
Recitation 2
Decision Trees

10-301/10-601: Introduction to Machine Learning

09/08/2023

1 Programming: Tree Structures and Algorithms

Topics Covered:

• Depth of nodes and trees

• Recursive traversal of trees

– Depth First Search

∗ Pre-order Traversal

∗ In-order Traversal

∗ Post-order Traversal

– Breadth First Search (Self Study)

• Debugging in Python

Questions:

1. Depth of a tree definition

2. Depth of a node definition

10-301/10-601: Recitation 2 Page 2 of 9 09/08/2023

3. What is the depth of tree A? What is the depth of node X4 in tree A?

X1

X2

X4

no yes

X5

no yes

X3

X6

no yes

X7

no yes

yes

ye
s

ye
s no

no

ye
s no

yes

ye
s

ye
s no

no

ye
s no

4. What is the depth of tree B?

X1

no yes

ye
s no

5. What is the depth of tree C? What are the depths of nodes X1 and X5 in tree C?

X1

X2

X4

X6

no yes

yes

no

X3

X5

no yes

no

ye
s

ye
s

ye
s

ye
s no

no

yes

yes

no

ye
s no

yes

10-301/10-601: Recitation 2 Page 3 of 9 09/08/2023

6. In-class coding and explanation of Depth First Traversal in Python.
Link to the code:
https://colab.research.google.com/drive/1KypCp2tPDad4gdHjL1FH4DqbBnM5CfCr?usp=
sharing

Pre-order, Inorder and Post-order Tree Traversal

This class represents an individual node
class Node:

def __init__(self , key):
self.left = None
self.right = None
self.val = key

def traversal1(root):
if root is not None:

First recurse on left child
traversal1(root.left)
then recurse on right child
traversal1(root.right)
now print the data of node
print(root.val , end=’\t’)

def traversal2(root):
if root is not None:

First print the data of node
print(root.val , end=’\t’)
Then recurse on left child
traversal2(root.left)
Finally recurse on right child
traversal2(root.right)

def traversal3(root):
if root is not None:

First recurse on left child
traversal3(root.left)
then print the data of node
print(root.val , end=’\t’)
now recurse on right child
traversal3(root.right)

def build_a_tree ():
root = Node (1)
root.left = Node (2)
root.right = Node (3)
root.left.left = Node (4)
root.left.right = Node (5)
return root

https://colab.research.google.com/drive/1KypCp2tPDad4gdHjL1FH4DqbBnM5CfCr?usp=sharing
https://colab.research.google.com/drive/1KypCp2tPDad4gdHjL1FH4DqbBnM5CfCr?usp=sharing

10-301/10-601: Recitation 2 Page 4 of 9 09/08/2023

if __name__ == ’__main__ ’:
root = build_a_tree ()
print(’traversal1 of the binary tree is: ’)
traversal1(root)
print()
print(’traversal2 of the binary tree is: ’)
traversal2(root)
print()
print(’traversal3 of the binary tree is: ’)
traversal3(root)

Now, identify which traversal function is pre-order, in-order, post-order DFS:

• traversal1() is

• traversal2() is

• traversal3() is

1

2

4 5

3

Code Output

traversal1 of the binary tree is:

traversal2 of the binary tree is

traversal3 of the binary tree is

10-301/10-601: Recitation 2 Page 5 of 9 09/08/2023

2 ML Concepts: Mutual Information

Information Theory Definitions:

• H(Y) = −
∑

y∈values(Y) P (Y = y) log2 P (Y = y)

• H(Y | X = x) = −
∑

y∈values(Y) P (Y = y|X = x) log2 P (Y = y|X = x)

• H(Y | X) =
∑

x∈values(X) P (X = x)H(Y | X = x)

• I(Y ;X) = H(Y)−H(Y | X) = H(X)−H(X | Y)

