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Tseitin: Introduction

Recall: converting a propositional formula A into CNF can
result in an exponential blowup. How to avoid that?

Idea: focus on converting A into a satisfiability-equivalent
CNF formula (instead of logical equivalence)

How: add definitions and replace parts of the formula
(can be seen as the reverse of substitution)
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Tseitin: Small Example

Consider the formula Γ = p ∨ (q ∧ r)

We can add the definition d ↔ (q ∧ r)

Replacing (q ∧ r) by d results in CNF p ∨ d

The clauses representing the definition are:

(¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

An equisatisfiable formula of Γ in CNF is:

(p ∨ d)∧ (¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

Satisfying the resulting formula satisfies Γ on original variables
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Tseitin: A Linear-Size Transformation

Why is the Tseitin transformation interesting?

I Each connective can be replaced by a new definition

I At most a linear number of definitions

I Definitions can be easily converted into clauses

I Easily obtain a satisfying assignment for original formula

I Resulting in an efficient transformation into CNF
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Tseitin: Implementation and Optimizations

Implementation:

I Convert the formula first to NNF

I Generate the definitions from left to right

Optimizations:

I Reuse definitions when possible

I Avoid definitions by interpreting an NNF formula as a
CNF formula: e.g. p ∨ (q ∧¬r)∨¬s

I Mostly one direction of definition is required
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Tseitin: Definitions into Clauses

It is easy to turn a definition d ↔ DEF(p1, . . . , pn) into clauses

Example

def Γd Γ¬d
AND(p1, . . . , pn) (d ∨¬p1 ∨ · · ·∨¬pn) (¬d ∨ p1), . . . , (¬d ∨ pn)
OR(p1, . . . , pn) (d ∨¬p1), . . . , (d ∨¬pn) (¬d ∨ p1 ∨ · · ·∨ pn)

ITE(c, t, f ) (d ∨¬c ∨¬t), (d ∨ c ∨¬f ) (¬d ∨¬c ∨ t), (¬d ∨ c ∨ f )
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Tseitin: Larger Example without Optimization

Consider the formula Γ = ¬(p ∧ q ↔ r)∧ (s → (p ∧ t))

Convert into NNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

I d0 ↔ p ∧ q

I d1 ↔ d0 ∧¬r
I d2 ↔ ¬p ∨¬q
I d3 ↔ r ∧ d2
I d4 ↔ d1 ∨ d3
I d5 ↔ p ∧ t
I d6 ↔ r ∨ d5
I d7 ↔ d4 ∧ d6
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Tseitin: Larger Example with Optimization

Consider the formula Γ = ¬(p ∧ q ↔ r)∧ (s → (p ∧ t))

Convert into NNF and interpret as CNF:(
(p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))

)
∧ (¬s ∨ (p ∧ t))

Which results in the following definitions:

I d0 ↔ p ∧ q

I d1 ↔ d0 ∧¬r
I d2 ↔ ¬p ∨¬q
I d3 ↔ r ∧ d2
I d4 ↔ p ∧ t

Final result: (d1 ∨ d3)∧ (¬s ∨ d4) plus definition clauses
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Tseitin: Plaisted-Greenbaum Encoding

In most cases only one direction of the definition is required.

Example

Recall the formula Γ = p ∨ (q ∧ r)
The Tseitin transformation resulted in the CNF:

(p ∨ d)∧ (¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

Which clause is redundant (not required for equisatisfiability)?

Removing (d ∨¬q ∨¬r) reduces d ↔ q ∧ r to d → q ∧ r

Logic and Mechanized Reasoning 11 / 24



Tseitin: Plaisted-Greenbaum Encoding

In most cases only one direction of the definition is required.

Example

Recall the formula Γ = p ∨ (q ∧ r)
The Tseitin transformation resulted in the CNF:

(p ∨ d)∧ (¬d ∨ q)∧ (¬d ∨ r)∧ (d ∨¬q ∨¬r)

Which clause is redundant (not required for equisatisfiability)?

Removing (d ∨¬q ∨¬r) reduces d ↔ q ∧ r to d → q ∧ r

Logic and Mechanized Reasoning 11 / 24



Tseitin: Bringing it all Together

Consider the formula Γ = ¬(p ∧ q ↔ r)∧ (s → (p ∧ t))

Convert into NNF and interpret as CNF:

((p ∧ q ∧¬r)∨ (r ∧ (¬p ∨¬q))∧ (¬s ∨ (p ∧ t))

The Tseitin transformation results in the following clauses:

(d3 ∨d1)∧ (d4 ∨¬s)∧ (¬d0 ∨p)∧ (¬d0 ∨ q)∧ (¬p∨¬q∨d0)∧

(¬d1 ∨d0)∧ (¬d1 ∨¬r)∧ (¬d0 ∨ r∨d1)∧ (¬d2 ∨¬p∨¬q)∧

(p ∨ d2)∧ (q ∨ d2)∧ (¬d3 ∨ r)∧ (¬d3 ∨ d2) ∧

(¬r ∨¬d2 ∨ d3)∧ (¬d4 ∨ p)∧ (¬d4 ∨ t)∧ (¬p ∨¬t ∨ d4)

