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Reminders

* Homework 5: Neural Networks
— Out: Thu, Mar. 18
— Due: Mon, Mar. 29 at 11:59pm

* Homework 6: Deep RL

— Out: Mon, Mar. 29
— Due: Wed, Apr. 07 at 11:59pm
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Learning Paradigms

Paradigm Data

Supervised Dw {x g"}S, x~p'(landy=e()
—+ Regression v € R

<+ Classification g e (1,....K)

s Binary classification ¢ € [+1, -1}
«# Structured Prediction ¥y’ is a vector

Unsupervised
Semi-supervised
Onine

Active Learning
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Learning Paradigms

Paradigm Data

Supervised Dw (x5, x~p'(Jandy=e()
“+ Regression v €ER

<+ Classification ' € (1,....K)

~+ Binary classification  p'* € (+1,~1)
s Structured Pradiction  y'' is a vector

Unsupervised Dw{x)N, x~p'()

Semi-supervised D= {x', g}, U (xV)2,
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REINFORCEMENT LEARNING



Examples of Reinforcement Learning

é

» How should a robot behave so as C‘%!:!J“J
M

to optimize its “performance’? N
(Robotics) R 4
-

* How to automate the motionof = |
a helicopter? (Control Theory) '

* How to make a good chess-playing b -
program? (Artificial Intelligence) =

© Eric Xing @ CMU, 2006-2011



Autonomous Helicopter

Video:


https://www.youtube.com/watch?v=VCdxqn0fcnE

Robotin a room

pctiors: UP. DOWN, LEFT, RIGHT

. X

80% move P
104 move LEFT
o move RIGHT

o reward +1 at [4.3], -1 at [4,2)

e reward -0.04 for each step

* what’s the strategy to achieve max reward?
* what if the actions were NOT deterministic?

© Eric Xing @ CMU, 2006-2011
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History of Reinforcement Learning

Roots in the psychology of animal learning
(Thorndike,1911).

Another independent thread was the problem of
optimal control, and its solution using dynamic
programming (Bellman, 1957).

ldea of temporal difference learning (on-line
method), e.g., playing board games (Samuel, 1959).

A major breakthrough was the discovery of Q-
learning (Watkins, 1989).

© Eric Xing @ CMU, 2006-2011 17



What is special about RL?

RL is learning how to map states to actions, so
as to maximize a numerical reward over time.

Unlike other forms of learning, it is a multistage
decision-making process (often Markovian).

An RL agent must learn by trial-and-error. (Not
entirely supervised, but interactive)

Actions may affect not only the immediate
reward but also subsequent rewards (Delayed

effect).



Elements of RL

* Apolicy
- A map from state space to action space.
- May be stochastic.
* Areward function
- It maps each state (or, state-action pair) to
a real number, called reward.
* Avalue function
- Value of a state (or, state-action pair) is the
total expected reward, starting from that
state (or, state-action pair).

© Eric Xing @ CMU, 2006-2011
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Policy

- = =)
t 1
t & - -

Question: Answer: (Hint: both yes
Is this policy optimal: yes and no are acceptable
or no? Briefly justify your answers, I’m interested in

answer. your justification.)



Reward for each step -2




Reward for each step: -0.1




The Precise Goal

To find a policy that maximizes the Value function.
— transitions and rewards usually not available

There are different approaches to achieve this goal in
various situations.

Value iteration and Policy iteration are two more
classic approaches to this problem. But essentially
both are dynamic programming.

Q-learning is a more recent approaches to this
problem. Essentially it is a temporal-difference
method.

© Eric Xing @ CMU, 2006-2011
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MARKOYV DECISION PROCESSES



Markov Decision Process

* For supervised learning the PAC learning
framework provided assumptions about
where our data came from:

x ~p“(-)andy = c"(-)

* For reinforcement learning we assume our
data comes from a Markov decision process
(MDP)



Markov Decision Process

Whiteboard

— Components: states, actions, state transition
probabilities, reward function

— Markovian assumption

— MDP Model

— MDP Goal: Infinite-horizon Discounted Reward
— deterministic vs. nondeterministic MDP

— deterministic vs. stochastic policy
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Exploration vs. Exploitation

Whiteboard

— Explore vs. Exploit Tradeoff
— Ex: k-Armed Bandits
— Ex: Traversing a Maze



FIXED POINT ITERATION



Fixed Point Iteration for Optimization

* Fixed pointiteration is a general tool for solving systems of
equations

* It canalso be applied to optimization.

J(6)
dJj(@) . _
22— 0= 10
:f(g)j‘gz: (9)
0, = g(6")

1
2
A,
/ .
7
6

Given objective function:

Compute derivative, set to
zero (call this function f°).

Rearrange the equation s.t.

one of parameters appears on
the LHS.

Initialize the parameters.

Foriin{l,..., K}, update each
parameter and increment £

Repeat #5 until convergence



Fixed Point Iteration for Optimization

* Fixed pointiteration is a general tool for solving systems of
equations

* It canalso be applied to optimization.

x> 3

1
J@) =5 +50"+ 2% -
dJ
() :f(a:):$2—3:1:+220/3,
dx /
4+ 2
— —
T 3 g(x) .
2
e T* + 2 5§
3
6.

Given objective function:

Compute derivative, set to
zero (call this function f°).

Rearrange the equation s.t.

one of parameters appears on
the LHS.

Initialize the parameters.

Foriin{l,..., K}, update each
parameter and increment £

Repeat #5 until convergence
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Fixed Point Iteration for Optimization

> 3,
J(x)—g%—ga: + 2x
d.J
d;x):f(x):x2—3x+2:o
% + 2
= o= —— =9(2)
T% + 2
T <

We can implement our

example in a few lines of
python.

f(x) = xA2

Op nction ed
rting ] PP ter A
Ldes furs st
»
i range(n):
(T 1-%2d » 4 & % ( x, f(x)))
- olx)
it *J 4 “ % (1, x, f(x)))
m X
name -

- fpigl, ©, 20, f1)
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Fixed Point Iteration for Optimization

$ python

-
Il
OCooNOUTPAWNEOS

X X X X X X X X X X X X X X X X X X X X
| | | | L | T e I I I

(SOOI OO RO O IO ROV RO IO IO R OO RO RO IO R OO RO I O I O R O

xX=0.
.06667 f(x)=0.4444
.8148 f(x)=0.2195
.8880 f(x)=0.1246
.9295 f(x)=0.0755
.9547 f(x)=0.0474
.9705 f(x)=0.0304
.9806 f(x)=0.0198
L9872 f(x)=0.0130
.9915 f(x)=0.0086
.9944 f(x)=0.0057
.9963 f(x)=0.0038
.9975 f(x)=0.0025
.9983 f(x)=0.0017
.9989 f(x)=0.0011
.9993 f(x)=0.0007
.9995 f(x)=0.0005
.9997 f(x)=0.0003
.9998 f(x)=0.0002
.9999 f(x)=0.0001
.9999 f(x)=0.0001

fixed-point-iteration.py
0000 f(x)=2.0000



VALUE ITERATION



Definitions for Value Iteration

Whiteboard

— State trajectory

— Value function

— Bellman equations

— Optimal policy

— Optimal value function

— Computing the optimal policy
— Ex: Path Planning



