Name:

LoGic AND MECHANIZED REASONING
Final Practice Exam

Spring 2024

Write your answers in the space provided, using the back of the page if necessary.
You may use additional scratch paper. Justify your answers, and provide clear,
readable explanations.

Problem Points Score
1 20
2 20
3 18
4 12
5 20
6 20
7 15
8 25
Total 150

Good luck!



Problem 1 (20 points).

Consider the following first-order formula with equality:

fla)=g%(a) A fla)=g"(a) A fla)#a A f(a)# g(a).
Here g®(a) abbreviates g(g(g(a))), and similarly for ¢g°(a).

Compute the congruence closure and list the equivalence classes. In case the formula
is unsatisfiable, list the conflict. In case the formula is satisfiable, construct a model.

Solution

The classes are as follows:

* [d]

* [g9(a)]

. [g*(a)]

 [g(a)] ={f(a),g°(a), g°(a)}
. [g*(a)]

The formula is satisfiable. Add a new element b to the list of classes above, and
define

(
(g% (a)] 1) =0, f7(b) =0,
9" (la]) = [g(a)], g™ (l9(@)]) = [g°(a)], 4™ (l9*(a)]) = [g*(a)],
g"(lg°(a)]) = lg*(a)], g™ (l9*(a)]) = [g°(a)], g™ (D) = b



Problem 2 (20 points).

Use the Fourier-Motzkin procedure (the decision procedure for linear arithmetic
that you helped implement for homework) to determine whether the following set
of inequalities is satisfiable:

1. x4+ 2y —32 < =8
2. 20 =4y +22 <7

3. —r+2<2

Solution

There are alternative (equivalent) ways of describing Fourier-Motzkin, so we provide
two solutions. The first uses the method you implemented for homework, and the
second uses the one in the textbook.

Solution 1:

Adding the first and the third inequalities, we get
2y — 2z < —6.
Adding twice the third to the second we get
—4y + 4z < 11.
Adding twice the first of these to the second, we get
0<—1.

This is a contradiction, so the inequalities are unsatisfiable.

Solution 2:

Solving the first two inequalities for y, we get y < —x/2 4+ 32/2 — 4 and y >
x/2+ z/2—7/4. Combining these we get /24 2/2—7/4 < —x/2+32/2 —4, which
simplifies to x + 9/4 < z.

The third inequality is equivalent to z < 2+x. Combining it with the last inequality
yields z + 9/4 < x + 2, which simplifies to 1/4 < 0, a contradiction. Thus the
inequalities are unsatisfiable.



Problem 3.

For this problem, we consider quantifier-free bitvector formulas (QF BV) with un-
signed bitvectors of length 4. We use the following notation: | for logical or, & for
logical and, ~ for logical negation (all bits are negated), >,, >,, <4, and <, for
unsigned greater than, greater or equal, less than, and less or equal. Furthermore,
< k denotes left shift by k bits, while > k denotes a right shift by &k bits. Deter-
mine for each of them whether the formula is satisfiable or unsatisfiable. In case it
is satisfiable, provide a satisfying assignment (a bitvector of length 4).

Part a) (6 points)

(a ] ~a) <, a

Solution This is unsatisfiable. A logical or can only set more bits to 1, which
increases the value.

Part b) (6 points)
(a<2)>,a

Solution

Satisfiable: set a = 0001. Then 0100 >, 0001.

Part c) (6 points)
(a& (a>1)) >, a

Solution

This is unsatisfiable. A logical and can only decrease the value.



Problem 4. (12 points)

Consider the following two universally quantified clauses:

Va,y. R(z, f(9(y))) V S(z,y)

YVu,v. = R(g(u), f(v)) vV T(u,v).

Carry out a resolution step, indicate the most general unifier, and write down the
resolvent.

Solution

The map {x — g(u),v — g(y)} is a most general unifier of R(x, f(g(y))) and
R(g(u), f(w)). The resolution step yields Yu,y.S(g(u),y) vV T(u, g(y)).



Problem 5.

The Green Bridge of Wales is a famous rock formation. However you need to be
lucky to see it: If it rains during a day, you can’t see the bridge. Unfortunately it
rains a lot in Wales: On any two consecutive days, it rains on at least one of them.
That is why the tourist guide states: If you can see the bridge, then it will rain
tomorrow.

Part a) (10 points) Express in first-order logic the two axioms and the conclusion
(the text shown in italics) using the predicates Rains(x) and Visible(x) and the
function nextDay(z). (Visible(x) means that the bridge is visible on day x.) Note
that the variables range over days; you do not need to refer to any other kinds of
objects.

Solution

 Vz.Rains(x) — —Visible(z)
« Vz.Rains(z) V Rains(nextDay(z)).
 Vz. Visible(z) — Rains(nextDay(z)).

Part b) (10 points) Show that the conclusion follows from the two axioms using
resolution for first-order logic.

From the hypotheses and negated conclusion, we get 1—4.

Solution

1. Va.-Rains(z) V = Visible(z)
. Vz.Rains(x) V Rains(nextDay(z))
. Visible(a)
. —Rains(nextDay(a))

2
3
4
5. —Rains(a), from 1 and 3
6. Rains(a), from 2 and 4
7

. 1 from 5 and 6.



Problem 6. For these problems, use S(x) for “z is a student,” H(x,y) for “x has
y,” C(y) for “y is a car,” and D(y) for “y is a driver’s license.”

