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Solving 2-SAT: Complexity

A k-SAT formula is a CNF formula such that each clause has a
length of at most k.

Solving a k-SAT formula is NP-complete for k ≥ 3

However, 2-SAT can be solved in polynomial time using

I Unit propagation; and

I Autarky reasoning.
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Solving 2-SAT: Unit Propagation

Let Γ be a 2-SAT formula, p a propositional variable occurring
in Γ, and τ the assignment with τ(p) = >.

Unit propagation on Γ using τ has two possible outcomes:

I Unit propagation results in a conflict: All satisfying
assignments of Γ assign p to false.

I Unit propagation terminates without a conflict: Let τ ′ be
the final assignment with unit propagation terminated.
Now τ ′ is an autarky for Γ. Why?
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Solving 2-SAT: Autarky

Given a 2-SAT formula Γ and a non-empty truth assignment.
If unit propagation terminates without a conflict, then the
extended assignment is an autarky for Γ.

I For a clause C and a non-conflicting assignment τ it holds
that i) τ does not touch C, ii) τ satisfies C, or iii) τ
reduces C to a unit clause (by falsifying the other literal);

I Unit clauses extend the assignment and maintain the
above invariant;

I At the non-conflicting fixpoint, no touched clause is
reduced in length; so

I All touched clauses are satisfied.
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Solving 2-SAT: Decision Procedure

Given a 2-SAT formula Γ, the following procedure solves it in
polynomial time:

I Pick an arbitrary variable p and let τ be τ(p) = >
I Let τ ′ be the extended assignment after applying unit

propagation on Γ starting with τ

I If JΓKτ ′ does not contain ⊥, continue with JΓKτ ′ (autarky)

I Otherwise continue with JΓKτ ′′ with τ ′′(p) = ⊥
I Stop if either JΓKτ ′ = > or JΓKτ ′ = ⊥

Tarjan’s algorithm can be used to reduce it to linear runtime.
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Solving 2-SAT: The SAT Game

SAT Game
by Olivier Roussel

https://www.cs.utexas.edu/~marijn/game/2SAT/
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SAT Solving: Introduction

Dozens of (open source) SAT solvers have been developed.

International competition have been organized since 2002

I Solvers are evaluated on a representative benchmark suite

I Practically every year clear progress is observed

I Arguably one of the drivers that advances the technology

CaDiCaL by Armin Biere is one of the strongest solvers

I Compiles easily on most operating systems

I Readable and understanable code and thus easy to modify

I Works normally from the command line, but also in Lean
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SAT Solving: Demo in Lean
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SAT Solving: DIMACS Input Format

The DIMACS format for SAT solvers has three types of lines:

I header: p cnf n m in which n denotes the highest
variable index and m the number of clauses

I clauses: a sequence of integers ending with “0”

I comments: any line starting with “c ”

(p ∨ q ∨¬r) ∧
(¬p ∨¬q ∨ r) ∧
(q ∨ r ∨¬s) ∧
(¬q ∨¬r ∨ s) ∧
(p ∨ r ∨ s) ∧
(¬p ∨¬r ∨¬s) ∧
(¬p ∨ q ∨ s)

c example

p cnf 4 7

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

1 3 4 0

-1 -3 -4 0

-1 2 4 0
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SAT Solving: DIMACS Output Format

The solution line of a SAT solver starts with “s ”:

I s SATISFIABLE: The formula is satisfiable

I s UNSATISFIABLE: The formula is unsatisfiable

I s UNKNOWN: The solver cannot determine satisfiability

In case the formula is satisfiable, the solver emits a certificate:

I lines starting with “v ”

I a list of integers ending with 0

I e.g. v -1 2 4 0

In case the formula is unsatisfiable, then most solvers support
emitting a proof of unsatisfiability to a separate file
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DPLL: Introduction

Davis Putnam Logemann Loveland [DP60,DLL62]

Recursive procedure that in each recursive call:
I Simplifies the formula (using unit propagation)
I Splits the formula into two subformulas

I Variable selection heuristics (which variable to split on)
I Direction heuristics (which subformula to explore first)
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DPLL: Example

