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1 Probabilistic Learning

In probabilistic learning, we are trying to learn a target probability distribution as opposed
to a target function. We’ll review two ways of estimating the parameters of a probability
distribution, as well as one family of probabilistic models: Naive Bayes classifiers.

1.1 MLE/MAP

As a reminder, in MLE, we have

θ̂MLE = argmax
θ

p(D|θ)

= argmin
θ

− log (p(D|θ))

For MAP, we have

θ̂MAP = argmax
θ

p(θ|D)

= argmax
θ

p(D|θ)p(θ)
Normalizing Constant

= argmax
θ

p(D|θ)p(θ)

= argmin
θ

− log (p(D|θ)p(θ))

1. Imagine you are a data scientist working for an advertising company. The advertising
company has recently run an ad and wants you to estimate its performance.

The ad was shown to N people. Let Y (i) = 1 if person i clicked on the ad and 0
otherwise. Thus

∑N
i y(i) = k people decided to click on the ad. Assume that the

probability that the i-th person clicks on the ad is θ and the probability that the i-th
person does not click on the ad is 1− θ.
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(a) Note that
p(D|θ) = p((Y (1), Y (2), ..., Y (N)|θ) = θk(1− θ)N−k

Calculate θ̂MLE.

θ̂MLE = argmin
θ

− log (p(D|θ))

= argmin
θ

− log
(
θk(1− θ)N−k)

)
= argmin

θ
−k ∗ log(θ)− (N − k) log(1− θ)

Setting the derivative equal to zero yields

0 =
−k

θ
+

(N −K)

1− θ

=⇒ θ̂MLE =
k

N

(b) Suppose N = 100 and k = 10. Calculate θ̂MLE.

θ̂MLE = k
N

= 0.10

(c) Your coworker tells you that θ ∼ Beta(α, β). That is:

p(θ) =
θα−1(1− θ)β−1

B(α, β)

Recall from lecture that θ̂MAP for a Bernoulli random variable with a Beta prior
is given by:

θ̂MAP =
k + α− 1

N + α + β − 2

Suppose N = 100 and k = 10. Furthermore, you believe that in general people
click on ads about 6 percent of the time, so you, somewhat naively, decide to set
α = 6 + 1 = 7, and β = 100− 6 + 1 = 95. Calculate θ̂MAP .

θ̂MAP = k+α−1
N+α+β−2

= 10+7−1
100+102−2

= 16
200

= 0.08

(d) How do θ̂MLE and θ̂MAP differ in this scenario? Argue which estimate you think
is better.

Both estimates are reasonable given the available information. Note that θ̂MAP

has lower variance than θ̂MLE, but θ̂MAP is more biased. If you believe that this
advertisement is similar to advertisements with a 6 percent click rate, then θ̂MAP

may be a superior estimate, but if the circumstances under which the adver-
tisement was shown were different from the usual, then θ̂MLE might be a better
choice.
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2. Suppose you are an avid Neural and Markov fan who monitors the @neuralthenarwhal
Instagram account each day. Suppose you wish to find the probability that Neural or
Markov will post at any time of day. Over three days you look on Instagram and find
the following number of new posts: x = [3, 4, 1]

A fellow fan tells you that this comes from a Poisson distribution:

p(x|θ) = e−θθx

x!

Also, you are told that θ ∼ Gamma(2, 2) — that is, its pdf is:

p(θ) =
1

4
θe−

θ
2 , θ > 0

Calculate θ̂MAP .

(See also https://en.wikipedia.org/wiki/Conjugate_prior)

Note:

p(D|θ) = e−θθ3

3!

e−θθ4

4!

e−θθ1

1!

θ̂MAP = argmin
θ

− log (p(D|θ)p(θ))

= argmin
θ

− log

(
e−θθ3

3!

e−θθ4

4!

e−θθ1

1!
× 1

4
θe−

θ
2

)
= argmin

θ
− log

(
e−3θ− θ

2 θ9

3!× 4!

)

= argmin
θ

−
((

−3θ − θ

2

)
log e+ 9 log θ − log (3!× 4!)

)
= argmin

θ

(
3θ +

θ

2

)
− 9 log θ + log (3!× 4!)

Taking the derivative gives us

d

dθ

(
3θ +

θ

2

)
− 9 log θ + log (3!× 4!) =

(
3 +

1

2

)
− 9

θ

Setting the derivative equal to zero yields

0 =

(
3 +

1

2

)
− 9

θ

=⇒ θMAP =
9

3 + 1
2

= 2.57142857143

https://en.wikipedia.org/wiki/Conjugate_prior
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1.2 Naive Bayes

By applying Bayes’ rule, we can model the probability distribution P (Y |X) by estimating
P (X|Y ) and P (Y ).

P (Y |X) ∝ P (Y )P (X|Y )

The Naive Bayes assumption greatly simplifies estimation of P (X|Y ) - we assume the features
Xd are independent given the label. With math:

P (X|Y ) =

Different Naive Bayes classifiers are used depending on the type of features.

