Logic and Mechanized Reasoning First-Order Logic

Marijn J.H. Heule

Carnegie Mellon University

Introduction

Syntax

Using First-Order Logic

Semantics

Normal Forms

Introduction

Syntax

Using First-Order Logic

Semantics

Normal Forms

15311 students are the best!

How to encode this in propositional logic?

15311 students are the best!

How to encode this in propositional logic?

In first-order logic: $\forall x. 15311(x) \rightarrow \neg \exists y. Better(y, x)$

$$\forall x. \exists y. \ R(x, y)$$

Important changes compared to propositional logic:

- Variables range over objects instead of Boolean values
- Relations are Boolean and the new literals
- First-order logic includes quantifiers to bound variables

$$\forall x. \exists y. \ R(x, y)$$

Important changes compared to propositional logic:

- Variables range over objects instead of Boolean values
- Relations are Boolean and the new literals
- First-order logic includes quantifiers to bound variables

$$\forall x. \exists y. \ R(x, y)$$

Important changes compared to propositional logic:

- Variables range over objects instead of Boolean values
- Relations are Boolean and the new literals
- First-order logic includes quantifiers to bound variables

$$\forall x. \exists y. \ R(x, y)$$

Important changes compared to propositional logic:

- Variables range over objects instead of Boolean values
- Relations are Boolean and the new literals
- First-order logic includes quantifiers to bound variables

$$\forall x. \exists y. \ R(x, y)$$

Important changes compared to propositional logic:

- Variables range over objects instead of Boolean values
- Relations are Boolean and the new literals
- First-order logic includes quantifiers to bound variables

Introduction: Quantifiers

The quantifier $\forall x$: something holds for all choices of x.

The quantifier $\exists x$: something holds for some choice of x.

The quantifiers do not commute:

$$\blacktriangleright \forall x. \exists y. \ x \neq y$$

►
$$\exists y. \forall x. \ x \neq y$$

Introduction: Quantifiers

The quantifier $\forall x$: something holds for all choices of x.

The quantifier $\exists x$: something holds for some choice of x.

The quantifiers do not commute:

Introduction: Quantifiers

The quantifier $\forall x$: something holds for all choices of x.

The quantifier $\exists x$: something holds for some choice of x.

The quantifiers do not commute:

►
$$\forall x. \exists y. x \neq y$$

For all objects there exist a different object

Introduction: Terms and Formulas

Syntax and semantics are similar to propositional logic

Two additional categories of expression:

- Terms name things in the intended interpretation
- Formulas say things about those objects

We use recursive definitions to specify how to evaluate them for a given interpretation

Introduction: Propositional vs First-Order Logic

Propositional logic is decidable

- Assign truth values to finitely many variables
- ► Various decision procedures, e.g. truth table

First-order logic is undecidable

- Some satisfiable formulas require infinitely many objects
- A statement is true in all models if and only if it is provable
- Provability is equivalent to the halting problem

Introduction: Decision Procedures

Decidable fragments:

- Equational reasoning
- Linear arithmetic on the real numbers
- Efficiently implemented in SMT solvers
- Strong tools: Z3 and CVC5

First-order theorem proving:

- Searching for proofs from axioms
- Potentially infinite runtime if no proof exists
- Strong tool: Vampire

Introduction

Syntax

Using First-Order Logic

Semantics

Normal Forms

Syntax: Language

- Functions map objects onto an object
 - We use lowercase for functions, e.g. f, g, and h
 - Functions can have arbitrary arity, e.g. f(x, y)
 - O-arity functions are constants, e.g. a, b, and c
 - We use x + y as shorthand for +(x, y)
- Relations can be either true or false
 - We use uppercase for relations, e.g. P, Q, and R
 - Relations can have arbitrary arity, e.g. R(x,y)
 - O-arity relations are similar to Boolean variables
 - Special relation = whether two objects are equal
 - We use $x \neq y$ as shorthand for $\neg(x = y)$
 - We use $x \le y$ as shorthand for $\le (x, y)$

The set of terms of the language L is generated inductively:

- Each variable x, y, z, \ldots is a term.
- Each constant symbol of *L* is a term.
- ▶ If f is any *n*-ary function symbol of L and $t_1, t_2, ..., t_n$ are terms of L, then $f(t_1, t_2, ..., t_n)$ is a term.

