
Logic and Mechanized Reasoning

Conflict-Driven Clause-Learning Solving

Marijn J.H. Heule

Logic and Mechanized Reasoning 1 / 30

First Midterm Exam

Monday February 19 at 12:30pm in NSH 1305 and GHC 4301

Material covered in the exam:

All lectures up to (and including) February 7

All homework through Assignment 4

Textbook chapters 1-7, excluding Sections 6.3, 6.5, 7.4

Practice exam and solutions on course website

No new homework assigned this week

Extra office hours:

Josh: Saturday from 5-6pm

Tika: Sunday from 2-3pm

Alex: Sunday from 6-7pm

Joseph: Monday from 10:30-11:30am

Logic and Mechanized Reasoning 2 / 30

The Satisfiability (SAT) problem

(p5 ∨ p8 ∨ ¬p2)∧ (p2 ∨ ¬p1 ∨ ¬p3)∧ (¬p8 ∨ ¬p3 ∨ ¬p7) ∧

(¬p5 ∨ p3 ∨ p8)∧ (¬p6 ∨ ¬p1 ∨ ¬p5)∧ (p8 ∨ ¬p9 ∨ p3) ∧

(p2 ∨ p1 ∨ p3)∧ (¬p1 ∨ p8 ∨ p4)∧ (¬p9 ∨ ¬p6 ∨ p8) ∧

(p8 ∨ p3 ∨ ¬p9)∧ (p9 ∨ ¬p3 ∨ p8)∧ (p6 ∨ ¬p9 ∨ p5) ∧

(p2 ∨ ¬p3 ∨ ¬p8)∧ (p8 ∨ ¬p6 ∨ ¬p3)∧ (p8 ∨ ¬p3 ∨ ¬p1) ∧

(¬p8 ∨ p6 ∨ ¬p2)∧ (p7 ∨ p9 ∨ ¬p2)∧ (p8 ∨ ¬p9 ∨ p2) ∧

(¬p1 ∨ ¬p9 ∨ p4)∧ (p8 ∨ p1 ∨ ¬p2)∧ (p3 ∨ ¬p4 ∨ ¬p6) ∧

(¬p1 ∨ ¬p7 ∨ p5)∧ (¬p7 ∨ p1 ∨ p6)∧ (¬p5 ∨ p4 ∨ ¬p6) ∧

(¬p4 ∨ p9 ∨ ¬p8)∧ (p2 ∨ p9 ∨ p1)∧ (p5 ∨ ¬p7 ∨ p1) ∧

(¬p7 ∨ ¬p9 ∨ ¬p6)∧ (p2 ∨ p5 ∨ p4)∧ (p8 ∨ ¬p4 ∨ p5) ∧

(p5 ∨ p9 ∨ p3)∧ (¬p5 ∨ ¬p7 ∨ p9)∧ (p2 ∨ ¬p8 ∨ p1) ∧

(¬p7 ∨ p1 ∨ p5)∧ (p1 ∨ p4 ∨ p3)∧ (p1 ∨ ¬p9 ∨ ¬p4) ∧

(p3 ∨ p5 ∨ p6)∧ (¬p6 ∨ p3 ∨ ¬p9)∧ (¬p7 ∨ p5 ∨ p9) ∧

(p7 ∨ ¬p5 ∨ ¬p2)∧ (p4 ∨ p7 ∨ p3)∧ (p4 ∨ ¬p9 ∨ ¬p7) ∧

(p5 ∨ ¬p1 ∨ p7)∧ (p5 ∨ ¬p1 ∨ p7)∧ (p6 ∨ p7 ∨ ¬p3) ∧

(¬p8 ∨ ¬p6 ∨ ¬p7)∧ (p6 ∨ p2 ∨ p3)∧ (¬p8 ∨ p2 ∨ p5)

Does there exist an assignment satisfying all clauses?