• Binary Features: Bernoulli Naive Bayes - Xd |Y = y ∼ Bernoulli(θd,y)

• Discrete Features: Multinomial Naive Bayes -Xd |Y = y ∼ Multinomial(θd,1,y, . . . , θd,K−1,y)

• Continuous Features: Gaussian Naive Bayes - Xd |Y = y ∼ N (µd,y, σ
2
d,y)

We’ll walk through the process of learning a Bernoulli Naive Bayes classifier. Consider the
dataset below. You are looking to buy a car; the label is 1 if you are interested in the car
and 0 if you aren’t. There are three features: whether the car is red (your favorite color),
whether the car is affordable, and whether the car is fuel-efficient.

Interested? Red? Affordable? Fuel-Efficient?
1 1 1 1
0 0 1 0
0 0 1 1
1 0 0 0
0 0 1 1
0 0 1 1
1 1 1 1
1 1 0 1
0 0 0 0

1. How many parameters do we need to learn?

6 for P (X|Y ), 1 for P (Y )

2. Estimate the parameters via MLE.

Y = 1 Y = 0

Red? 3
4

0

Affordable? 1
2

4
5

Fuel-Efficient? 3
4

3
5
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3. If I see a car that is red, not affordable, and fuel-efficient, would the classifier predict
that I would be interested in it?

P (Y = 1|red, not affordable, efficient) ∝ 4
9
· 3
4
· 2
4
· 3
4
= 1

8

P (Y = 0|red, not affordable, efficient) ∝ 5
9
· 0 · 1

5
· 3
5
= 0

4. Is there a problem with this classifier based on your calculations for the previous
question? If so, how can we fix it?

If the car is red, the classifier will always predict I’m interested because P (not red|Y =
0) = 0. We can use a prior which prevents parameter estimates from being 0, i.e.
adding 1 fake count for each feature/label combination. This will be important in
Homework 7!

5. Now we will derive the decision boundary of a 2D Gaussian Näıve Bayes. Show that this
decision boundary is quadratic. That is, show that p(y = 1 | x1, x2) = p(y = 0 | x1, x2)
can be written as a polynomial function of x1 and x2 where the degree of each variable
is at most 2. You may fold unimportant constants into terms such as C,C ′, C ′′, C ′′′ so
long as you are clearly showing each step.

Observe that both the LHS and RHS should equal 1
2
at the decision boundary, so they

are both nonzero.

p(y = 1 | x1, x2) = p(y = 0 | x1, x2)

=⇒ p(x1 | y = 0)p(x2 | y = 0)p(y = 0)

p(x1, x2)
=

p(x1 | y = 1)p(x2 | y = 1)p(y = 1)

p(x1, x2)

=⇒ 1 =
p(x1 | y = 1)p(x2 | y = 1)p(y = 1)

p(x1 | y = 0)p(x2 | y = 0)p(y = 0)
(∵ nonzero LHS)

=⇒ 1 = C exp

[
(x1 − µ11)

2

2σ2
11

+
(x2 − µ21)

2

2σ2
21

− (x1 − µ10)
2

2σ2
10

− (x2 − µ20)
2

2σ2
20

]
=⇒ 0 = C ′ +

(x1 − µ11)
2

2σ2
11

+
(x2 − µ21)

2

2σ2
21

− (x1 − µ10)
2

2σ2
10

− (x2 − µ20)
2

2σ2
20

(∵ nonzero C)

Since C ′ is some constant that does not depend on x1 or x2, we have shown that the
decision boundary is (at most) quadratic x1 and x2.
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2 Learning Theory

2.1 PAC Learning

Some Important Definitions

1. Basic notation:

• Probability distribution (unknown): X ∼ p∗

• True function (unknown): c∗ : X → Y

• Hypothesis space H and hypothesis h ∈ H : X → Y

• Training dataset D = {x(1), . . . , x(N)}

2. True Error (expected risk)

R(h) = Px∼p∗(x)(c
∗(x) ̸= h(x))

3. Train Error (empirical risk)

R̂(h) = Px∼D(c
∗(x) ̸= h(x))

=
1

N

N∑
i=1

1(c∗(x(i)) ̸= h(x(i)))

=
1

N

N∑
i=1

1(y(i) ̸= h(x(i)))

The PAC criterion is that we produce a high accuracy hypothesis with high probability.
More formally,

P (∀h ∈ H, ≤ ) ≥

P (∀h ∈ H, |R(h)− R̂(h)| ≤ ϵ) ≥ 1− δ

Sample Complexity is the minimum number of training examples N such that the PAC
criterion is satisfied for a given ϵ and δ

Sample Complexity for 4 Cases: See Figure 1. Note that

• Realizable means c∗ ∈ H

• Agnostic means c∗ may or may not be in H
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Figure 1: Sample Complexity for 4 Cases

The VC dimension of a hypothesis space H, denoted VC(H) or dV C(H), is the maximum
number of points such that there exists at least one arrangement of these points and a
hypothesis h ∈ H that is consistent with any labelling of this arrangement of points.