Syntax: Quantifiers and Renaming

The quantifiers \forall and \exists bound variables

Variables that are not bounded are free

 $\exists z. \ x < z \land z < y$

Closed variable z is in between free variables x and y

Syntax: Quantifiers and Renaming

The quantifiers \forall and \exists bound variables

Variables that are not bounded are free

 $\exists z. \ x < z \land z < y$

Closed variable z is in between free variables x and y

This is the same as $\exists w. \ x < w \land w < y$

Bound variables can be renamed

Syntax: Quantifiers and Renaming

The quantifiers \forall and \exists bound variables

Variables that are not bounded are free

 $\exists z. \ x < z \land z < y$

Closed variable z is in between free variables x and y

This is the same as $\exists w. x < w \land w < y$

Bound variables can be renamed

A formula without free variables is called a sentence

Syntax: Set of Formulas

The set of formulas of the language L is generated inductively:

- ► If R is any n-ary relation symbol of L and t₁, t₂,..., t_n are terms of L, then R(t₁, t₂,..., t_n) is a formula.
- If s and t are terms, then s = t is a formula.
- \blacktriangleright \top and \bot are formulas.
- ▶ If A and B are formulas, so are $\neg A$, $A \land B$, $A \lor B$, $A \to B$, and $A \leftrightarrow B$.
- ▶ If A is a formula and x is a variable, then $\forall x. A$ and $\exists x. A$.

Syntax: Substitution

Recall substitution in propositional logic Substitution in first-order logic is similar

- s[t/x] substitutes term t for variable x in term s
- A[t/x] substitutes term t for variable x in formula A

Syntax: Substitution

Recall substitution in propositional logic Substitution in first-order logic is similar

Simultaneous substitution replaces multiple variables at once

Given a substitution σ and a term t, substitution is defined as

$$\sigma x = \sigma(x)$$

$$\sigma f(t_1, \dots, t_n) = f(\sigma t_1, \dots, \sigma t_n)$$

Syntax: Substitution

Recall substitution in propositional logic Substitution in first-order logic is similar

Simultaneous substitution replaces multiple variables at once

Given a substitution σ and a term t, substitution is defined as

$$\sigma x = \sigma(x)$$

$$\sigma f(t_1, \dots, t_n) = f(\sigma t_1, \dots, \sigma t_n)$$

Substitution σA is similar, though it may require renaming

Introduction

Syntax

Using First-Order Logic

Semantics

Normal Forms

Bill and Ann are married and all their children are smart

How to express this in first-order logic?

Bill and Ann are married and all their children are smart

How to express this in first-order logic?

 $Married(Bill, Ann) \land \forall x. Child(x, Bill) \land Child(x, Ann) \rightarrow Smart(x)$

Bill and Ann are married and all their children are smart

How to express this in first-order logic?

 $Married(Bill, Ann) \land \forall x. Child(x, Bill) \land Child(x, Ann) \rightarrow Smart(x)$

First-order logic allows expressing many other things:

- ▶ Married(x, y) is symmetric, $Married(x, y) \leftrightarrow Married(y, x)$
- Child(x, y) is asymmetric, $\neg Child(x, y) \lor \neg Child(y, x)$

∃x. Dog(x) ∧ Blue(x)
 ∃x. Dog(x) → Blue(x)
 ∀x. Dog(x) ∧ Blue(x)
 ∀x. Dog(x) → Blue(x)

$$even(x) \equiv \exists y. \ x = 2 \cdot y$$

$$odd(x) \equiv \exists y. \ x = 2 \cdot y + 1$$

$$div(x, y) \equiv \exists z. \ y = x \cdot z.$$

Every integer is even or odd, but not both.

A integer is even if and only if it is divisible by two.

If some integer, x, is even, then so is x^2 .

A integer x is even if and only if x + 1 is odd.

If x divides y and y divides z, then x divides z.

$$\begin{array}{rcl} even(x) &\equiv & \exists y. \; x = 2 \cdot y \\ odd(x) &\equiv & \exists y. \; x = 2 \cdot y + 1 \\ div(x,y) &\equiv & \exists z. \; y = x \cdot z. \end{array}$$

Every integer is even or odd, but not both.

► $\forall x. (even(x) \lor odd(x)) \land \neg (even(x) \land odd(x))$ A integer is even if and only if it is divisible by two.

If some integer, x, is even, then so is x^2 .

A integer x is even if and only if x + 1 is odd.