Logic and Mechanized Reasoning 3 / 30

Search for a satisfying assignment (or proof none exists)

(p5 ∨ p8 ∨ ¬p2)∧ (p2 ∨ ¬p1 ∨ ¬p3)∧ (¬p8 ∨ ¬p3 ∨ ¬p7) ∧

(¬p5 ∨ p3 ∨ p8)∧ (¬p6 ∨ ¬p1 ∨ ¬p5)∧ (p8 ∨ ¬p9 ∨ p3) ∧

(p2 ∨ p1 ∨ p3)∧ (¬p1 ∨ p8 ∨ p4)∧ (¬p9 ∨ ¬p6 ∨ p8) ∧

(p8 ∨ p3 ∨ ¬p9)∧ (p9 ∨ ¬p3 ∨ p8)∧ (p6 ∨ ¬p9 ∨ p5) ∧

(p2 ∨ ¬p3 ∨ ¬p8)∧ (p8 ∨ ¬p6 ∨ ¬p3)∧ (p8 ∨ ¬p3 ∨ ¬p1) ∧

(¬p8 ∨ p6 ∨ ¬p2)∧ (p7 ∨ p9 ∨ ¬p2)∧ (p8 ∨ ¬p9 ∨ p2) ∧

(¬p1 ∨ ¬p9 ∨ p4)∧ (p8 ∨ p1 ∨ ¬p2)∧ (p3 ∨ ¬p4 ∨ ¬p6) ∧

(¬p1 ∨ ¬p7 ∨ p5)∧ (¬p7 ∨ p1 ∨ p6)∧ (¬p5 ∨ p4 ∨ ¬p6) ∧

(¬p4 ∨ p9 ∨ ¬p8)∧ (p2 ∨ p9 ∨ p1)∧ (p5 ∨ ¬p7 ∨ p1) ∧

(¬p7 ∨ ¬p9 ∨ ¬p6)∧ (p2 ∨ p5 ∨ p4)∧ (p8 ∨ ¬p4 ∨ p5) ∧

(p5 ∨ p9 ∨ p3)∧ (¬p5 ∨ ¬p7 ∨ p9)∧ (p2 ∨ ¬p8 ∨ p1) ∧

(¬p7 ∨ p1 ∨ p5)∧ (p1 ∨ p4 ∨ p3)∧ (p1 ∨ ¬p9 ∨ ¬p4) ∧

(p3 ∨ p5 ∨ p6)∧ (¬p6 ∨ p3 ∨ ¬p9)∧ (¬p7 ∨ p5 ∨ p9) ∧

(p7 ∨ ¬p5 ∨ ¬p2)∧ (p4 ∨ p7 ∨ p3)∧ (p4 ∨ ¬p9 ∨ ¬p7) ∧

(p5 ∨ ¬p1 ∨ p7)∧ (p5 ∨ ¬p1 ∨ p7)∧ (p6 ∨ p7 ∨ ¬p3) ∧

(¬p8 ∨ ¬p6 ∨ ¬p7)∧ (p6 ∨ p2 ∨ p3)∧ (¬p8 ∨ p2 ∨ p5)

Does there exist an assignment satisfying all clauses?

Logic and Mechanized Reasoning 4 / 30

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Logic and Mechanized Reasoning 5 / 30

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Local search: Given a full assignment for a formula Γ ,
flip the truth values of variables until satisfying Γ .

Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Logic and Mechanized Reasoning 5 / 30

SAT Solver Paradigms Overview

DPLL: Aims at finding a small search-tree by selecting
effective splitting variables (e.g. via looking ahead).

Strength: Effective on small, hard formulas.

Weakness: Expensive.

Local search: Given a full assignment for a formula Γ ,
flip the truth values of variables until satisfying Γ .

Strength: Can quickly find solutions for hard formulas.

Weakness: Cannot prove unsatisfiability.