Plaisted-Greenbaum removed the colored ones.
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Tseitin Transformation

Unit Propagation

Pure Literals and Autarkies
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Unit Propagation: Introduction

Unit propagation is the most important SAT solving
simplification technique:

I A clause is unit if it has only one literal

I The only way to satisfy it is assigning the literal to >
I Removing falsified literals can produce unit clauses

I Satisfying unit clauses until fixpoint can be expensive
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Unit Propagation: Partial Assignments

Evaluation of clauses and formulas can be generalized to
partial assignments:

I Only some variables are assigned to >, ⊥
I For a clause C, [[C]]τ removes literals falsified by τ from C

I [[C]]τ = > if τ satisfies a literal in C
I For a formula Γ, [[Γ]]τ replaces all clauses C ∈ Γ by [[C]]τ

I Clauses satisfied by τ are removed from [[Γ]]τ

Partial assignments are very important in SAT solving
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Unit Propagation: Extending the Assignment

Unit propagation makes unit clauses true until fixpoint

Given an assignment τ and a formula Γ, unit propagation
extends τ by assigning all unit clauses in [[Γ]]τ to >.

Two possible fixpoints (termination)

1. [[Γ]]τ contains a falsified clause (⊥)

2. [[Γ]]τ contains no more unit clauses

Unit propagation can consume 90% of solver runtime

I Data-structures are optimized for unit propagation

I Unit propagation is hard to parallelize
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Unit Propagation: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)
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Unit Propagation: Proposition

Proposition

Unit propagation does not change the number of satisfying
assignments

True or false?

Proof.
True. Let formula Γ have a unit clause p. All satisfying
assignments of Γ must assign p to >. Hence there cannot be
a satisfying assignment with p assigned to ⊥.
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Tseitin Transformation

Unit Propagation

Pure Literals and Autarkies
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Autarkies: Pure Literal Rule

A literal l is pure in a CNF formula Γ if the literal ¬l does not
occur in Γ.

The pure literal rule simplifies a formula by making pure
literals true.

Example

Consider the formula Γ = (p ∨¬q)∧ (q ∨¬r)∧ (¬q ∨ r).
The literal p is pure in Γ.

Let τ(p) = >. The pure literal rule will reduce Γ to [[Γ]]τ.

In other words, it will remove the first clause.
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Autarkies: Proposition

Proposition

Assigning a pure literal to > does not change the number of
satisfying assignments

True or false?

Proof.
False. A counterexample:
Γ = (p ∨¬q)∧ (q ∨¬r)∧ (¬q ∨ r) has three satisfying
assignments, while [[Γ]]τ with τ(p) = > has only two.
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Autarkies: Definition

An autarky is a partial assignment that satisfies all clauses
that are “touched” by the assignment:

I a pure literal is an autarky

I a satisfying assignment is an autarky

I “interesting” autarkies are between pure literals and
satisfying assignments

I removing clauses that are satisfied by an autarky results in
an equisatisfiable formula

I observe that for an autarky τ it holds that JΓKτ ⊆ Γ
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Autarkies: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

Logic and Mechanized Reasoning 23 / 24



Autarkies: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = >}

Logic and Mechanized Reasoning 23 / 24



Autarkies: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = >, p2 = >}

Logic and Mechanized Reasoning 23 / 24



Autarkies: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = >, p2 = >, p3 = >}
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(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = >, p2 = >, p3 = >, p4 = >}
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Autarkies: Example

Γunit := (¬p1 ∨¬p3 ∨ p4)∧ (¬p1 ∨¬p2 ∨ p3)∧
(¬p1 ∨ p2)∧ (p1 ∨ p3 ∨ p6)∧ (¬p1 ∨ p4 ∨¬p5)∧

(p1 ∨¬p6)∧ (p4 ∨ p5 ∨ p6)∧ (p5 ∨¬p6)

τ = { p1 = >, p2 = >, p3 = >, p4 = >}

The extended τ is an autarky for Γunit
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Autarkies: Theorem

Theorem (Monien and Speckenmeyer, 1985)

Let τ be an autarky for formula Γ. Then Γ and [[Γ]]τ are
equisatisfiable.

Proof.
If Γ is satisfiable, then since JΓKτ ⊆ Γ, we know that JΓKτ is
satisfiable as well.
Conversely, suppose JΓKτ is satisfiable and let τ1 be an
assignment that satisfies JΓKτ. We can assume that τ1 only
assigns values to the variables of JΓKτ, which are distinct from
the variables of τ. Then the assignment τ2 which is the union
of τ and τ1 satisfies Γ.
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