Logic and Mechanized Reasoning
Using SAT Solvers

Marijn J.H. Heule

Carnegie
Mellon
University

Logic and Mechanized Reasoning 1/30

Solving 2-SAT

SAT Solving First Steps

DPLL

Graph Coloring

Logic and Mechanized Reasoning 2/30

Solving 2-SAT

Logic and Mechanized Reasoning 3/30

Solving 2-SAT: Complexity

A k-SAT formula is a CNF formula such that each clause has a
length of at most k.

Solving a k-SAT formula is NP-complete for k > 3

However, 2-SAT can be solved in polynomial time using
» Unit propagation; and
» Autarky reasoning.

Logic and Mechanized Reasoning 4/ 30

Solving 2-SAT: Unit Propagation

Let I' be a 2-SAT formula, p a propositional variable occurring
in ', and T the assignment with T7(p) = T.

Unit propagation on I' using T has two possible outcomes:

» Unit propagation results in a conflict: All satisfying
assignments of I assign p to false.

Logic and Mechanized Reasoning 5/ 30

Solving 2-SAT: Unit Propagation

Let I' be a 2-SAT formula, p a propositional variable occurring
in ', and T the assignment with T7(p) = T.

Unit propagation on I' using T has two possible outcomes:
» Unit propagation results in a conflict: All satisfying
assignments of I assign p to false.

» Unit propagation terminates without a conflict: Let 7/ be
the final assignment with unit propagation terminated.
Now T’ is an autarky for I'. Why?

Logic and Mechanized Reasoning 5/ 30

Solving 2-SAT: Autarky

Given a 2-SAT formula T" and a non-empty truth assignment.
If unit propagation terminates without a conflict, then the
extended assignment is an autarky for I'.

» For a clause C and a non-conflicting assignment T it holds
that i) T does not touch C, ii) T satisfies C, or iii) T
reduces C to a unit clause (by falsifying the other literal);

» Unit clauses extend the assignment and maintain the
above invariant;

» At the non-conflicting fixpoint, no touched clause is
reduced in length; so

» All touched clauses are satisfied.

Logic and Mechanized Reasoning 6 /30

Solving 2-SAT: Decision Procedure

Given a 2-SAT formula T, the following procedure solves it in
polynomial time:

» Pick an arbitrary variable p and let T be T(p) = T

» Let 7/ be the extended assignment after applying unit
propagation on I starting with T

» If [T'], does not contain L, continue with [I'],s (autarky)
» Otherwise continue with [[].» with T/(p) = L
» Stop if either [I]» =T or [T = L

Logic and Mechanized Reasoning 7 /30

Solving 2-SAT: Decision Procedure

Given a 2-SAT formula T, the following procedure solves it in
polynomial time:

» Pick an arbitrary variable p and let T be T(p) = T

» Let 7/ be the extended assignment after applying unit
propagation on I starting with T

» If [T'], does not contain L, continue with [I'],s (autarky)
» Otherwise continue with [[].» with T/(p) = L
» Stop if either [I]» =T or [T = L

Tarjan’s algorithm can be used to reduce it to linear runtime.

Logic and Mechanized Reasoning 7 /30

Solving 2-SAT: The SAT Game

SAT Game

by Olivier Roussel

https://www.cs.utexas.edu/~marijn/game/2SAT/

Logic and Mechanized Reasoning

8/ 30

https://www.cs.utexas.edu/~marijn/game/2SAT/

SAT Solving First Steps

Logic and Mechanized Reasoning 9/30

SAT Solving: Introduction

Dozens of (open source) SAT solvers have been developed.

International competition have been organized since 2002
» Solvers are evaluated on a representative benchmark suite
» Practically every year clear progress is observed
» Arguably one of the drivers that advances the technology

CaDiCal by Armin Biere is one of the strongest solvers
» Compiles easily on most operating systems
» Readable and understanable code and thus easy to modify
» Works normally from the command line, but also in Lean

Logic and Mechanized Reasoning 10 / 30

SAT Solving: Demo in Lean

/_
Examples of use of Cadical.
-/

—— textbook: SAT example

def cadicalExample : IO Unit := do
let (s, result) « callCadical exCnf@
I0.println "Output from CaDiCaL :\n"
—I0.println s
—I0.println "\n\n"
I0.println (formatResult result)
pure ()