Conflict-driven clause learning (CDCL): Makes fast
decisions and converts conflicts into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

Logic and Mechanized Reasoning 5 / 30

Conflict-driven Clause Learning Highlights

Most successful architecture

Logic and Mechanized Reasoning 6 / 30

Conflict-driven Clause Learning Highlights

Most successful architecture

Superior on industrial benchmarks

Logic and Mechanized Reasoning 6 / 30

Conflict-driven Clause Learning Highlights

Most successful architecture

Superior on industrial benchmarks

Brute-force?
• Addition conflict clauses
• Fast unit propagation

Logic and Mechanized Reasoning 6 / 30

Conflict-driven Clause Learning Highlights

Most successful architecture

Superior on industrial benchmarks

Brute-force?
• Addition conflict clauses
• Fast unit propagation

Complete local search (for a refutation)?

Logic and Mechanized Reasoning 6 / 30

Conflict-driven Clause Learning Highlights

Most successful architecture

Superior on industrial benchmarks

Brute-force?
• Addition conflict clauses
• Fast unit propagation

Complete local search (for a refutation)?

State-of-the-art (sequential) CDCL solvers:

CaDiCaL, Glucose, CryptoMiniSAT

Logic and Mechanized Reasoning 6 / 30

Clause Learning

Data-structures

Heuristics

Proofs of Unsatisfiability

Logic and Mechanized Reasoning 7 / 30

Clause Learning

Data-structures

Heuristics

Proofs of Unsatisfiability

Logic and Mechanized Reasoning 8 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

0

Logic and Mechanized Reasoning 9 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

0

1

p5 = ⊥

Logic and Mechanized Reasoning 9 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

0

1

2

p5 = ⊥

p2 = ⊤

Logic and Mechanized Reasoning 9 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

0

1

2

6

p5 = ⊥

p2 = ⊤

Logic and Mechanized Reasoning 9 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥

Logic and Mechanized Reasoning 9 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥

p4 = ⊤

Logic and Mechanized Reasoning 9 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥

p4 = ⊤

p3 = ⊤

p3 = ⊥

Logic and Mechanized Reasoning 9 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

7

1

2

7

7

7
p1 = ⊥ p4 = ⊤

p2 = ⊤

p5 = ⊥

p3 = ⊥

p3 = ⊤

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥

p4 = ⊤

p3 = ⊤

p3 = ⊥

Logic and Mechanized Reasoning 9 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

7

1

2

7

7

7
p1 = ⊥ p4 = ⊤

p2 = ⊤

p5 = ⊥

p3 = ⊥

p3 = ⊤

(¬p2 ∨¬p4 ∨ p5)

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥

p4 = ⊤

p3 = ⊤

p3 = ⊥

Logic and Mechanized Reasoning 9 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

7

1

2

7

7

7
p1 = ⊥ p4 = ⊤

p2 = ⊤

p5 = ⊥

p3 = ⊥

p3 = ⊤

(¬p2 ∨¬p4 ∨ p5)

0

1

2

6

7

p5 = ⊥

p2 = ⊤

p1 = ⊥

p4 = ⊤

p3 = ⊤

p3 = ⊥

Logic and Mechanized Reasoning 9 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

7

1

2

7

7

7
p1 = ⊥ p4 = ⊤

p2 = ⊤

p5 = ⊥

p3 = ⊥

p3 = ⊤

(¬p2 ∨¬p4 ∨ p5)

0

1

2

6

7

2

p5 = ⊥

p2 = ⊤

p1 = ⊥

p4 = ⊤

p3 = ⊤

p3 = ⊥

p4 = ⊥

p1 = ⊤

Logic and Mechanized Reasoning 9 / 30

Conflict-driven SAT solvers: Search and Analysis

(p1 ∨ p4) ∧

(p3 ∨ ¬p4 ∨ p5) ∧

(¬p2 ∨ ¬p3 ∨¬p4) ∧

Γextra

7

1

2

7

7

7
p1 = ⊥ p4 = ⊤

p2 = ⊤

p5 = ⊥

p3 = ⊥

p3 = ⊤

(¬p2 ∨¬p4 ∨ p5)

0

1

2

6

7

2

p5 = ⊥

p2 = ⊤

p1 = ⊥

p4 = ⊤

p3 = ⊤

p3 = ⊥

p4 = ⊥

p1 = ⊤

Logic and Mechanized Reasoning 9 / 30

Reverse Unit Propagation

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ = (p1 ∨ p4)∧ (p3 ∨ ¬p4 ∨ p5)∧ (¬p2 ∨¬p3 ∨ ¬p4)∧ . . .

