

SGD for Logistic Regression

Question:

Which of the following is a correct description of SGD for Logistic Regression?

Answer:

At each step (i.e. iteration) of SGD for Logistic Regression we...

- A. (1) compute the gradient of the log-likelihood for all examples (2) update all the parameters using the gradient
- B. (1) ask Matt for a description of SGD for Logistic Regression, (2) write it down,(3) report that answer
- C. (1) compute the gradient of the log-likelihood for all examples (2) randomly pick an example (3) update only the parameters for that example
- D. (1) randomly pick a parameter, (2) compute the partial derivative of the loglikelihood with respect to that parameter, (3) update that parameter for all examples
- E. (1) randomly pick an example, (2) compute the gradient of the log-likelihood for that example, (3) update all the parameters using that gradient
- F. (1) randomly pick a parameter and an example, (2) compute the gradient of the log-likelihood for that example with respect to that parameter, (3) update that parameter using that gradient

Maximum **Conditional** Likelihood Estimation

Learning: finds the parameters that minimize some objective function.

$$\boldsymbol{\theta}^* = \operatorname*{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

We minimize the negative log conditional likelihood:

$$J(\boldsymbol{\theta}) = -\log \prod_{i=1}^{N} p_{\boldsymbol{\theta}}(y^{(i)}|\mathbf{x}^{(i)})$$

Why?

- 1. We can't maximize likelihood (as in Naïve Bayes) because we don't have a joint model p(x,y)
- 2. It worked well for Linear Regression (least squares is actually MCLE! more on this later...)

Maximum **Conditional**Likelihood Estimation

Learning: Four approaches to solving $\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$

Approach 1: Gradient Descent (take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD) (take many small steps opposite the gradient)

Approach 3: Newton's Method (use second derivatives to better follow curvature)

Approach 4: Closed Form??? (set derivatives equal to zero and solve for parameters)

Maximum **Conditional** Likelihood Estimation

Learning: Four approaches to solving $\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$

Approach 1: Gradient Descent (take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD) (take many small steps opposite the gradient)

Approach 3: Newton's Method (use second derivatives to better follow curvature)

Approach 4. Closed Form??? (set derivatives equal to zero and solve for parameters)

Logistic Regression does not have a closed form solution for MLE parameters.

Logistic Regression Objectives

You should be able to...

- Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of a probabilistic model
- Given a discriminative probabilistic model, derive the conditional log-likelihood, its gradient, and the corresponding Bayes Classifier
- Explain the practical reasons why we work with the log of the likelihood
- Implement logistic regression for binary classification
- Prove that the decision boundary of binary logistic regression is linear