Logic and Mechanized Reasoning Basic SAT Solving

Marijn J.H. Heule

Carnegie Mellon University

Solving 2-SAT

SAT Solving First Steps

Graph Coloring

Solving 2-SAT

SAT Solving First Steps

Graph Coloring

Solving 2-SAT: Complexity

A k-SAT formula is a CNF formula such that each clause has a length of at most k.

Solving a *k*-SAT formula is NP-complete for $k \ge 3$

However, 2-SAT can be solved in polynomial time using

- Unit propagation; and
- Autarky reasoning.

Let Γ be a 2-SAT formula, p a propositional variable occurring in Γ , and τ the assignment with $\tau(p) = \top$.

Unit propagation on Γ using τ has two possible outcomes:

Unit propagation results in a conflict: All satisfying assignments of Γ assign p to false.

Let Γ be a 2-SAT formula, p a propositional variable occurring in Γ , and τ the assignment with $\tau(p) = \top$.

Unit propagation on Γ using τ has two possible outcomes:

- Unit propagation results in a conflict: All satisfying assignments of Γ assign p to false.
- Unit propagation terminates without a conflict: Let τ' be the final assignment with unit propagation terminated. Now τ' is an autarky for Γ. Why?

Solving 2-SAT: Autarky

Given a 2-SAT formula Γ and a non-empty truth assignment. If unit propagation terminates without a conflict, then the extended assignment is an autarky for Γ .

- For a clause C and a non-conflicting assignment τ it holds that i) τ does not touch C, ii) τ satisfies C, or iii) τ reduces C to a unit clause (by falsifying the other literal);
- Unit clauses extend the assignment and maintain the above invariant;
- At the non-conflicting fixpoint, no touched clause is reduced in length; so
- All touched clauses are satisfied.

Solving 2-SAT: Decision Procedure

Given a 2-SAT formula $\Gamma,$ the following procedure solves it in polynomial time:

- ▶ Pick an arbitrary variable p and let τ be $\tau(p) = \top$
- Let τ' be the extended assignment after applying unit propagation on Γ starting with τ
- ▶ If $\llbracket \Gamma \rrbracket_{\tau'}$ does not contain \bot , continue with $\llbracket \Gamma \rrbracket_{\tau'}$ (autarky)
- \blacktriangleright Otherwise continue with $[\![\Gamma]\!]_{\tau''}$ with $\tau''(p)=\bot$
- ▶ Stop if either $\llbracket \Gamma \rrbracket_{\tau'} = \top$ or $\llbracket \Gamma \rrbracket_{\tau'} = \bot$

Solving 2-SAT: Decision Procedure

Given a 2-SAT formula $\Gamma,$ the following procedure solves it in polynomial time:

- ▶ Pick an arbitrary variable p and let τ be $\tau(p) = \top$
- Let τ' be the extended assignment after applying unit propagation on Γ starting with τ
- ▶ If $\llbracket \Gamma \rrbracket_{\tau'}$ does not contain \bot , continue with $\llbracket \Gamma \rrbracket_{\tau'}$ (autarky)
- \blacktriangleright Otherwise continue with $[\![\Gamma]\!]_{\tau''}$ with $\tau''(p)=\bot$
- ▶ Stop if either $\llbracket \Gamma \rrbracket_{\tau'} = \top$ or $\llbracket \Gamma \rrbracket_{\tau'} = \bot$

Tarjan's algorithm can be used to reduce it to linear runtime.

Solving 2-SAT: The SAT Game

SAT Game

by Olivier Roussel

https://www.cs.utexas.edu/~marijn/game/2SAT/

Solving 2-SAT

SAT Solving First Steps

Graph Coloring

SAT Solving: Introduction

Dozens of (open source) SAT solvers have been developed.

International competition have been organized since 2002

- Solvers are evaluated on a representative benchmark suite
- Practically every year clear progress is observed
- Arguably one of the drivers that advances the technology

CaDiCaL by Armin Biere is one of the strongest solvers

- Compiles easily on most operating systems
- Readable, understandable code that is easy to modify
- ▶ Works normally from the command line, but also in Lean

SAT Solving: CaDiCaL download and install

Most SAT solvers are implemented in C/C++

CaDiCaL is one of the strongest SAT solvers. As the name suggests it is based on CDCL. Recommended for Linux and macOS users.

obtain CaDiCaL:

- git clone https://github.com/arminbiere/cadical.git
- cd cadical
- ./configure; make

macOS users: copy the cadical binary in build/ to LAMR/bin/

Progress in SAT Solving (I)

SAT Competition Winners on the SC2011 Benchmark Suite

12 / 27

Progress in SAT Solving (II)

SAT Competition Winners on the SC2020 Benchmark Suite

Progress even larger due to harder instances Logic and Mechanized Reasoning SAT Solving: Demo in Lean

```
/-
Examples of use of Cadical.
-/
-- textbook: SAT example
def cadicalExample : IO Unit := do
  let (s, result) ← callCadical exCnf0
  IO.println "Output from CaDiCaL :\n"
 --- IO.println s
 --I0.println "\n\n"
 IO.println (formatResult result)
  pure ()
#eval cadicalExample
-- end textbook: SAT example
```

SAT Solving: DIMACS Input Format

The DIMACS format for SAT solvers has three types of lines:

