# Logic and Mechanized Reasoning Using SAT Solvers

Marijn J.H. Heule

Carnegie Mellon University Solving 2-SAT

SAT Solving First Steps

**DPLL** 

**Graph Coloring** 

## Solving 2-SAT

SAT Solving First Steps

DPLL

Graph Coloring

## Solving 2-SAT: Complexity

A k-SAT formula is a CNF formula such that each clause has a length of at most k.

Solving a k-SAT formula is NP-complete for  $k \ge 3$ 

However, 2-SAT can be solved in polynomial time using

- Unit propagation; and
- Autarky reasoning.

#### Solving 2-SAT: Unit Propagation

Let  $\Gamma$  be a 2-SAT formula, p a propositional variable occurring in  $\Gamma$ , and  $\tau$  the assignment with  $\tau(p) = \top$ .

Unit propagation on  $\Gamma$  using  $\tau$  has two possible outcomes:

• Unit propagation results in a conflict: All satisfying assignments of  $\Gamma$  assign p to false.

#### Solving 2-SAT: Unit Propagation

Let  $\Gamma$  be a 2-SAT formula, p a propositional variable occurring in  $\Gamma$ , and  $\tau$  the assignment with  $\tau(p) = \top$ .

Unit propagation on  $\Gamma$  using  $\tau$  has two possible outcomes:

- Unit propagation results in a conflict: All satisfying assignments of  $\Gamma$  assign p to false.
- Unit propagation terminates without a conflict: Let  $\tau'$  be the final assignment with unit propagation terminated. Now  $\tau'$  is an autarky for  $\Gamma$ . Why?

#### Solving 2-SAT: Autarky

Given a 2-SAT formula  $\Gamma$  and a non-empty truth assignment. If unit propagation terminates without a conflict, then the extended assignment is an autarky for  $\Gamma$ .

- For a clause C and a non-conflicting assignment  $\tau$  it holds that i)  $\tau$  does not touch C, ii)  $\tau$  satisfies C, or iii)  $\tau$  reduces C to a unit clause (by falsifying the other literal);
- Unit clauses extend the assignment and maintain the above invariant;
- ► At the non-conflicting fixpoint, no touched clause is reduced in length; so
- All touched clauses are satisfied.

#### Solving 2-SAT: Decision Procedure

Given a 2-SAT formula  $\Gamma$ , the following procedure solves it in polynomial time:

- lacktriangle Pick an arbitrary variable p and let au be au(p) = au
- Let  $\tau'$  be the extended assignment after applying unit propagation on  $\Gamma$  starting with  $\tau$
- ▶ If  $\llbracket \Gamma \rrbracket_{\tau'}$  does not contain  $\bot$ , continue with  $\llbracket \Gamma \rrbracket_{\tau'}$  (autarky)
- ▶ Otherwise continue with  $\llbracket \Gamma \rrbracket_{\tau''}$  with  $\tau''(p) = \bot$
- lacksquare Stop if either  $[\![\Gamma]\!]_{ au'}=\top$  or  $[\![\Gamma]\!]_{ au'}=\bot$

#### Solving 2-SAT: Decision Procedure

Given a 2-SAT formula  $\Gamma$ , the following procedure solves it in polynomial time:

- lacktriangledown Pick an arbitrary variable p and let au be au(p) = au
- Let  $\tau'$  be the extended assignment after applying unit propagation on  $\Gamma$  starting with  $\tau$
- ▶ If  $\llbracket \Gamma \rrbracket_{\tau'}$  does not contain  $\bot$ , continue with  $\llbracket \Gamma \rrbracket_{\tau'}$  (autarky)
- ▶ Otherwise continue with  $\llbracket \Gamma \rrbracket_{\tau''}$  with  $\tau''(p) = \bot$
- $lackbox{ Stop if either } \llbracket\Gamma\rrbracket_{ au'}=\top \ \ {
  m or } \ \llbracket\Gamma\rrbracket_{ au'}=\bot$

Tarjan's algorithm can be used to reduce it to linear runtime.