Logic and Mechanized Reasoning 10 / 30

Reverse Unit Propagation

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ = (p1 ∨ p4)∧ (p3 ∨ ¬p4 ∨ p5)∧ (¬p2 ∨¬p3 ∨ ¬p4)∧ . . .

clause

units ¬p1∧p2∧¬p5

Logic and Mechanized Reasoning 10 / 30

Reverse Unit Propagation

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ = (p1 ∨ p4)∧ (p3 ∨ ¬p4 ∨ p5)∧ (¬p2 ∨¬p3 ∨ ¬p4)∧ . . .

clause (p1∨p4)

units ¬p1∧p2∧¬p5 p4

Logic and Mechanized Reasoning 10 / 30

Reverse Unit Propagation

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ = (p1 ∨ p4)∧ (p3 ∨ ¬p4 ∨ p5)∧ (¬p2 ∨¬p3 ∨ ¬p4)∧ . . .

clause (p1∨p4) (p3∨¬p4∨p5)

units ¬p1∧p2∧¬p5 p4 p3

Logic and Mechanized Reasoning 10 / 30

Reverse Unit Propagation

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ = (p1 ∨ p4)∧ (p3 ∨ ¬p4 ∨ p5)∧ (¬p2 ∨¬p3 ∨ ¬p4)∧ . . .

clause (p1∨p4) (p3∨¬p4∨p5) (¬p2∨¬p3∨¬p4)

units ¬p1∧p2∧¬p5 p4 p3 ⊥

Logic and Mechanized Reasoning 10 / 30

Reverse Unit Propagation

Let Γ be a formula. A clause C is implied by Γ via unit
propagation (UP) if UP on Γ ∧¬C results in a conflict.

Example

Γ = (p1 ∨ p4)∧ (p3 ∨ ¬p4 ∨ p5)∧ (¬p2 ∨¬p3 ∨ ¬p4)∧ . . .

clause (p1∨p4) (p3∨¬p4∨p5) (¬p2∨¬p3∨¬p4)

units ¬p1∧p2∧¬p5 p4 p3 ⊥

(¬p2 ∨ ¬p3 ∨ ¬p4) (p3 ∨¬p4 ∨ p5)

(¬p2 ∨ ¬p4 ∨ p5) (p1 ∨ p4)

(p1 ∨¬p2 ∨ p5)

Logic and Mechanized Reasoning 10 / 30

CDCL Overview

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;

3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

Logic and Mechanized Reasoning 11 / 30

CDCL Overview

CDCL in a nutshell:

1. Main loop combines efficient problem simplification with
cheap, but effective decision heuristics; (> 90% of time)

2. Reasoning kicks in if the current state is conflicting;

3. The current state is analyzed and turned into a constraint;

4. The constraint is added to the problem, the heuristics are
updated, and the algorithm (partially) restarts.

However, it has three weaknesses:

CDCL is notoriously hard to parallelize;

the representation impacts CDCL performance; and

CDCL has exponential runtime on some “simple” problems.

