Assignment 6

due Wednesday, October 12, 2022

Problem 1 (6 points)

Recall from the class and the textbook that an *autarky* is an assignment τ that satisfies all clauses in a CNF formula Γ that it touches. A literal l in a CNF formula Γ is called *pure* if $\neg l$ does not occur in Γ . An assignment that sets a pure literal to *true* and leaves all the other variables unassigned is an instance of an autarky.

A) (3 points) Write in Lean a predicate isAutarky that takes an assignment τ : PropAssignment and a CNF formula Γ : CnfForm and returns a Boolean whether τ is an autarky for Γ .

B) (3 points) Write in Lean a function getPure that a CNF formula Γ : CnfForm and returns a List Lit of all pure literals in Γ . The function does not need to find all pure literals until fixpoint, only the literals the are pure in Γ .

Problem 2 (14 points)

In this problem we focus on coloring a $n \times m$ grid with k colors. Consider all possible rectangles within the grid whose length and width are at least 2. The goal is to color the grid using k colors so that no such rectangle has the same color for its four corners. When this is possible, we say that the $n \times m$ grid is k-colorable while avoiding monochromatic rectangles. When using k colors, it is relatively easy to construct a valid k-coloring of a $k^2 \times k^2$ grid. However, only few valid k-colorings are known for grids that are larger than $k^2 \times k^2$. An example of a valid 3-coloring of the 9×9 grid is shown below.

0	0	1	1	2	2	0	1	2
2	0	0	1	1	2	2	0	1
1	2	0	0	1	1	2	2	0
0	1	2	0	0	1	1	2	2
2	0	1	2	0	0	1	1	2
2	2	0	1	2	0	0	1	1
1	2	2	0	1	2	0	0	1
1	1	2	2	0	1	2	0	0
0	1	1	2	2	0	1	2	0

A) (6 points) Write a Lean function that takes as input three natural numbers n, m, and k, which returns a CNF formula of Lean data type CnfForm which is satisfiable if an only if there exists a valid k-coloring of the $n \times m$ grid, i.e., a coloring without monochromatic rectangles. (Hint: The encoding requires two types of clauses. First, each square needs to have one color. Second, if four squares form the corners of a rectangle, then they cannot have the same color.)

B) (4 points) Use the Lean interface to CaDiCaL to solve the formula with n = 10, m = 10, and k = 3 and the formula with n = 9, m = 12, and k = 3. Both formulas should be satisfiable. The answer should consist of two lists (one for each formula) using Lean data type List Lit containing only all positive literals assigned to true (\top) .

Logic and Mechanized Reasoning

C) (4 points) Given a List Lit containing only all positive literals assigned to true for a gridcoloring problem, decode it into a grid of numbers similar to the 9×9 grid shown above. Use the function to display the solutions of n = 10, m = 10, and k = 3 and of n = 9, m = 12, and k = 3. You can assume that the decoding function knows n, m, and k of the grid-coloring problem.