- header: p cnf n m in which n denotes the highest variable index and m the number of clauses
- clauses: a sequence of integers ending with "0"

comments: any line starting with "c "

$$\begin{array}{c} c \text{ example} \\ p \text{ cnf } 4 7 \\ (p \lor q \lor \neg r) \land & 1 2 -3 0 \\ (\neg p \lor \neg q \lor r) \land & -1 -2 3 0 \\ (q \lor r \lor \neg s) \land & 2 3 -4 0 \\ (\neg q \lor \neg r \lor s) \land & -2 -3 4 0 \\ (p \lor r \lor s) \land & 1 3 4 0 \\ (\neg p \lor \neg r \lor \neg s) \land & -1 -3 -4 0 \\ (\neg p \lor q \lor s) & -1 2 4 0 \end{array}$$

SAT Solving: DIMACS Output Format

The solution line of a SAT solver starts with "s ":

- **s SATISFIABLE**: The formula is satisfiable
- **s** UNSATISFIABLE: The formula is unsatisfiable
- **s** UNKNOWN: The solver cannot determine satisfiability

In case the formula is satisfiable, the solver emits a certificate:

- lines starting with "v "
- a list of integers ending with 0
- ▶ e.g. v -1 2 4 0

In case the formula is unsatisfiable, then most solvers support emitting a proof of unsatisfiability to a separate file

Solving 2-SAT

SAT Solving First Steps

Graph Coloring

Graph Coloring: Introduction

Given a graph G(V, E), can the vertices be colored with k colors such that for each edge $(v, w) \in E$, the vertices v and w are colored differently.

Graph Coloring: Introduction

Given a graph G(V, E), can the vertices be colored with k colors such that for each edge $(v, w) \in E$, the vertices v and w are colored differently.

Possible problem: symmetries!

Graph Coloring: Format

- Header starts with p edge
- Followed by number of vertices and number of edges
 - p edge 8 13 e 1 2 e 1 3 e 2 3 e 2 4 e 3 5 e 3 6 e 3 8 e 4 5 e 5 6 e 5 7 e 6 7 e 6 8 e 78

Graph Coloring: Encoding

Variables	Range	Meaning		
$p_{v,i}$	$i \in \{1, \dots, c\}$ $v \in \{1, \dots, V \}$	node v has color i		
Clauses	Range	Meaning		
$(p_{v,1} \vee p_{v,2} \vee \cdots \vee p_{v,c})$) $v \in \{1,\ldots, V \}$	v is colored		
$(\neg p_{v,s} \lor \neg p_{v,t})$	$s \in \{1, \dots, c-1\}$ $t \in \{s+1, \dots, c\}$	v has at most one color		
$(\neg p_{v,i} \lor \neg p_{w,i})$	$(v,w) \in E$	v and w have a different color		
???	???	breaking symmetry		

Graph Coloring: Lean Demo

```
def main (args : List String) : IO Unit := do
    let graphFname :: nColours :: _ ← args
    | do
        I0.println "Usage: <graph.edge> <colors>"
        return ()
    let some nColours ← nColours.toNat?
    | throwThe IO.Error s!"Invalid colour count: {nColours}"
    let g ← readEdgeFile graphFname
    match (← checkColourable g nColours) with
    | some vs =>
    IO.println s!"The graph is {nColours}-colourable! Satisfying assignment: {vs}"
    | none =>
    IO.println s!"The graph is not {nColours}-colourable."
```

Graph Coloring: Sudoku

Sudoku can be viewed as a graph coloring problem:

- Each cell is a vertex
- Vertices are connected if they occur in the same row / column / square
- There are 9 colors

The solution must be unique

At least 17 givens

Who can solve this sudoku?

	4	3					
					7	9	
		6					
		1	4		5		
9						1	
2							6
			7	2			
	5				8		
			9				

Graph Coloring: Sudoku

Sudoku can be viewed as a graph coloring problem:

- Each cell is a vertex
- Vertices are connected if they occur in the same row / column / square
- There are 9 colors

The solution must be unique

At least 17 givens

Who can solve this sudoku?

		_			_			
1	4	7	3	8	9	2	6	5
5	8	6	2	1	4	7	9	3
3	9	2	6	5	7	1	8	4
8	7	3	1	4	6	5	2	9
9	6	4	7	2	5	3	1	8
2	1	5	9	3	8	4	7	6
6	3	8	5	7	2	9	4	1
7	5	9	4	6	1	8	3	2
4	2	1	8	9	3	6	5	7

Graph Coloring: Sudoku in Lean

Graph Coloring: Chromatic Number of the Plane

The Hadwiger-Nelson problem:

How many colors are required to color the plane such that each pair of points that are exactly 1 apart are colored differently?

The answer must be three or more because three points can be mutually 1 apart—and thus must be colored differently.

Graph Coloring: Bounds since the 1950s

The Moser Spindle graph shows the lower bound of 4
 A coloring of the plane showing the upper bound of 7
 Logic and Mechanized Reasoning

Graph Coloring: First progress in decades

Recently enormous progress:

- Lower bound of 5 [DeGrey '18] based on a 1581-vertex graph
- This breakthrough started a polymath project
- Improved bounds of the fractional chromatic number of the plane

Graph Coloring: First progress in decades

Recently enormous progress:

- Lower bound of 5 [DeGrey '18] based on a 1581-vertex graph
- This breakthrough started a polymath project
- Improved bounds of the fractional chromatic number of the plane

Marijn Heule, a computer scientist at the University of Texas, Austin, found one with just 874 vertices. Yesterday he lowered this number to 826 vertices.

We found smaller graphs with SAT:

- 874 vertices on April 14, 2018
- 803 vertices on April 30, 2018
- 610 vertices on May 14, 2018

Record by Proof Minimization: 510 Vertices [Heule 2021]