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Reminders

* Practice Problems 1

— released on course website
* Exam 1: Thu, Sep. 28

— Time: 6:30 — 8:30pm

— Location: Your room/seat assignment will be announced on Piazza
* Homework 4: Logistic Regression

— Out: Fri, Sep. 29

— Due: Mon, Oct. 9 at 11:59pm




OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT



Gradient Descent




Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

i procedure SGD(D, ')

x 0« 9O

B while not converged do

4: i ~ Uniform({1,2,...,N})
5

6

0 < 0—YVeJ(0)
return 6

per-example objective:
J (@) (0)

original objective:

J(0) =YL, JD(6)



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

i: procedure SGD(D, ')
x 0+ 00
3: while not converged do
4: for i € shuffle({1,2,...,N}) do
5 0+ 0 —-TYVeJ(0)
6 return 6 %
In practice, it is common
_ A etivar to implement SGD using
per-example objective: e with(out
(7) replacement (i.e.
J(0) shuffle(§1,2,... N}), even
original objective: though most of the
N theory is for sampl(lng
_ (7) with replacement (i.e.
J(H) Zi:l J (9) Uniform({1,2,... N}).

OHNL”"}U'@\IOOQ




Why does SGD work?

Background: Expectation of a function

of a random variable

For any discrete random variable X

Ex[f(0] = ) PO = 0f (@)

XEX

Objective Function for SGD

We assume the form to be:

N
1 :
1©) =) J96)

Expectation of a Stochastic Gradient:

* If the example is sampled uniformly at random, the expected value of
the pointwise gradient is the same as the full gradient!

E[Vej(i) @] = Z(probability of selecting x(, y(i)) Vo] D(0)
i=1
N

- Z (%) Var©(®)
z Vel (6)

= Va] (9)
* Inpractice, the data set is randomly shuffled then looped through so
that each data point is used equally often
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SGD VS. GRADIENT DESCENT



SGD vs. Gradient Descent

Gradient Descent Stochastic Gradient Descent
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* Empirical comparison:
Log-log scale plot

Mean Squared Error (Train)

A

SGD vs. Gradient Descent

ClosedXorm
(normal

Gradient Descent

Epochs

Def: an epoch is a
single pass through
the training data

For GD, only one
update per epoch

For SGD, N updates

per epoch
N = (# train examples)

SGD reduces MSE
much more rapidly
than GD

For GD /[ SGD, training
MSE is initially large
due to uninformed
initialization



SGD vs. Gradient Descent

* Theoretical comparison:

Define convergence to be when J(8®) — J(0*) < €

Method Steps to Computation
Convergence per Step

Gradient descent  O(log 1/6) O(NM)
SGD 0(1/¢) 0(M)
— _/
~—

(with high probability under certain assumptions)
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SGD FOR
LINEAR REGRESSION



Linear Regression as Function Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {ho : ho(x) = 8Tx,0 ¢ RM}




Gradient Calculation for Linear Regression

Derivative of J(*)(0): Derivative of J(0):
J(Z)(g) (gT (4) y(z’))2 a (Z)
=5 (gT (6) _ 4(0))2
k _ Z(QT 6) _ @)@
— (67X — y(i))de (OTx® — 4
= (0Tx(®) — y@)_~_ (Ze i) — )
— (6Tx — y(”)x};)
Gradient of J(0) [used by Gradient Descent]
i (2)
Gradient of J'*(0) [used by SGD] ﬁJ(O) N (6T ) i)
(00 [O7x -y D)z #90) | _ S, 670 —y0)e
@0 | @m0 _yo)d|  VIO=| T = -
VeJ () = = : ' N
i ; MJ(O) DANCA x(z) y®)z{) |
— J(’)(H) (6T x® — @)z

- Z T x(8) — (@) )x(®)

= (87x — y()x0)



SGD for Linear Regression

SGD applied to Linear Regression is called the “Least
Mean Squares” algorithm

Algorithm 1 Least Mean Squares (LMS)

procedure LMS(D, 6(9)
6 «— 6 > Initialize parameters

1.
2
3 while not converged do

4: fori € shuffle({1,2,...,N})do
5

6

7

g + (07x() — 4())x® > Compute gradient
0<+—0—n~g > Update parameters

return 6




GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression
procedure GDLR(D, 8'?)