Exercises

1. Calculate the entropy of tossing a fair coin.

2. Calculate the entropy of tossing a coin that lands only on tails. Note: 0 · log2(0) = 0.

3. Calculate the entropy of a fair dice roll.

4. When is the mutual information I(Y ;X) = 0?

10-301/10-601: Recitation 2 Page 6 of 9 09/08/2023

Used in Decision Trees:

Outlook (X1) Temperature (X2) Humidity (X3) Play Tennis? (Y)
sunny hot high no
overcast hot high yes
rain mild high yes
rain cool normal yes
sunny mild high no
sunny mild normal yes
rain mild normal yes

overcast hot normal yes

1. Using the dataset above, calculate the mutual information for each feature (X1, X2, X3)
to determine the root node for a Decision Tree trained on the above data.

• What is I(Y ;X1)?

• What is I(Y ;X2)?

• What is I(Y ;X3)?

• What feature should be split on at the root node?

2. Calculate what the next split should be.

3. Draw the resulting tree.

10-301/10-601: Recitation 2 Page 7 of 9 09/08/2023

3 ML Concepts: Construction of Decision Trees

In this section, we will go over how to construct our decision tree learner on a high level.
The following questions will help guide the discussion:

1. What exactly are the tasks we are tackling?

2. What are the inputs and outputs at training time? At testing time?

3. At each node of the tree, what do we need to store?

4. What do we need to do at training time?

5. What do we need to do at testing time?

6. What happens if max depth is 0?

7. What happens if max depth is greater than the number of attributes?

10-301/10-601: Recitation 2 Page 8 of 9 09/08/2023

4 Programming: Debugging with Trees

pdb and common commands

• import pdb; pdb.set trace() (breakpoint() also allowed as per PEP 553)

• p variable (print value of variable)

• n (next)

• s (step into subroutine)

• ENTER (repeat previous command)

• q (quit)

• l (list where you are)

• b (breakpoint)

• c (continue)

• r (continue until the end of the subroutine)

• !code (run Python code)

Real Practice
These are some (contrived) examples based on actual bugs previous students had. Link to the
code: https://colab.research.google.com/drive/1KypCp2tPDad4gdHjL1FH4DqbBnM5CfCr?
usp=sharing

Buggy Code

Reverse the rows of a 2D array
def reverse_rows(original):

rows = len(original)
cols = len(original [0])

new = [[0] * cols] * rows

for i in range(rows):
for j in range(cols):

new_index = rows - i
new[new_index][j] = original[i][j]

return new

if __name__ == ’__main__ ’:
a = [[1, 2],

[3, 4],
[5, 6]]

print(reverse_rows(a))

https://colab.research.google.com/drive/1KypCp2tPDad4gdHjL1FH4DqbBnM5CfCr?usp=sharing
https://colab.research.google.com/drive/1KypCp2tPDad4gdHjL1FH4DqbBnM5CfCr?usp=sharing

10-301/10-601: Recitation 2 Page 9 of 9 09/08/2023

Buggy Code

import numpy as np

biggest_col takes a binary 2D array and returns the index of the
column with the most non -zero values. In case of a tie , return
the smallest index.
def biggest_col(mat):

num_col = len(mat [0])
max_count = -1
max_index = -1

iterate over the columns of the matrix
for col in range(num_col):

counts the number of nonzero values
count = np.count_nonzero(mat[:, col])
change max if needed
if count >= max_count:

max_count = count
max_index = col

return max_index

Helper function that returns the number of nonzero elements in
mat in column col.
def get_count(mat , col):

num_row = len(mat)
count = 0
for row in range(num_row):

count += (mat[row][col] == 0)
return count

if __name__ == ’__main__ ’:
Expected answer: column index 2
mat = [[1, 0, 0, 1],

[0, 1, 1, 1],
[1, 0, 0, 0],
[0, 1, 1, 1],
[0, 0, 1, 0]]

assert biggest_col(mat) == 2

	Programming: Tree Structures and Algorithms
	ML Concepts: Mutual Information
	ML Concepts: Construction of Decision Trees
	Programming: Debugging with Trees