Logic and Mechanized Reasoning 11 / 30

Conflict-driven Clause Learning: Pseudo-code

1: while TRUE do

2: ldecision := Decide ()

3: If no ldecision then return satisfiable

4: τ := Simplify (τ ∪ (ldecision = ⊤), Γ)

5: while [[Γ]]τ contains Cfalsified do

6: Cconflict := Analyze (Cfalsified, τ)

7: If Cconflict = ⊥ then return unsatisfiable

8: Γ := Γ ∪ {Cconflict}

9: τ := BackTrack (τ, Cconflict)

10: τ := Simplify (τ, Γ)

11: end while

12: end while

Logic and Mechanized Reasoning 12 / 30

Learning conflict clauses [Marques-Silva,Sakallah’96]

6
p13=⊥

7
p11=⊤

4

p6=⊥

7
p7=⊤

7

p12=⊥

7
p2=⊥

3

p4=⊤

7
p10=⊥

1

p8=⊤

7
p1=⊤

7
p3=⊤

7
p5=⊥

5

p17=⊥

2
p19=⊤

7
p18=⊤

7
p18=⊥

Logic and Mechanized Reasoning 13 / 30

Learning conflict clauses [Marques-Silva,Sakallah’96]

6
p13=⊥

7
p11=⊤

4

p6=⊥

7
p7=⊤

7

p12=⊥

7
p2=⊥

3

p4=⊤

7
p10=⊥

1

p8=⊤

7
p1=⊤

7
p3=⊤

7
p5=⊥

5

p17=⊥

2
p19=⊤

7
p18=⊤

7
p18=⊥

(¬p1 ∨¬p3 ∨ p5 ∨ p17 ∨¬p19)

tri-asserting clause
Logic and Mechanized Reasoning 13 / 30

Learning conflict clauses [Marques-Silva,Sakallah’96]

6
p13=⊥

7
p11=⊤

4

p6=⊥

7
p7=⊤

7

p12=⊥

7
p2=⊥

3

p4=⊤

7
p10=⊥

1

p8=⊤

7
p1=⊤

7
p3=⊤

7
p5=⊥

5

p17=⊥

2
p19=⊤

7
p18=⊤

7
p18=⊥

(p10 ∨¬p8 ∨ p17 ∨ ¬p19)

first unique implication point
Logic and Mechanized Reasoning 13 / 30

Learning conflict clauses [Marques-Silva,Sakallah’96]

6
p13=⊥

7
p11=⊤

4

p6=⊥

7
p7=⊤

7

p12=⊥

7
p2=⊥

3

p4=⊤

7
p10=⊥

1

p8=⊤

7
p1=⊤

7
p3=⊤

7
p5=⊥

5

p17=⊥

2
p19=⊤

7
p18=⊤

7
p18=⊥

(p2 ∨ ¬p4 ∨ ¬p8 ∨ p17 ∨¬p19)