ﬁEXE& cadicalExample
—— end textbook: SAT example

Logic and Mechanized Reasoning 11 /30

SAT Solving: DIMACS Input Format

The DIMACS format for SAT solvers has three types of lines:
» header: p cnf n min which n denotes the highest
variable index and m the number of clauses
» clauses: a sequence of integers ending with “0”

n

» comments: any line starting with “c

c example

p cnf 4
(pNVgV—r) N 1 2-30
(=pV —qVr) N -1 -2 30
(gVrV—s) A 2 3-40
(mgV —=rVs) A -2 -3 40
(pVrVs) A 1 3 40
(=pV —=rV—=s) A -1 -3-40
(=pVqVs) -1 2 40

Logic and Mechanized Reasoning 12 /30

SAT Solving: DIMACS Output Format

The solution line of a SAT solver starts with “s ":
» s SATISFIABLE: The formula is satisfiable
» s UNSATISFIABLE: The formula is unsatisfiable
» s UNKNOWN: The solver cannot determine satisfiability

In case the formula is satisfiable, the solver emits a certificate:
» lines starting with “v "
P a list of integers ending with 0O

> eg. v-1240

In case the formula is unsatisfiable, then most solvers support
emitting a proof of unsatisfiability to a separate file

Logic and Mechanized Reasoning 13 /30

DPLL

Logic and Mechanized Reasoning 14 / 30

DPLL: Introduction

Davis Putnam Logemann Loveland [DP60,DLL62]

Recursive procedure that in each recursive call:
» Simplifies the formula (using unit propagation)
» Splits the formula into two subformulas

» Variable selection heuristics (which variable to split on)
» Direction heuristics (which subformula to explore first)

Logic and Mechanized Reasoning 15 / 30

DPLL: Example

Ippre := (p1 V2V =p3) A(—p1 Vpa Vips) A
(—p1 VP2V p3) A (p1Vps) A (—p1V —ps)

Logic and Mechanized Reasoning 16 / 30

DPLL: Example

Ippre := (p1 V2V =p3) A(—p1 Vpa Vips) A
(—p1 VP2V p3) A (p1Vps) A (—p1V —ps)

(P2)

L T

Logic and Mechanized Reasoning 16 / 30

DPLL: Example

Ippre := (p1 V2V =p3) A(—p1 Vpa Vips) A
(—p1 VP2V p3) A (p1Vps) A (—p1V —ps)

Logic and Mechanized Reasoning 16 / 30

DPLL: Slightly Harder Example

Construct a DPLL tree for:

(pVaV=r)A\(=pV—gVr)A
(gVrV=s) A\ (—qV-rVs)A
(pVrVs)NA(=pV—-rV-s)A
(pVaqVs)

What is a good heuristic?

Logic and Mechanized Reasoning 17 / 30

DPLL: Slightly Harder Example

Construct a DPLL tree for:

(pNV gV —r)N(—pV—gVr)N\
(gVrV=s) A\ (—qV-rVs)A
(pVrVs)NA(=pV—-rV-s)A
(pVaqVs)

What is a good heuristic?

A cheap and reasonably effective heuristic is MOMS:
Maximum Occurrence in clauses of Minimum Size

Logic and Mechanized Reasoning 17 / 30

DPLL: Pseudocode

DPLL (z.T)

1:

2:

3:

= Simplify (7, T)

if [[F]]T/ = T then return satisfiable

if [['];» = L then return unsatisfiable

lecision := Decide (t/, T')

if (DPLL(7" U lgecision := T,T) = satisfiable) then
return satisfiable

return DPLL (7' U lgecision := L, T)

Logic and Mechanized Reasoning 18 / 30

DPLL: Demo in Lean

—— textbook: dpllSat
partial def dpllSatAux (t : PropAssignment) (¢ : CnfForm) :
if ¢@.hasEmpty then none
else match pickSplit? ¢ with
—— No variables left to split on, we found a solution.
| none => some (T, @)
—— Split on *x .
—-— <>t

Option (PropAssignment x CnfForm) :=

is the "or else" operator which tries one action, and if that failed tries the other.
| some x => goWithNew x T ¢ <|> goWithNew (-x) T ¢

where
/—— Assigns ‘x° to true and continues out DPLL. -/
goWithNew (x : Lit) (t : PropAssignment) (¢ : CnfForm)

let (', ¢') := propagateWithNew x T ¢
dpllSatAux t' o'

: Option (PropAssignment x CnfForm) :=

/—— Solve ‘@' using DPLL. Return a satisfying assignment if found, otherwise “none’
def dpllSat (¢ : CnfForm) : Option PropAssignment :=
let (T, @) := propagateUnits [] ¢
(dpllSatAux T @).map fun (T, _) => 1
—— end textbook: dpllSat

- =/

Logic and Mechanized Reasoning 19 / 30

Graph Coloring

Logic and Mechanized Reasoning 20 / 30

Graph Coloring: Introduction

Given a graph G(V,E), can the vertices be colored
with k colors such that for each edge (v, w) € E,
the vertices v and w are colored differently.