To show that VC(H) = n:

• Show there exists a set of points of size n that H can shatter

• Show H cannot shatter any set of points of size n+ 1

Questions

1. For the following examples, write whether or not there exists a dataset with the given
properties that can be shattered by a linear classifier.

• 2 points in 1D

• 3 points in 1D

• 3 points in 2D

• 4 points in 2D

How many points can a linear boundary (with bias) classify exactly for d-Dimensions?

• Yes

• No

• Yes

• No

d+ 1
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2. Consider a rectangle classifier (i.e. the classifier is uniquely defined 3 points x1, x2, x3 ∈
R2 that specify 3 out of the four corners), where all points within the rectangle must
equal 1 and all points outside must equal -1

(a) Which of the configurations of 4 points in figure 2 can a rectangle shatter?

Figure 2

(a), (b), since the rectangle can be scaled and rotated it can always perfectly classify
the points. (c) is not perfectly classifiable in the case that all the exterior points
are positive and the interior point is negative.

(b) What about the configurations of 5 points in figure 3?

Figure 3

None of the above. For (d), consider (from left to right) the labeling 1, 1 -1, -1, 1.
For (e), same issue as (c).



10-301/10-601: Recitation 6 Page 9 of 11 11/02/22

3. In the below table, state in which case the sample complexity of the hypothesis falls
under.

Problem Hypothesis Space Realizable/
Agnostic

Finite/ Infi-
nite

A binary classification
problem, where the data
points are linearly separa-
ble

Set of all linear classifiers

Predict whether it will
rain or not based on
the following dataset:

A decision tree with max
depth 2, where each node
can only split on one fea-
ture, and the features can-
not be repeated along a
branch

Classifying a set of real-
valued points where the un-
derlying data distribution is
unknown

Set of all linear classifiers

A binary classification
problem on a given set of
data points, where the data
is not linearly separable

K-nearest neighbour classi-
fier with Euclidean distance
as distance metric

Realizable/ Agnostic Finite/ Infinite

1 Realizable Infinite (All possible linear classifiers)
2 Realizable (We can split the

given data using a depth 2 de-
cision tree)

Finite (There are only a finite set of decision
trees that can be formed with the given con-
straints)

3 Agnostic (The data may or may
not be linearly separable)

Infinite

4 Agnostic (The KNN classifier
may or not be able to perfectly
classify each point)

Finite (The hypothesis space is the set of all
possible partitions of the input space into k-
nearest regions - which is finite for all possible
values of k )
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4. Let x1, x2, ..., xn be n random variables that represent binary literals (x ∈ {0, 1}n). Let
the hypothesis class Hn denote the conjunctions of no more than n literals in which each
variable occurs at most once. Assume that c∗ ∈ Hn.

Example: For n = 4, (x1 ∧ x2 ∧ x4), (x1 ∧ ¬x3) ∈ H4

Find the minimum number of examples required to learn h ∈ H10 which guarantees at
least 99% accuracy with at least 98% confidence.

|Hn| = 3n

|H10| = 310, ϵ = 0.01, δ = 0.02

N(H10, ϵ, δ) ≥ ⌈1
ϵ
[ln |H10|+ ln 1

δ
]⌉ = ⌈1489.81⌉ = 1490
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3 Generative vs. Discriminative Models

1. What is the difference between discriminative vs. generative models?
The discriminative model maximizes the conditional likelihood: P (Y |X).
The generative model maximizes the joint likelihood of the observations x and the labels
y: P (X, Y ).

2. Classify logistic regression and Naive Bayes as discriminative vs. generative model.
Logistic Regression directly estimates the parameters of P (Y |X), whereas Naive Bayes
directly estimates P (X, Y ) via parameters for P (Y ) and P (X|Y ). We often call the
former a discriminative classifier, and the latter a generative classifier.

3. We say that two models form a generative/discriminative pair if the conditional distri-
bution P (Y |X) inferred from the joint P (X, Y ) of the generative model is equivalent to
the P (Y |X) of the discriminative. Gaussian Naive Bayes and Logistic Regression are
one such pair.
Describe the tradeoffs of generative vs. discriminative models.
(Another pair we won’t discuss are HMMs and linear-chain CRFs.)

Assume that we learn a generative/discriminative pair of models from a finite training
dataset. If model assumptions are correct, the generative model (e.g. Naive Bayes) is
a more efficient learner and requires fewer samples than its discriminative counterpart
(e.g. logistic regression). If model assumptions are incorrect, then the discriminative
model (e.g. logistic regression) has lower asymptotic error (as the training size grows)
and does better than its generative counterpart (e.g. Naive Bayes).

An example of an easily violable assumption would be that the features x are condition-
ally independent given y (since that is rarely the case in reality).
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