## Solving 2-SAT: The SAT Game

# SAT Game

by Olivier Roussel

https://www.cs.utexas.edu/~marijn/game/2SAT/

Solving 2-SAT

SAT Solving First Steps

DPLL

Graph Coloring

#### SAT Solving: Introduction

Dozens of (open source) SAT solvers have been developed.

International competition have been organized since 2002

- ▶ Solvers are evaluated on a representative benchmark suite
- Practically every year clear progress is observed
- Arguably one of the drivers that advances the technology

CaDiCaL by Armin Biere is one of the strongest solvers

- Compiles easily on most operating systems
- Readable and understanable code and thus easy to modify
- ▶ Works normally from the command line, but also in Lean

#### SAT Solving: Demo in Lean

```
Examples of use of Cadical.
-- textbook: SAT example
def cadicalExample : IO Unit := do
  let (s, result) ← callCadical exCnf0
  IO.println "Output from CaDiCaL :\n"
 --I0.println s
 --I0.println "\n\n"
 IO.println (formatResult result)
  pure ()
#eval cadicalExample
-- end textbook: SAT example
```

#### SAT Solving: DIMACS Input Format

The DIMACS format for SAT solvers has three types of lines:

- header: p cnf n m in which n denotes the highest variable index and m the number of clauses
- clauses: a sequence of integers ending with "0"
- comments: any line starting with "c"

#### SAT Solving: DIMACS Output Format

The solution line of a SAT solver starts with "s":

- ▶ s SATISFIABLE: The formula is satisfiable
- ▶ s UNSATISFIABLE: The formula is unsatisfiable
- ▶ s UNKNOWN: The solver cannot determine satisfiability

In case the formula is satisfiable, the solver emits a certificate:

- ▶ lines starting with "v"
- a list of integers ending with 0
- ► e.g. v -1 2 4 0

In case the formula is unsatisfiable, then most solvers support emitting a proof of unsatisfiability to a separate file Solving 2-SAT

SAT Solving First Steps

**DPLL** 

Graph Coloring

#### **DPLL**: Introduction

## Davis Putnam Logemann Loveland [DP60,DLL62]

#### Recursive procedure that in each recursive call:

- ► Simplifies the formula (using unit propagation)
- Splits the formula into two subformulas
  - ► Variable selection heuristics (which variable to split on)
  - Direction heuristics (which subformula to explore first)

#### **DPLL**: Example

$$\Gamma_{\text{DPLL}} := (p_1 \lor p_2 \lor \neg p_3) \land (\neg p_1 \lor p_2 \lor p_3) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_1 \lor p_3) \land (\neg p_1 \lor \neg p_3)$$

#### DPLL: Example

$$\Gamma_{\text{DPLL}} := (p_1 \lor p_2 \lor \neg p_3) \land (\neg p_1 \lor p_2 \lor p_3) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_1 \lor p_3) \land (\neg p_1 \lor \neg p_3)$$



#### DPLL: Example

$$\Gamma_{\text{DPLL}} := (p_1 \lor p_2 \lor \neg p_3) \land (\neg p_1 \lor p_2 \lor p_3) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_1 \lor p_3) \land (\neg p_1 \lor \neg p_3)$$





#### DPLL: Slightly Harder Example

Construct a DPLL tree for:

$$\begin{array}{l} (p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r) \land \\ (q \lor r \lor \neg s) \land (\neg q \lor \neg r \lor s) \land \\ (p \lor r \lor s) \land (\neg p \lor \neg r \lor \neg s) \land \\ (\neg p \lor q \lor s) \end{array}$$

What is a good heuristic?

#### DPLL: Slightly Harder Example

Construct a DPLL tree for:

$$\begin{array}{l} (p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r) \land \\ (q \lor r \lor \neg s) \land (\neg q \lor \neg r \lor s) \land \\ (p \lor r \lor s) \land (\neg p \lor \neg r \lor \neg s) \land \\ (\neg p \lor q \lor s) \end{array}$$

What is a good heuristic?