If x divides y and y divides z, then x divides z.

$$\begin{array}{rcl} even(x) &\equiv & \exists y. \; x = 2 \cdot y \\ odd(x) &\equiv & \exists y. \; x = 2 \cdot y + 1 \\ div(x,y) &\equiv & \exists z. \; y = x \cdot z. \end{array}$$

Every integer is even or odd, but not both.

∀x. (even(x) ∨ odd(x)) ∧¬(even(x) ∧ odd(x))
A integer is even if and only if it is divisible by two.
∀x. even(x) ↔ div(2, x)
If some integer, x, is even, then so is x².

A integer x is even if and only if x + 1 is odd.

If x divides y and y divides z, then x divides z.

$$\begin{array}{rcl} even(x) &\equiv & \exists y. \; x = 2 \cdot y \\ odd(x) &\equiv & \exists y. \; x = 2 \cdot y + 1 \\ div(x,y) &\equiv & \exists z. \; y = x \cdot z. \end{array}$$

Every integer is even or odd, but not both.

∀x. (even(x) ∨ odd(x)) ∧¬(even(x) ∧ odd(x))
A integer is even if and only if it is divisible by two.
∀x. even(x) ↔ div(2, x)
If some integer, x, is even, then so is x².

 $\blacktriangleright \forall x. even(x) \rightarrow even(x^2)$

A integer x is even if and only if x + 1 is odd.

If x divides y and y divides z, then x divides z.

$$\begin{array}{rcl} even(x) &\equiv & \exists y. \; x = 2 \cdot y \\ odd(x) &\equiv & \exists y. \; x = 2 \cdot y + 1 \\ div(x,y) &\equiv & \exists z. \; y = x \cdot z. \end{array}$$

Every integer is even or odd, but not both.

∀x. (even(x) ∨ odd(x)) ∧¬(even(x) ∧ odd(x))
A integer is even if and only if it is divisible by two.
∀x. even(x) ↔ div(2, x)
If some integer, x, is even, then so is x².

▶
$$\forall x. even(x) \rightarrow even(x^2)$$

A integer x is even if and only if x + 1 is odd.

$$\blacktriangleright \forall x. even(x) \leftrightarrow odd(x+1)$$

If x divides y and y divides z, then x divides z.

$$\begin{array}{rcl} even(x) &\equiv & \exists y. \; x = 2 \cdot y \\ odd(x) &\equiv & \exists y. \; x = 2 \cdot y + 1 \\ div(x,y) &\equiv & \exists z. \; y = x \cdot z. \end{array}$$

Every integer is even or odd, but not both.

∀x. (even(x) ∨ odd(x)) ∧¬(even(x) ∧ odd(x))
A integer is even if and only if it is divisible by two.
∀x. even(x) ↔ div(2, x)

If some integer, x, is even, then so is x^2 .

►
$$\forall x. even(x) \rightarrow even(x^2)$$

A integer x is even if and only if x + 1 is odd.

$$\blacktriangleright \forall x. even(x) \leftrightarrow odd(x+1)$$

If x divides y and y divides z, then x divides z.

► $\forall x. \forall y. \forall z. div(x, y) \land div(y, z) \rightarrow div(x, z)$ Logic and Mechanized Reasoning Quantifiers always range over the entire universe

Propositional connectives can restrict the domain of a quantifier

There is an even number between 1 and 3

$$\blacksquare \exists x. even(x) \land 1 < x \land x < 3$$

Every even number greater than 1 is greater than 3 $\blacktriangleright \forall x. even(x) \land x > 1 \rightarrow x > 3$

Using FOL: Many-Sorted FOL

First-order logic formulas can have multiple sorts of variables

Example

Consider a geometry problem with multiple sorts:

- ▶ points: *p*, *q*, *r*, ...
- ▶ lines: *L*, *M*, *N*, . . .
- circles: α , β , γ , ...
- On(p,L) denoting point p lies on line L

We will focus on first-order logic with a single sort

Introduction

Syntax

Using First-Order Logic

Semantics

Normal Forms

Semantics: Model

A model ${\mathfrak M}$ for a language consists of

- A set of objects, $|\mathfrak{M}|$, called the universe of \mathfrak{M} .
- ► For each function symbol f in the language, a function f^m from the universe of M to itself, with the corresponding arity.
- ► For each relation symbol R in the language, a relation R^m on the universe of M, with the corresponding arity.

