10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science

Carnegie Mellon University

Reinforcement Learning:

Markov Decision Processes
+

Value Iteration

Matt Gormley
Lecture 15
Mar. 24, 2021

Reminders

* Homework 5: Neural Networks
— Out: Thu, Mar. 18
— Due: Mon, Mar. 29 at 11:59pm

* Homework 6: Deep RL

— Out: Mon, Mar. 29
— Due: Wed, Apr. 07 at 11:59pm

LEARNING PARADIGMS

Learning Paradigms

Paradigm

Data

Supervised

«+ Regression

«+ Classification

— Binary classification

«3 Structured Prediction

D = {x",y"}L,
¥ eR

y' e {+1,-1}

y'") is a vector

x~p*(-)andy = c*()

Learning Paradigms

Paradigm Data

Supervised D= {x" .y}, x~p'()andy=c"()
~+ Regression v €R

—+ Classification ' e {1,..., K}

—+ Binary classification 'Y € {+1, -1}
<+ Structured Prediction y'' is a vector
Unsupervised Dw={x"}N, x~p()

Learning Paradigms

Paradigm Data
Supervised D= {x", y"}N, X~p*(-)andy = ¢*(-)
“+ Regression '’ €R

<+ Classification o' e {1,.... K}

« Binary classification ¢/ € {41, <1}

«s Structured Prediction y'' is a vector

Unsupervised D {x}Y, x~p()
Semni-supervised D = {x, y R, v {x) 3,

Learning Paradigms

Paradigm Data

Supervised Dw{xy"}y, x~p'(Jandy«ec()
«» Regression ' eR

«» Classification ' e (1,..., K)

«» Binary classification g’ € [+1, 1)

«s Structured Prediction y'*/ is a vector

Unsupervised D= {x}L, x~p'()
Semi-supervised D= {x,yI)%, U (),

Ondine Dw {(x“".y“'). (,‘m.ym)‘ (X“)'Um). B }

Learning Paradigms

Paradigm Data

Supervised Dw {x g"}S, x~p'(landy=e()
—+ Regression v € R

<+ Classification g e (1,....K)

s Binary classification ¢ € [+1, -1}
«# Structured Prediction ¥y’ is a vector

Unsupervised
Semi-supervised
Onine

Active Learning

D= {x"")N, x~p'()

D {x‘".n"'};‘.‘. U (x"))f:,

D= uxu)'vln).(xcn.f:n)‘(,‘m.,m)“”}
D« {x'""}N, and can query y'" = ¢*(-) at a cost

10

Learning Paradigms

Paradigm Data

Supervised Do (xS, x~p'()andy=e()
~+ Regression y" ER

«» Classification ' e (1,..., K)

“+ Binary classification 't € {+1, -1}
«s Structured Prediction ¥y is a vector

Unsupervised D= {x"}N, x~p'()

Semi-supervised D = (x5 U (x) N,

Onire D= {(x"", '), (x'®, o), (x¥),), ...}
Active Learning D« {x"")}, and can query y'" « ¢*(+) at a cost

mw D= {[‘(l’.cﬂ)).(.ﬂ).al.?i)"“’

"

Learning Paradigms

Paradigm Data

Supervised Dw (x5, x~p'(Jandy=e()
“+ Regression v €ER

<+ Classification ' € (1,....K)

~+ Binary classification p'* € (+1,~1)
s Structured Pradiction y'' is a vector

Unsupervised Dw{x)N, x~p'()

Semi-supervised D= {x', g}, U (xV)2,

Onire Dw {(x(tb.”(!)).(,(f)'fm). (x"'.y‘”)....)
Active Learning D= {x"7)N, and can query y'' = o*(-) at a cost
imitation Learning D w {(s* a'"), (#'%,a7),...)

Reinforcement Learning D = {(+/"), &', (1)), (41,0 #2)) .)

12

REINFORCEMENT LEARNING

Examples of Reinforcement Learning

é

» How should a robot behave so as C‘%!:!J“J
M

to optimize its “performance’? N
(Robotics) R 4
-

* How to automate the motionof = |
a helicopter? (Control Theory) '

* How to make a good chess-playing b -
program? (Artificial Intelligence) =

© Eric Xing @ CMU, 2006-2011

Autonomous Helicopter

Video:

https://www.youtube.com/watch?v=VCdxqn0fcnE

Robotin a room

pctiors: UP. DOWN, LEFT, RIGHT

. X

80% move P
104 move LEFT
o move RIGHT

o reward +1 at [4.3], -1 at [4,2)

e reward -0.04 for each step

* what’s the strategy to achieve max reward?
* what if the actions were NOT deterministic?

© Eric Xing @ CMU, 2006-2011

16

History of Reinforcement Learning

Roots in the psychology of animal learning
(Thorndike,1911).

Another independent thread was the problem of
optimal control, and its solution using dynamic
programming (Bellman, 1957).

ldea of temporal difference learning (on-line
method), e.g., playing board games (Samuel, 1959).

A major breakthrough was the discovery of Q-
learning (Watkins, 1989).

© Eric Xing @ CMU, 2006-2011 17

What is special about RL?

RL is learning how to map states to actions, so
as to maximize a numerical reward over time.

Unlike other forms of learning, it is a multistage
decision-making process (often Markovian).