1:

2 0 — 6 > Initialize parameters
3 while not converged do

4 g — SN (07X — 4(0)x() > Compute gradient
5 0<—0—~g > Update parameters
6 return 6




Solving Linear Regression

Question:

True or False: If Mean Squared Error (i.e. & vazl(y(i) — h(x"))2)
has a unique minimizer (i.e. argmin), then Mean Absolute Error (i.e.
LSy — h(x®)]) must also have a unique minimizer.

Answer:



Optimization Objectives

You should be able to...

Apply gradient descent to optimize a function

Apply stochastic gradient descent (SGD) to optimize a
function

Apply knowledge of zero derivatives to identify a closed-
form solution (if one exists) to an optimization problem

Distinguish between convex, concave, and nonconvex
functions

Obtain the gradient (and Hessian) of a (twice) differentiable
function



PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our output
was generated using a deterministic
target function:

x) ~ p*(-)
y = ¢*(x)

Our goal was to learn a hypothesis h(x)
that best approximates c*(x)

Probabilistic Learning

Today, we assume that our output is
sampled from a conditional probability
distribution:

x) ~ p*()
y ~ p* (- x?)
Our goal is to learn a probability

distribution p(y|x) that best
approximates p*(y|x)



Robotic Ffrming

fiim S
T
!

9

Deterministic

Probabilistic

| Classification

Is this a picture of

| (binary output) a wheat kernel?

Is this plant
drought resistant?

Regression
(continuous
output)

How many wheat
kernels are in this
picture?

What will the yield
of this plant be?

r - Y
. ' A 'l
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MAXIMUM LIKELIHOOD ESTIMATION



Likelihood Function | ©OneR.V.

Given N independent, identically distributed (iid) samples D=
fx, x(), ..., x(N} from a discrete random variable X with probability
mass function (pmf) p(x|0) ...

 (Case 1: The likelihood function The likelihood tells us

how likel le i
O =PRI ) | PRt

* Case 2: The log-likelihood function is
(0) = log p(xM]B) + ... +log p(x(N)|6)



MLE

Suppose we have data D = {2V},

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood

of the data. v .
O™ = argmax Hp(x(z) 0)
g =l

Maximum Likelihood Estimate (MLE)

A

/'\L(e)

>

MLE

Dk -



Likelihood Function | TwWoR.V.s

Given N iid samples D = {(x®, yM), ..., (xM), y(\)} from a pair of
random variables X, Y where Y is discrete with probability
mass function (pmf) p(y| x, 6)

e (Case 3: The conditional likelihood function:
L(8) = p(y"| x(, 8) ... p(y™ | x(N), ©)

* (Case 4: The conditional log-likelihood function is
«(6) = log p(yV| xv, 6) + ... +log p(y™] x™), 6)



MLE
Suppose we have data D = {(y¥,x(V)} ¥,

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the conditional likelihood

of the data. v . .
oM = argmaXHp(y(Z) | x() 9)
o =1
Maximum Likelihood Estimate (MLE)

A

/'\L(e)

>

MLE

Dk -



MLE
Suppose we have data D = {(y, x(V)} ¥V




MLE
Suppose we have data D = {(y¥,x(V)} ¥,

Principle of Maximum Likelihood Estimation:
Choose the parameters that minimize the negative conditional log-

likelihood of the data.
OME — argmaXHp ) () )
0 1=1

N
— argmax log p(yV X(i),H
= ; gp(y'” | )

— argmm — Zlogp ) () )

1=1



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability mass (i.e. sum-to-
one constraint)

* MLE tries to allocate as much probability mass as possible to
the things we have observed...