Logic and Mechanized Reasoning 21 /30

Graph Coloring: Introduction

Given a graph G(V,E), can the vertices be colored
with k colors such that for each edge (v, w) € E,
the vertices v and w are colored differently.

Possible problem: symmetries!

Logic and Mechanized Reasoning 21 /30

Graph Coloring: Format

» Header starts with p edge
» Followed by number of vertices and number of edges

edge 8 13
2

®© ® ® ®o ® ® ® ® O O®O 0O O 0T
~NO O OO WWWNNRE -
00 N ~NO 01O O WWw

Logic and Mechanized Reasoning 22 /30

Graph Coloring: Encoding

Variables Range Meaning
ief{l,...,c} devh o i
j node v has color 1
Pui vel,... |V}
Clauses Range Meaning

(Poa VPo2 V- Vpoe) vell. ... |V]} v is colored

se{l,...,c—1} v has at most
(TPos vV 7pos) te{s+1,...,c} one color

v and w have a

(—Poi vV —Pw,i) (v,w) € E different color

77 77 breaking symmetry

Logic and Mechanized Reasoning 23 / 30

Graph Coloring: Lean Demo

def main (args : List String) : IO Unit := do
let graphFname :: nColours :: _ « args
| do
I0.println "Usage: <graph.edge> <colors>"
return ()
let some nColours « nColours.toNat?
throwThe I0.Error s!"Invalid colour count: {nColours}"
let g « readEdgeFile graphFname
match (« checkColourable g nColours) with
| some vs =>
I0.println s!"The graph is {nColours}-colourable! Satisfying assignment
| none =>
I0.println s!"The graph is not {nColours}-colourable."

Logic and Mechanized Reasoning

: {vs}"

24 / 30

Graph Coloring: Sudoku

Sudoku can be viewed as a
graph coloring problem:

» Each cell is a vertex

» \ertices are connected if
they occur in the same
row / column / square

» There are 9 colors

The solution must be unique
» At least 17 givens

Who can solve this sudoku?

Logic and Mechanized Reasoning

25 / 30

Graph Coloring: Sudoku

Sudoku can be viewed as a
graph coloring problem:

» Each cell is a vertex

» \ertices are connected if
they occur in the same
row / column / square

» There are 9 colors

The solution must be unique
» At least 17 givens

Who can solve this sudoku?

Logic and Mechanized Reasoning

1147138191 2]6|5
5181612141793
3191216|5|7|1]|8|4
/71314615129
9(6|4|7|2|5|3|1|8
2111519138476
6138157121941
715191416|1|8|3|2
4121118|9|3]6]5|7

25 / 30

Graph Coloring: Sudoku in Lean

.
1

26 / 30

Logic and Mechanized Reasoning

Graph Coloring: Chromatic Number of the Plane

The Hadwiger-Nelson problem:
How many colors are required to color the plane such that each
pair of points that are exactly 1 apart are colored differently?

The answer must be three or more because three points can
be mutually 1 apart—and thus must be colored differently.

Logic and Mechanized Reasoning 27 /30

Graph Coloring: Bounds since the 1950s

» The Moser Spindle graph shows the lower bound of 4
» A coloring of the plane showing the upper bound of 7

Logic and Mechanized Reasoning

28 / 30

Graph Coloring: First progress in decades

Recently enormous progress:
» Lower bound of 5 [DeGrey '18]
based on a 1581-vertex graph
» This breakthrough started a
polymath project
» Improved bounds of the fractional
chromatic number of the plane

Logic and Mechanized Reasoning 29 /30

Graph Coloring: First progress in decades

Recently enormous progress:
» Lower bound of 5 [DeGrey '18]
based on a 1581-vertex graph
» This breakthrough started a
polymath project
» Improved bounds of the fractional
chromatic number of the plane

2 Quanta i Physics Mathematics

%%E%z&;@a&! We found smaller graphs with SAT:
5 > 874 vertices on April 14, 2018
A » 803 vertices on April 30, 2018
WIREBR .. .- 610 vertices on May 14, 2018

Marijn Heule, a computer scientist at the University of
Texas, Austin, found one with just 874 vertices. Yesterday he
lowered this number to 826 vertices.

Logic and Mechanized Reasoning 29 /30

Record by Proof Minimization: 510 Vertices [Heule 2021]

30 / 30

Logic and Mechanized Reasoning

	Solving 2-SAT
	SAT Solving First Steps
	DPLL
	Graph Coloring