An RL agent must learn by trial-and-error. (Not
entirely supervised, but interactive)

Actions may affect not only the immediate
reward but also subsequent rewards (Delayed

effect).

Elements of RL

* Apolicy
- A map from state space to action space.
- May be stochastic.
* Areward function
- It maps each state (or, state-action pair) to
a real number, called reward.
* Avalue function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

© Eric Xing @ CMU, 2006-2011

19

Policy

- = =)
t 1
t & - -

Question: Answer: (Hint: both yes
Is this policy optimal: yes and no are acceptable
or no? Briefly justify your answers, I’m interested in

answer. your justification.)

Reward for each step -2

Reward for each step: -0.1

The Precise Goal

To find a policy that maximizes the Value function.
— transitions and rewards usually not available

There are different approaches to achieve this goal in
various situations.

Value iteration and Policy iteration are two more
classic approaches to this problem. But essentially
both are dynamic programming.

Q-learning is a more recent approaches to this
problem. Essentially it is a temporal-difference
method.

© Eric Xing @ CMU, 2006-2011

23

MARKOYV DECISION PROCESSES

Markov Decision Process

* For supervised learning the PAC learning
framework provided assumptions about
where our data came from:

x ~p“(-)andy = c"(-)

* For reinforcement learning we assume our
data comes from a Markov decision process
(MDP)

Markov Decision Process

Whiteboard

— Components: states, actions, state transition
probabilities, reward function

— Markovian assumption

— MDP Model

— MDP Goal: Infinite-horizon Discounted Reward
— deterministic vs. nondeterministic MDP

— deterministic vs. stochastic policy

MARKOYV DECISION PROCESSES

Markov Decision Process

* For supervised learning the PAC learning
framework provided assumptions about
where our data came from:

x ~p“(-)andy = c"(-)

* For reinforcement learning we assume our
data comes from a Markov decision process
(MDP)

Markov Decision Process

Whiteboard

— Components: states, actions, state transition
probabilities, reward function

— Markovian assumption

— MDP Model

— MDP Goal: Infinite-horizon Discounted Reward
— deterministic vs. nondeterministic MDP

— deterministic vs. stochastic policy

Exploration vs. Exploitation

Whiteboard

— Explore vs. Exploit Tradeoff
— Ex: k-Armed Bandits
— Ex: Traversing a Maze

FIXED POINT ITERATION

Fixed Point Iteration for Optimization

* Fixed pointiteration is a general tool for solving systems of
equations

* It canalso be applied to optimization.

J(6)
dJj(@) . _
22— 0= 10
:f(g)j‘gz: (9)
0, = g(6")

1
2
A,
/ .
7
6

Given objective function:

Compute derivative, set to
zero (call this function f°).

Rearrange the equation s.t.

one of parameters appears on
the LHS.

Initialize the parameters.

Foriin{l,..., K}, update each
parameter and increment £

Repeat #5 until convergence

Fixed Point Iteration for Optimization

* Fixed pointiteration is a general tool for solving systems of
equations

* It canalso be applied to optimization.

x> 3

1
J@) =5 +50"+ 2% -
dJ
() :f(a:):$2—3:1:+220/3,
dx /
4+ 2
— —
T 3 g(x) .
2
e T* + 2 5§
3
6.

Given objective function:

Compute derivative, set to
zero (call this function f°).

Rearrange the equation s.t.

one of parameters appears on
the LHS.

Initialize the parameters.

Foriin{l,..., K}, update each
parameter and increment £

Repeat #5 until convergence

33

Fixed Point Iteration for Optimization

> 3,
J(x)—g%—ga: + 2x
d.J
d;x):f(x):x2—3x+2:o
% + 2
= o= —— =9(2)
T% + 2
T <

We can implement our

example in a few lines of
python.

f(x) = xA2

Op nction ed
rting] PP ter A
Ldes furs st
»
i range(n):
(T 1-%2d » 4 & % (x, f(x)))
- olx)
it *J 4 “ % (1, x, f(x)))
m X
name -

- fpigl, ©, 20, f1)

34

Fixed Point Iteration for Optimization

$ python

-
Il
OCooNOUTPAWNEOS

X X X X X X X X X X X X X X X X X X X X
| | | | L | T e I I I

(SOOI OO RO O IO ROV RO IO IO R OO RO RO IO R OO RO I O I O R O

xX=0.
.06667 f(x)=0.4444
.8148 f(x)=0.2195
.8880 f(x)=0.1246
.9295 f(x)=0.0755
.9547 f(x)=0.0474
.9705 f(x)=0.0304
.9806 f(x)=0.0198
L9872 f(x)=0.0130
.9915 f(x)=0.0086
.9944 f(x)=0.0057
.9963 f(x)=0.0038
.9975 f(x)=0.0025
.9983 f(x)=0.0017
.9989 f(x)=0.0011
.9993 f(x)=0.0007
.9995 f(x)=0.0005
.9997 f(x)=0.0003
.9998 f(x)=0.0002
.9999 f(x)=0.0001
.9999 f(x)=0.0001

fixed-point-iteration.py
0000 f(x)=2.0000

VALUE ITERATION

Definitions for Value Iteration

Whiteboard

— State trajectory

— Value function

— Bellman equations

— Optimal policy

— Optimal value function

— Computing the optimal policy
— Ex: Path Planning

