
Name:

Logic and Mechanized Reasoning

Second Practice Exam

Spring 2024

Write your answers in the space provided, using the back of the page if necessary.
You may use additional scratch paper. Justify your answers, and provide clear,
readable explanations.

Problem Points Score

1 13

2 20

3 20

4 30

5 26

6 20

7 21

Total 150

Good luck!

Problem 1.

Remember that if Γ is a set of clauses, JΓKτ is the set of clauses obtained by deleting
any clause that has a literal that is assigned ⊤ and removing from each clause any
literal that is assigned ⊥.

Remember also that the DPLL search tries to find a satisfying assignment for a set
of clauses Γ by doing a backtracking search on partial assignments τ . At a node τ
in the search, DPLL tries to find a satisfying assignment to JΓKτ .

Part a) (3 points) What does it mean to say that a literal ℓ is a pure literal in
JΓKτ ?

Solution

It means the negation of ℓ does not occur in JΓKτ .

Part b) (10 points) Suppose ℓ is pure in JΓKτ and let τ ′ be the assignment
τ [ℓ 7→ ⊤]. Show that JΓKτ ′ is satisfiable if and only if JΓKτ is satisfiable.

Solution

Since ¬ℓ does not occur in JΓKτ , JΓKτ ′ is the result of deleting all clauses of JΓKτ

that contain ℓ. Since JΓKτ ′ is a subset of JΓKτ , if JΓKτ is satisfiable, then JΓKτ ′ is
satisfiable.

Conversely, suppose σ satisfies JΓKτ ′ , then σ[ℓ 7→ ⊤] satisfies JΓKτ .

Problem 2. Remember that in Lean we define the type Clause to be List Lit.

Part a) (10 points) Define a function findComplement? : Clause → Clause
→ Option Lit that finds a literal ℓ such that ℓ occurs in the first clause and ¬ℓ
occurs in the second. If there isn’t one, the function should return none. You can
assume that you have a function List.contains : α → List α → Bool that
determines whether an element is in a list.

Solution
def findComplement? : Clause → Clause → Option Lit
| [], C2 => none
| (l :: C1), C2 => if C2.contains l.negate then some l else

findComplement? C1 C2

Part b) (10 points) Define a function resolve : Clause → Clause → Option
Clause that applies the resolution rule to two clauses, assuming there is a comple-
mentary pair, and returns none otherwise. You can assume that you have a function
List.erase : α → List α → List α that deletes an element from a list, if it
is present.

Solution
def resolve (C1 C2 : Clause) : Option Clause :=
match findComplement? C1 C2 with

| some l => some $ (C1.erase l).union (C2.erase l.negate)
| none => none

Problem 3. (20 points)

Remember that a resolution proof of a clause D from hypotheses in Γ is a sequence
of clauses C0, C1, . . . , Cn containing D such that for each i ≤ n, either Ci is in Γ or
Ci is obtained from previous clauses Cj and Ck.

Let τ be any truth assignment and let τ ′ be τ [P → ⊤]. Suppose there is a resolution
proof of a clause D from hypotheses in JΓKτ ′ . Show that there is a resolution proof
of either D or D ∨ ¬P from hypotheses in JΓKτ .

Solution

Suppose C0, C1, . . . , Cn is a resolution proof of D from hypotheses in JΓKτ ′ . Show by
strong induction on i that there is a resolution proof of either Ci or Ci ∨ ¬P from
hypotheses in JΓKτ .

Suppose the claim is true for all j < i. If Ci is an element of JΓKτ ′ , then Ci is
of the form JEKτ ′ for some E. Then either E contains ¬P , in which case JEKτ is
JEKτ ′ ∨ ¬P , or it doesn’t, in which case JEKτ is JEKτ ′ ∨ ¬P .

Otherwise, Ci follows by the resolution rule applied to Cj and Ck for some j and k
less than i. By the induction hypothesis, there is a resolution proof of Cj or Cj ∨¬P
from hypotheses in JΓKτ and a resolution proof of Ck or Ck ∨ ¬P from hypotheses
in JΓKτ . Applying the resolution rule to these gives a proof of either Ci or Ci ∨ ¬P .