second unique implication point
Logic and Mechanized Reasoning 13 / 30

Average Learned Clause Length

Logic and Mechanized Reasoning 14 / 30

Clause Learning

Data-structures

Heuristics

Proofs of Unsatisfiability

Logic and Mechanized Reasoning 15 / 30

Simple data structure for unit propagation

Logic and Mechanized Reasoning 16 / 30

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

τ = {p1= *, p2= *, p3= *, p4= *, p5= *, p6= *}

¬p1 p2 ¬p3 ¬p5 p6

p1 ¬p3 p4 ¬p5 ¬p6

Logic and Mechanized Reasoning 17 / 30

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

τ = {p1= *, p2= *, p3= *, p4= *, p5=⊤, p6= *}

¬p1 p2 ¬p3 ¬p5 p6

p1 ¬p3 p4 ¬p5 ¬p6

Logic and Mechanized Reasoning 17 / 30

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

τ = {p1= *, p2= *, p3=⊤, p4= *, p5=⊤, p6= *}

¬p1 p2 ¬p3 ¬p5 p6

p1 ¬p3 p4 ¬p5 ¬p6

Logic and Mechanized Reasoning 17 / 30

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

τ = {p1= *, p2= *, p3=⊤, p4= *, p5=⊤, p6= *}

¬p1 p2 ¬p3 ¬p5 p6

p1 ¬p3p4 ¬p5 ¬p6

Logic and Mechanized Reasoning 17 / 30

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

τ = {p1=⊤, p2= *, p3=⊤, p4= *, p5=⊤, p6= *}

¬p1 p2 ¬p3 ¬p5 p6

p1 ¬p3p4 ¬p5 ¬p6

Logic and Mechanized Reasoning 17 / 30

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

τ = {p1=⊤, p2= *, p3=⊤, p4= *, p5=⊤, p6= *}

¬p1p2 ¬p3 ¬p5p6

p1 ¬p3p4 ¬p5 ¬p6

Logic and Mechanized Reasoning 17 / 30

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

τ = {p1=⊤, p2= *, p3=⊤, p4=⊥, p5=⊤, p6= *}

¬p1p2 ¬p3 ¬p5p6

p1 ¬p3p4 ¬p5 ¬p6

Logic and Mechanized Reasoning 17 / 30

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

τ = {p1=⊤, p2=⊥, p3=⊤, p4=⊥, p5=⊤, p6= *}

¬p1p2 ¬p3 ¬p5p6

p1 ¬p3p4 ¬p5 ¬p6

Logic and Mechanized Reasoning 17 / 30

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

τ = {p1=⊤, p2=⊥, p3=⊤, p4=⊥, p5=⊤, p6=⊤}

¬p1p2 ¬p3 ¬p5p6

p1 ¬p3p4 ¬p5 ¬p6

Logic and Mechanized Reasoning 17 / 30

Conflict-driven: Watch pointers (2) [MoskewiczMZZM’01]

Only examine (get in the cache) a clause when both
a watch pointer gets falsified

the other one is not satisfied

While backjumping, just unassign variables

Conflict clauses → watch pointers

No detailed information available

Not used for binary clauses

Logic and Mechanized Reasoning 18 / 30

Average Number Clauses Visited Per Propagation

Logic and Mechanized Reasoning 19 / 30

Percentage visited clauses with other watched literal true

Logic and Mechanized Reasoning 20 / 30

Clause Learning

Data-structures

Heuristics

Proofs of Unsatisfiability

Logic and Mechanized Reasoning 21 / 30

Most important CDCL heuristics

Variable selection heuristics
aim: minimize the search space

plus: could compensate a bad value selection

Logic and Mechanized Reasoning 22 / 30

Most important CDCL heuristics

Variable selection heuristics
aim: minimize the search space

plus: could compensate a bad value selection

Value selection heuristics
aim: guide search towards a solution or conflict

plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche’07]

Logic and Mechanized Reasoning 22 / 30

Most important CDCL heuristics

Variable selection heuristics
aim: minimize the search space

plus: could compensate a bad value selection

Value selection heuristics
aim: guide search towards a solution or conflict

plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche’07]

Restart strategies
aim: avoid heavy-tail behavior [GomesSelmanCrato’97]

plus: focus search on recent conflicts when combined with
dynamic heuristics

Logic and Mechanized Reasoning 22 / 30

Variable selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Logic and Mechanized Reasoning 23 / 30

Variable selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)
original idea (zChaff): for each conflict, increase the score
of involved variables by 1, half all scores each 256 conflicts

[MoskewiczMZZM’01]

improvement (MiniSAT): for each conflict, increase the
score of involved variables by δ and increase δ := 1.05δ

[EenSörensson’03]

Logic and Mechanized Reasoning 23 / 30

Visualization of VSIDS in PicoSAT

http://www.youtube.com/watch?v=MOjhFywLre8

Logic and Mechanized Reasoning 24 / 30

http://www.youtube.com/watch?v=MOjhFywLre8

Value selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Logic and Mechanized Reasoning 25 / 30

Value selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
negative branching (early MiniSAT) [EenSörensson’03]

Logic and Mechanized Reasoning 25 / 30

Value selection heuristics

Based on the occurrences in the (reduced) formula
examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
negative branching (early MiniSAT) [EenSörensson’03]