ΓDPLL := (p1 ∨ p2 ∨¬p3)∧ (¬p1 ∨ p2 ∨ p3)∧
(¬p1 ∨¬p2 ∨ p3)∧ (p1 ∨ p3)∧ (¬p1 ∨¬p3)

p3

⊥ >

p2

p1 p3

⊥ >

⊥ > > ⊥
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DPLL: Slightly Harder Example

Construct a DPLL tree for:

(p ∨ q ∨¬r)∧ (¬p ∨¬q ∨ r)∧
(q ∨ r ∨¬s)∧ (¬q ∨¬r ∨ s)∧
(p ∨ r ∨ s)∧ (¬p ∨¬r ∨¬s)∧
(¬p ∨ q ∨ s)

What is a good heuristic?

A cheap and reasonably effective heuristic is MOMS:
Maximum Occurrence in clauses of Minimum Size
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DPLL: Pseudocode

DPLL (τ, Γ)
1: τ ′ := Simplify (τ, Γ)

2: if JΓKτ ′ = > then return satisfiable

3: if JΓKτ ′ = ⊥ then return unsatisfiable

4: ldecision := Decide (τ ′, Γ)

5: if (DPLL( τ ′ ∪ ldecision := >, Γ) = satisfiable) then

6: return satisfiable

7: return DPLL (τ ′ ∪ ldecision := ⊥, Γ)
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DPLL: Demo in Lean
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Graph Coloring: Introduction

Given a graph G(V, E), can the vertices be colored
with k colors such that for each edge (v, w) ∈ E,
the vertices v and w are colored differently.

Possible problem: symmetries!
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Graph Coloring: Format

I Header starts with p edge

I Followed by number of vertices and number of edges

p edge 8 13

e 1 2

e 1 3

e 2 3

e 2 4

e 3 5

e 3 6

e 3 8

e 4 5

e 5 6

e 5 7

e 6 7

e 6 8

e 7 8
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Graph Coloring: Encoding

Variables Range Meaning

pv,i
i ∈ {1, . . . , c}

v ∈ {1, . . . , |V|}
node v has color i

Clauses Range Meaning
(pv,1 ∨ pv,2 ∨ · · ·∨ pv,c) v ∈ {1, . . . , |V|} v is colored

(¬pv,s ∨¬pv,t)
s ∈ {1, . . . , c − 1}
t ∈ {s + 1, . . . , c}

v has at most
one color

(¬pv,i ∨¬pw,i) (v, w) ∈ E v and w have a
different color

??? ??? breaking symmetry
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Graph Coloring: Lean Demo
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Graph Coloring: Sudoku

Sudoku can be viewed as a
graph coloring problem:

I Each cell is a vertex

I Vertices are connected if
they occur in the same
row / column / square

I There are 9 colors

The solution must be unique

I At least 17 givens

Who can solve this sudoku?

4 3

7 9

6

1 4 5

9 1

2 6

7 2

5 8

9
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The solution must be unique

I At least 17 givens

Who can solve this sudoku?

4 3

7 9

6

1 4 5

9 1

2 6

7 2

5 8

9

1 7 8 9 2 6 5

5 8 6 2 1 4 3

3 9 2 5 7 1 8 4

8 7 3 6 2 9

6 4 7 2 5 3 8

1 5 9 3 8 4 7

6 3 8 5 9 4 1

7 9 4 6 1 3 2

4 2 1 8 3 6 5 7
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Graph Coloring: Sudoku in Lean
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Graph Coloring: Chromatic Number of the Plane

The Hadwiger-Nelson problem:
How many colors are required to color the plane such that each
pair of points that are exactly 1 apart are colored differently?

The answer must be three or more because three points can
be mutually 1 apart—and thus must be colored differently.
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Graph Coloring: Bounds since the 1950s

I The Moser Spindle graph shows the lower bound of 4

I A coloring of the plane showing the upper bound of 7
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Graph Coloring: First progress in decades

Recently enormous progress:

I Lower bound of 5 [DeGrey ’18]

based on a 1581-vertex graph

I This breakthrough started a
polymath project

I Improved bounds of the fractional
chromatic number of the plane

We found smaller graphs with SAT:

I 874 vertices on April 14, 2018

I 803 vertices on April 30, 2018

I 610 vertices on May 14, 2018
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Record by Proof Minimization: 510 Vertices [Heule 2021]
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