A cheap and reasonably effective heuristic is MOMS: Maximum Occurrence in clauses of Minimum Size

#### **DPLL**: Pseudocode

```
DPLL (\tau, \Gamma)
1: \tau' := Simplify (\tau, \Gamma)
2: if \llbracket \Gamma 
Vert_{	au'} = 	op then return satisfiable
3: if \llbracket \Gamma \rrbracket_{\tau'} = \bot then return unsatisfiable
4: l_{\text{decision}} := \text{Decide} (\tau', \Gamma)
5: if (DPLL( \tau' \cup l_{\text{decision}} := \top_{\tau} \Gamma) = satisfiable) then
        return satisfiable
7: return DPLL (\tau' \cup l_{\text{decision}} := \bot, \Gamma)
```

#### DPLL: Demo in Lean

```
-- textbook: dpllSat
partial def dpllSatAux (τ : PropAssignment) (φ : CnfForm) : Option (PropAssignment × CnfForm) :=
  if φ.hasEmpty then none
  else match pickSplit? w with
  -- No variables left to split on, we found a solution.
  I none => some (\tau, \phi)
  -- Split on `x`.
  -- `<|>` is the "or else" operator which tries one action, and if that failed tries the other.
  | some x => goWithNew x \tau \phi <|> goWithNew (-x) \tau \phi
where
  /-- Assigns `x` to true and continues out DPLL. -/
  qoWithNew (x : Lit) (τ : PropAssignment) (φ : CnfForm) : Option (PropAssignment × CnfForm) :=
    let (\tau', \phi') := propagateWithNew x \tau \phi
    dpllSatAux τ' φ'
/-- Solve `o` using DPLL. Return a satisfying assignment if found, otherwise `none`. -/
def dpllSat (o : CnfForm) : Option PropAssignment :=
  let (\tau, \phi) := propagateUnits [] \phi
  (dpllSatAux \tau \phi).map fun (\tau, ) => \tau
-- end textbook: dpllSat
```

Solving 2-SAT

SAT Solving First Steps

DPLL

**Graph Coloring** 

## Graph Coloring: Introduction

Given a graph G(V,E), can the vertices be colored with k colors such that for each edge  $(v,w) \in E$ , the vertices v and w are colored differently.



## Graph Coloring: Introduction

Given a graph G(V,E), can the vertices be colored with k colors such that for each edge  $(v,w) \in E$ , the vertices v and w are colored differently.



Possible problem: symmetries!

#### Graph Coloring: Format

- Header starts with p edge
- Followed by number of vertices and number of edges

```
p edge 8 13
```

- e 1 2
- e 1 3
- e 2 3
- e 2 4
- e 3 5
- e 3 6
- e 3 8
- е 3 8
- e 4 5
- e 5 6
- e 5 7
- e 6 7
- e 68
- e 78



# Graph Coloring: Encoding

| Variables                                         | Range                                               | Meaning                          |  |  |
|---------------------------------------------------|-----------------------------------------------------|----------------------------------|--|--|
| $p_{v,i}$                                         | $i \in \{1, \dots, c\}$ $v \in \{1, \dots,  V \}$   | node $v$ has color $i$           |  |  |
| Clauses                                           | Range                                               | Meaning                          |  |  |
| $(p_{v,1} \vee p_{v,2} \vee \cdots \vee p_{v,c})$ | $v \in \{1,\ldots, V \}$                            | v is colored                     |  |  |
| $(\neg p_{v,s} \lor \neg p_{v,t})$                | $s \in \{1, \dots, c-1\}$ $t \in \{s+1, \dots, c\}$ |                                  |  |  |
| $(\neg p_{v,i} \lor \neg p_{w,i})$                | $(v,w)\in E$                                        | v and $w$ have a different color |  |  |
| ???                                               | ???                                                 | breaking symmetry                |  |  |