Based on the last implied value (phase-saving)
introduced to CDCL [PipatsrisawatDarwiche’07]

already used in local search [HirschKojevnikov’01]

Logic and Mechanized Reasoning 25 / 30

Heuristics: Phase-saving [PipatsrisawatDarwiche’07]

Selecting the last implied value remembers solved components

negative branching phase-saving

Logic and Mechanized Reasoning 26 / 30

Restarts

Restarts in CDCL solvers:
Counter heavy-tail behavior [GomesSelmanCrato’97]

Unassign all variables but keep the (dynamic) heuristics

Logic and Mechanized Reasoning 27 / 30

Restarts

Restarts in CDCL solvers:
Counter heavy-tail behavior [GomesSelmanCrato’97]

Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh’99, LubySinclairZuckerman’93]

Geometrical restart: e.g. 100, 150, 225, 333, 500, 750, . . .

Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . . .

Logic and Mechanized Reasoning 27 / 30

Restarts

Restarts in CDCL solvers:
Counter heavy-tail behavior [GomesSelmanCrato’97]

Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh’99, LubySinclairZuckerman’93]

Geometrical restart: e.g. 100, 150, 225, 333, 500, 750, . . .

Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . . .

Rapid restarts by reusing trail: [vanderTakHeuleRamos’11]

Partial restart same effect as full restart

Optimal strategy Luby-1: 1, 1, 2, 1, 1, 2, 4, . . .

Logic and Mechanized Reasoning 27 / 30

Clause Learning

Data-structures

Heuristics

Proofs of Unsatisfiability

Logic and Mechanized Reasoning 28 / 30

Motivation for Proofs of Unsatisfiability

SAT solvers may have errors and only return yes/no.

Documented bugs in SAT, SMT, and QSAT solvers;
[Brummayer and Biere, 2009; Brummayer et al., 2010]

Competition winners have contradictory results
(HWMCC winners from 2011 and 2012)

Implementation errors often imply conceptual errors;

Proofs now mandatory for the annual SAT Competitions;

Mathematical results require a stronger justification than a
simple yes/no by a solver. UNSAT must be verifiable.

Logic and Mechanized Reasoning 29 / 30

Clausal Proofs of Unsatisfiability

Reduce the size of the proof by only storing added clauses

Formula

⊥

Proof

Logic and Mechanized Reasoning 30 / 30

Clausal Proofs of Unsatisfiability

Reduce the size of the proof by only storing added clauses

Formula
≡

⊥

Proof

Logic and Mechanized Reasoning 30 / 30

Clausal Proofs of Unsatisfiability

Reduce the size of the proof by only storing added clauses

Formula
≡ ≡

⊥

Proof

Logic and Mechanized Reasoning 30 / 30

Clausal Proofs of Unsatisfiability

Reduce the size of the proof by only storing added clauses

Formula
≡ ≡ ≡

⊥

Proof

Logic and Mechanized Reasoning 30 / 30

Clausal Proofs of Unsatisfiability

Reduce the size of the proof by only storing added clauses

Formula
≡ ≡ ≡ ≡

⊥

Proof

Logic and Mechanized Reasoning 30 / 30

Clausal Proofs of Unsatisfiability

Reduce the size of the proof by only storing added clauses

Formula
≡ ≡ ≡ ≡

⊥

Proof

Clauses whose addition preserves satisfiability are redundant.

Checking redundancy should be efficient.

Logic and Mechanized Reasoning 30 / 30

Clausal Proofs of Unsatisfiability

Reduce the size of the proof by only storing added clauses

Formula
≡ ≡ ≡ ≡

⊥

Proof

Clauses whose addition preserves satisfiability are redundant.

Checking redundancy should be efficient.

Proof systems for this purpose in upcoming lectures.

Logic and Mechanized Reasoning 30 / 30

	Clause Learning
	Data-structures
	Heuristics
	Proofs of Unsatisfiability