Problem 4. Given the declaration variable (P Q R : Prop), as best you can,
try to write Lean proofs of the two theorems shown. For the tactic proofs, tell
us what the goal looks like after each line in your proof, i.e. the hypotheses and
conclusion. Don’t worry too much about the syntax or writing the goal exactly like
Lean does; we are more interested in seeing that you know what steps are allowed.

Part a) (9 points)
example : P ∧ Q → Q ∨ R := by

Solution
example : P ∧ Q → Q ∨ R := by

intro h
rcases h with ⟨h1, h2⟩
left
exact h2

Part b) (6 points) Write down a proof term for the theorem in part a).

Solution
fun h => Or.inl (h.right)

Part c) (9 points)
example : (P → Q) → (Q → R) → (P → R) := by

Solution
example : (P → Q) → (Q → R) → (P → R) := by

intro h1 h2 h3
apply h2
apply h1
exact h3

Part d) (6 points) Write down a proof term for the theorem in part c).

Solution
fun h1 h2 h3 => h2 (h1 h3)

Problem 5

Suppose we color the natural numbers red, green, and blue, and design a language
with predicates Red(x), Green(x), and Blue(x) and a binary relation < to talk about
the coloring.

Part a) (8 points) Write down a first-order sentence in the language that says
that every natural number has exactly one color.

Solution

∀x. (Red(x) ∨ Green(x) ∨ Blue(x)) ∧
¬(Red(x) ∧ Green(x)) ∧ ¬(Red(x) ∧ Blue(x)) ∧ ¬(Green(x) ∧ Blue(x))

Part b) (8 points) Write down a sentence that says between any two numbers
that are colored red there is a number that is colored green or blue.

Solution

∀x, y. x < y ∧ Red(x) ∧ Red(y) → ∃z. (x < z ∧ z < y ∧ (Green(z) ∨ Blue(z)))

Part c) (10 points) Write down a sentence that says that there are three numbers
in a row that are colored blue. (Hint: it takes some thought to say that x, y, and z
are consecutive numbers using only < and =.)

Solution

∃x, y, z. x < y ∧ y < z ∧
∀w. (x < w ∧ w < z → w = y) ∧ Blue(x) ∧ Blue(y) ∧ Blue(z)

Problem 6

Part a) (10 points) Prove the following or provide a counterexample: for any two
formulas A(x) and B(x) in first-order logic, if ∃x. A(x) ∧ B(x) is satisfiable, then so
are ∃x. A(x) and ∃x. B(x).

Solution

Let M be any model of ∃x. A(x) ∧ B(x). Then there is an a in |M| such that A and
B are both true in M when x is interpreted by a. This means that M is a model of
∃x. A(x) and ∃x. B(x) as well.

Part b) (10 points) Prove the following or provide a counterexample: for any two
formulas A(x) and B(x) in first-order logic, if ∃x. A(x) and ∃x. B(x) are satisfiable,
then so is ∃x. A(x) ∧ B(x).

Solution

This is false. Let A(x) be Even(x) and let B(x) be ¬Even(x). Then ∃x. A(x) and
∃x. B(x) are both true of the natural numbers with the usual interpretation of Even,
but ∃x. Even(x) ∧ ¬Even(x) is false in every model.

Problem 7

In each of the following cases, find a most general unifier of the pair of expressions
or explain why no such unifier exists. In all these problems, x, y, z, . . . are variables
and a, b, c, . . . are constants.

Part a) (7 points) P (a, f(a, x), g(y)) and P (a, f(a, f(g(b), a)), x).

Solution

These cannot be unified. To unify f(a, x) with f(a, f(g(b), a)), x must unify with
f(g(b), a). But we also have to unify x with g(y). There is no way to unify f(g(b), a)
with g(y) because the first starts with f and the second starts with g.

Part b) (7 points) P (f(a), g(y)) and P (x, g(x)).

Solution
x 7→ f(a), y 7→ f(a).

Part c) (7 points) P (f(x), g(x)) and P (f(f(a)), g(f(y))).

Solution
x 7→ f(a), y 7→ a.