#### Graph Coloring: Lean Demo

## Graph Coloring: Sudoku

Sudoku can be viewed as a graph coloring problem:

- Each cell is a vertex
- Vertices are connected if they occur in the same row / column / square
- ► There are 9 colors

The solution must be unique

At least 17 givens

Who can solve this sudoku?

|   | 4 | 3 |   |   |   |   |   |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   | 7 | 9 |   |
|   |   | 6 |   |   |   |   |   |
|   |   | 1 | 4 |   | 5 |   |   |
| 9 |   |   |   |   |   | 1 |   |
| 9 |   |   |   |   |   |   | 6 |
|   |   |   | 7 | 2 |   |   |   |
|   | 5 |   |   |   | 8 |   |   |
|   |   |   | 9 |   |   |   |   |

## Graph Coloring: Sudoku

Sudoku can be viewed as a graph coloring problem:

- Each cell is a vertex
- Vertices are connected if they occur in the same row / column / square
- ► There are 9 colors

The solution must be unique

► At least 17 givens

Who can solve this sudoku?

| 1 | 4 | 7 | 3 | 8 | 9 | 2 | 6 | 5 |
|---|---|---|---|---|---|---|---|---|
| 5 | 8 | 6 | 2 | 1 | 4 | 7 | 9 | 3 |
| 3 | 9 | 2 | 6 | 5 | 7 | 1 | 8 | 4 |
| 8 | 7 | 3 | 1 | 4 | 6 | 5 | 2 | 9 |
| 9 | 6 | 4 | 7 | 2 | 5 | 3 | 1 | 8 |
| 2 | 1 | 5 | 9 | 3 | 8 | 4 | 7 | 6 |
| 6 | 3 | 8 | 5 | 7 | 2 | 9 | 4 | 1 |
| 7 | 5 | 9 | 4 | 6 | 1 | 8 | 3 | 2 |
| 4 | 2 | 1 | 8 | 9 | 3 | 6 | 5 | 7 |

## Graph Coloring: Sudoku in Lean

| +     |       | +     |
|-------|-------|-------|
| 1 4 7 | 3 8 9 | 2 6 5 |
| 5 8 6 | 2 1 4 | 7 9 3 |
| 3 9 2 | 6 5 7 | 1 8 4 |
| 8 7 3 | 1 4 6 | 5 2 9 |
| 9 6 4 | 7 2 5 | 3 1 8 |
| 2 1 5 | 9 3 8 | 4 7 6 |
| 6 3 8 | 5 7 2 | 9 4 1 |
| 7 5 9 | 4 6 1 | 8 3 2 |
| 4 2 1 | 8 9 3 | 6 5 7 |

#### Graph Coloring: Chromatic Number of the Plane

#### The Hadwiger-Nelson problem:

How many colors are required to color the plane such that each pair of points that are exactly 1 apart are colored differently?

The answer must be three or more because three points can be mutually 1 apart—and thus must be colored differently.



## Graph Coloring: Bounds since the 1950s



- ► The Moser Spindle graph shows the lower bound of 4
- ▶ A coloring of the plane showing the upper bound of 7

#### Graph Coloring: First progress in decades

#### Recently enormous progress:

- ► Lower bound of 5 [DeGrey '18] based on a 1581-vertex graph
- This breakthrough started a polymath project
- Improved bounds of the fractional chromatic number of the plane



#### Graph Coloring: First progress in decades

#### Recently enormous progress:

- ► Lower bound of 5 [DeGrey '18] based on a 1581-vertex graph
- This breakthrough started a polymath project
- ► Improved bounds of the fractional chromatic number of the plane





We found smaller graphs with SAT:

- ▶ 874 vertices on April 14, 2018
- ▶ 803 vertices on April 30, 2018
- ► 610 vertices on May 14, 2018

lowered this number to 826 vertices.

# Record by Proof Minimization: 510 Vertices [Heule 2021]