... at the expense of the things we have not observed



MOTIVATION:
LOGISTIC REGRESSION



Example: Image Classification
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IM&GENET

Bird

Home  Explore
About Download

Not logged in. Login | Signup

C=
2126 92.85% B

Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings pictures  Popularity ~ Wordnet

- chordate

;- marine animal, marine creature, sea animal, sea creature (1)
i scavenger (1)

- biped (0)

I;~ predator, predatory animal (1)

i larva (49)

- acrodont (0)

- feeder (0)

- stunt (0)

(3087)

| tunicate, urochordate, urochord (6)
- cephalochordate (1)
. vertebrate, craniate (3077)
#- mammal, mammalian (1169)
- bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)

cock (1)

- hen (0)

- nester (0)

- night bird (1)

- bird of passage (0)

- protoavis (0)

- archaeopteryx, archeopteryx, Archaeopteryx lithographi
- Sinornis (0)

- |bero-mesornis (0)

- archaeornis (0)

- ratite, ratite bird, flightless bird (10)
- carinate, carinate bird, flying bird (0)
- passerine, passeriform bird (279)

- nonpasserine bird (0)

- bird of prey, raptor, raptorial bird (80)
- gallinaceous bird, gallinacean (114)

Percentile IDs

Treemap Visualization Images of the Synset Downloads
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IM&GENET | v
- - = e About Download

Not logged in. Login | Signup

German iris, Iris kochii 469 49.6%
Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica pictures ggfcu;ﬁ;litlg

i~ halophyte (0)
. succulent (39) Treemap Visualization Images of the Synset Downloads
- cultivar (0)

- cultivated plant (0)

- weed (54)

- evergreen, evergreen plant (0)

- deciduous plant (0)

- vine (272)

- creeper (0)

- woody plant, ligneous plant (1868)

- geophyte (0)

- desert plant, xerophyte, xerophytic plant, xerophile, xerophilc
- mesophyte, mesophytic plant (0)

- aquatic plant, water plant, hydrophyte, hydrophytic plant (11
- tuberous plant (0)

* bulbous plant (179)

*. iridaceous plant (27)
+. iris, flag, fleur-de-lis, sword lily (19)

. bearded iris (4)

Florentine iris, orris, Iris germanica florentina, Iris
- German iris, Iris germanica (0)

- German iris, Iris kochii (0)

... Dalmatian iris, Iris pallida (0)

i~ beardless iris (4)

- bulbous iris (0)

- dwarf iris, Iris cristata (0)

-- stinking iris, gladdon, gladdon iris, stinking gladwyn,
- Persian iris, Iris persica (0)

- yellow iris, yellow flag, yellow water flag, Iris pseuda
- dwarf iris, vernal iris, Iris verna (0)

- blue flag, Iris versicolor (0)

)

Wordnet
IDs
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IMAGENET I o

Not logged in. Login | Signup

C=
Court, courtyard 165 92.61% B

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court" pictures ngcu;ﬁftiﬁg }ggfdnet

U Numbers in brackets: (the number of synsets in the subtree ). Treemap Visualization Images of the Synset Downloads

¥ ImageNet 2011 Fall Release (32326)
i plant, flora, plant life (4486)
| geological formation, formation (175)
- natural object (1112)
- sport, athletics (176)
+. artifact, artefact (10504)
x instrumentality, instrumentation (5494)
+. structure, construction (1405)
airdock, hangar, repair shed (0)
- altar (1)
- arcade, colonnade (1)
e arch (31)
. area (344)
- aisle (0)
- auditorium (1)
- baggage claim (0)
- box (1)
- breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
- choir (0)
+- corner, nook (2)

" court, courtyard (6)
- atrium (0)

- bailey (0)

- cloister (0)

- food court (0)

- forecourt (0)

L. narvie (NN
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Example: Image Classification




Example: Image Classification




LOGISTIC REGRESSION



Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete. |
D = {xW, ¢y wherex ¢ RM and y € {0,1}

We are back to
classification.