Part a) (4 points) Write down a formalization of the statement “every student
that has a car has a driver’s license.”

Solution

Va,y. S(z) N H(z,y) NC(y) — 3z. H(z,2) A D(2)

The y can also be moved into the antecedent and expressed as dJ, with the scope
limited:
Ve, S(z) A (Jy. H(z,y) ANC(y)) = Jz. H(x, 2) A D(z)

Part b) (6 points) Skolemize the previous statement and transform it to an
equisatisfiable set of (one or more) universally quantified clauses.

Solution

Vi, y. =S(x) vV -H(z,y) vV =Cy) Vv H(z, f(z,y))

and
Va,y. =S(x) vV =H(z,y) vV ~C(y) vV D(f(x,y)).

Part c) (4 points) Write down a formalization of the statement “not every student
that has a driver’s license has a car.”

Solution

dz,y.S(x) NH(z,y) N D(y) A\Vz.C(2) - —H(x, 2)

Part d) (6 points) Skolemize the previous statement and transform it to an
equisatisfiable set of universally quantified clauses.

Solution

S(b), H(b,c), D(c), Vz.=C(z)V-H(b,z).



Problem 7. (15 points)

For this problem, consider first-order logic without the equality symbol. In class,
we proved that if 91 is a term model for a language L, t is any term, and o is any
substitution, we have

[[t]]gm’g =0 t,
where the right-hand side is the result of applying the substitution t to o.

Let I' be a set of universal sentences, and let 7 be a truth assignment to the atoms of
L that satisfies every quantifier-free instance of a sentence in I'. Let 99T be the term
model in which, for every relation symbol of £, R™(t,...,t,) holds if and only if
=r R(t1,...,t,). Show that 91 is a model of T".

Solution

Let VZ. A(z1,...,x,) be any universal sentence in I', where A is quantifier free.
By the definition of the semantics for the universal quantifier (and the definition
of “term model,” this sentence is true in 9 if and only if o A(ty,...,t,). We
are assuming =, A(t1,...,t,). So it suffices to show that for every quantifier-free

sentence A, =g A if and only if =, A.

Do this by induction on formulas. In the base case, A is an atomic formula R(¢q, ..., t,).
By the definition of the semantics for first-order logic, this is true if and only if
R™([t1]on, - - -, [tn]on) holds. By the definition of 9% and the fact proved in class,
this hold if and only if =, R(t1,...,t,), as required. (In the base case where A is
L, [L]m = [L]- = L)

In the inductive step, A is of the form BAC, BV C, or B — C. In those cases, the
claim follows immediately from the inductive hypotheses, given that the definitions
of =g A and =, A agree on the propositional connectives.



Problem 8. For the following Lean proofs, these declarations are in the context:

variable {a 3 v : Type} (P Q R : o« — Prop) (S :
variable (f : « — B) (g : B — V)

x — &« — Prop)

As best you can, try to write Lean proofs of the three theorems shown, using a
tactic proof or a proof term, as indicated. For the remaining ones, use tactics. You
can use the tactics intro, apply, exact, left, right, constructor, rcases, rw,
and use. (You don’t have to use all of them.) If you are not sure about the tactics
in the tactic proofs, you can get partial credit by indicating the goal you expect at

each stage.

Part a) (tactic proof) (5 points)

example (hl1 : V x, P x — Q x) (h2 :

Solution:

example (hl : V x, Px — Q x) (h2 :

intro x
apply hil
apply h2

Part b) (proof term) (5 points)

example (hl : V x, Px — Q x) (h2 :

Solution:

example (hl : V x, Px — Q x) (h2 :

fun x => hl x (h2 x)

Part c) (tactic proof) (5 points)

YV x, P %)
vV x, P x)
V x, P x)
V x, P x)

example (hl : 3 x, Px) (h2 : V x, P x — Q x)

Solution:

example (hl : 4 x, Px) (h2 : V x, P x = Q x)

:Vox, @ x:
:Vx, Q x
:Vx, Qx:
:Vx, Q x
:dx, Q@ x
:dx, Q x ¢

by

by

by

by



rcases hl with (x, px)
use X

apply h2

exact px

Part d) (tactic proof) (5 points)
example (h : 3 x, Vy, Sxy) :Vu Jv, Svu:

Solution:

example (h : 3 x, Vy, Sxy) :Vu Jv, Svu:
rcases h with (x, hx)
intro u
use x
apply hx

Part e) (tactic proof) (5 points).

example (Injf : V x; %9 @ &, £ x3 =f x — % = Xo)

(Injg : Vyi1y2 : B, gy1 =8 Yy2 = y1 = y2)
V x1 X0, g (f x9) =g (f x2) = x3 = x5 := by

Solution:

example (Injf : V x; %0 @ &, £ x3 =f % — % = Xo)
(Injg : Vyiy2 : B, 8y1 =8Yy2 = y1 = y2)
V x1 X0, g (f x9) =g (f x0) = x1 = x5 := by
intro x; x9 h
have hl : f xy = f %y := by
apply Injg
exact h
apply Injf
exact hil

Alternatively:

example (Injf : V x1 %9 @ «, £ x3 =f x0 — X1 = Xo)

by

by



(Injg : Vy1 y2 : B, gy1 =8Yy2 = y1 = y2)
vV x; xa, g(le) =g(fX2) — X1 = X9 := by
intro x; X9 h
apply Injf
apply Injg
exact h