Despite the name
logistic regression.



gsgi

L

odking ahead:
We’ll see a number of

commonly used Linear k=

Classifiers
These include:

Perceptron

Logistic Regression

Models for-Classi

Naive Bayes (under
certain conditions)

Support Vector

Machines

3.5

..........

R v R

fication

.| this hyperplane directly

y mo.deling the
hyperplane would use a

Ny e o .
J decision function:

h(x) = sign(0' x)




Background: Hyperplanes%

Hyperplane (Definition 1):

H={x:wx+b=0}
Hyperplane (Definition 2):
H={x:0"x=0
andx; =1}
' T
S :b,wl,...,qul
X = _].,2131,. ..,$M]

Half-spaces: 1
Ht ={x:0"x>0andzy = 1}
H™ ={x:0"x< 0and zg = 1}



Using gradient descent for linear classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn parameters
4. Predict the class with highest probability under the model



Optimization for Linear Classifiers

MSE for [your favorite model] What is 87 x?



sign(-) vs. sigmoid(-)




sign(+) vs. sigmoid(-)




sign(+) vs. sigmoid(-)




Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete. |
D = {x9, yN wherex ¢ RM andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1|x) =

1 + exp(—6'x)
Learning: finds the parameters that minimize some

objective function. g* — argmin .J(0)
0

Prediction: Output is the most probable class.

y = argmax pg(y|x)
ye{0,1}



Logistic Regression

1. Model 2. Objective



Logistic Regression

3A. Derivatives 3B. Gradients



Logistic Regression

4. Optimization 5. Prediction



LOGISTIC REGRESSION ON
GAUSSIAN DATA



Logistic Regression
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Logistic Regression

Logistic Regression Distribution

0 - ‘ Y ,vv‘ _
v \4 v VY w.Y ve y
Yy v v YW vy §v Y v
v v v w
ML . 2R

-2 - v
AR L
v
'v v Yovy Vy
v v
vy .
v
Vv
o 4
g(0"x)=0.5
—4 —2 0 2 4
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Logistic Regression

Classification with Logistic Regression

70



LEARNING LOGISTIC REGRESSION



SGD for Logistic Regression

Question:
Which of the following is a correct description of SGD for Logistic Regression?

Answer:
At each step (i.e. iteration) of SGD for Logistic Regression we...

A.

B.

C.

(1) compute the gradient of the log-likelihood for all examples (2) update all
the parameters using the gradient

1) ask Matt for a description of SGD for Logistic Regression, (2) write it down,
3) report that answer

(1) compute the gradient of the log-likelihood for all examples (2) randomly
pick an example (3) update only the parameters for that example

(1) randomly pick a parameter, (2) compute the partial derivative of the log-
likelihood with respect to that parameter, (3) update that parameter for all
examples

$1) randomly pick an example, (2) compute the gradient of the log-likelihood
or that example, (3) update all the parameters using that gradient

(1) randomly pick a parameter and an example, (2) compute the gradient of
the log-likelihood for that example with respect to that parameter, (3) update
that parameter using that gradient



Maximum Conditional
Likelihood Estimation

Learning: finds the parameters that minimize some
objective function.

0" = argmin J(0)
0
We minimize the negative log conditional likelihood:

N
J(0) = —log | [ pe(y”1x™)
i=1
Why?
1.  We can’t maximize likelihood (as in Naive Bayes)

because we don’t have a joint model p(x,y)

It worked well for Linear Regression (least squares is
actually MCLE! more on this later...)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(0)
0

Approach 1: Gradient Descent
(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form?2?
(set derivatives equal to zero and solve for parameters)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(0)
0

Approach 1: Gradient Descent
(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

) 222
(set derivatives equal to zero and solv
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Logistic Regression Objectives

You should be able to...

 Apply the principle of maximum likelihood estimation (MLE) to
learn the parameters of a probabilistic model

* Given a discriminative probabilistic model, derive the conditional

log-likelihood, its gradient, and the corresponding Bayes
Classifier

* Explain the practical reasons why we work with the log of the
ikelihood

* Implement logistic regression for binary classification

* Prove that the decision boundary of binary logistic regression is
inear