Semantics: Model

A model ${\mathfrak M}$ for a language consists of

- A set of objects, $|\mathfrak{M}|$, called the universe of \mathfrak{M} .
- ► For each function symbol f in the language, a function f^m from the universe of M to itself, with the corresponding arity.
- ► For each relation symbol R in the language, a relation R^m on the universe of M, with the corresponding arity.

Example

$$\forall x, y. \ (f(x) \neq f(f(x)) \land (R(x, y) \leftrightarrow x \neq y)$$

Semantics: Model

A model ${\mathfrak M}$ for a language consists of

- ► A set of objects, $|\mathfrak{M}|$, called the universe of \mathfrak{M} .
- ► For each function symbol f in the language, a function f^m from the universe of M to itself, with the corresponding arity.
- ► For each relation symbol R in the language, a relation R^m on the universe of M, with the corresponding arity.

Example

$$\forall x, y. \ (f(x) \neq f(f(x)) \land (R(x, y) \leftrightarrow x \neq y)$$

Semantics: Finite and Infinite Models

Example

$$\forall x, y. \ (f(x) \neq f(f(x)) \land (R(x, y) \leftrightarrow x \neq y))$$

$$\blacktriangleright \text{ Set of objects: } \{\star, \circ\}$$

$$\vdash f^{\mathfrak{M}}(\star) = \circ, f^{\mathfrak{M}}(\circ) = \star$$

$$\vdash R^{\mathfrak{M}}(\star, \star) = R^{\mathfrak{M}}(\circ, \circ) = \bot, R^{\mathfrak{M}}(\star, \circ) = R^{\mathfrak{M}}(\circ, \star) = \top$$

What about the formula

$$\forall x. \ (f(x) \neq c) \land (f(x) \neq f(y) \lor x = y)$$

Let σ be an assignment of elements of $|\mathfrak{M}|$ to free variables. Then every term t has a value $[t]_{\mathfrak{M},\sigma}$ in $|\mathfrak{M}|$ defined recursively:

Semantics: Evaluation

- ▶ $\mathfrak{M} \models_{\sigma} A \leftrightarrow B$ iff $\mathfrak{M} \models_{\sigma} A$ and $\mathfrak{M} \models_{\sigma} B$ either both hold or both don't hold.
- $\mathfrak{M} \models_{\sigma} \forall x. A$ iff for every $a \in |\mathfrak{M}|, \mathfrak{M} \models_{\sigma[x \mapsto a]} A.$
- $\mathfrak{M} \models_{\sigma} \exists x. A \text{ iff for some } a \in |\mathfrak{M}|, \mathfrak{M} \models_{\sigma[x \mapsto a]} A.$

Semantics: Satisfiable, Unsatisfiable, and Valid

- A formula A is satisfiable if and only if there exists a model M and assignment σ, such that M ⊨_σ A.
- A formula *A* unsatisfiable if it is not satisfiable.
- ► A formula *A* is valid if it is satisfied by every model.

Semantics: Satisfiable, Unsatisfiable, and Valid

- A formula A is satisfiable if and only if there exists a model M and assignment σ, such that M ⊨_σ A.
- A formula *A* unsatisfiable if it is not satisfiable.
- A formula A is valid if it is satisfied by every model.

Example

Which one(s) of the formulas is satisfiable/unsatisfiable/valid?

Introduction

Syntax

Using First-Order Logic

Semantics

Normal Forms

Normal Forms: De Morgan Laws for Quantifiers

Recall De Morgan laws for propositional logic:

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

$$\neg (A \lor B) \equiv \neg A \land \neg B$$

Additionally, we have De Morgan laws for quantifiers:

$$\neg \forall x. \ A \equiv \exists x. \ \neg A$$
$$\neg \exists x. \ A \equiv \forall x. \ \neg A$$

These rules allow you to move negations inward

Normal Forms: Bring Quantifiers to the Front

These rules allow you to move the quantifiers to the front:

$$(\forall x. A) \lor B \leftrightarrow \forall x. A \lor B$$
$$(\forall x. A) \land B \leftrightarrow \forall x. A \land B$$
$$(\exists x. A) \lor B \leftrightarrow \exists x. A \land B$$
$$(\exists x. A) \land B \leftrightarrow \exists x. A \land B$$

Some renaming might be required

Normal Forms: Bring Quantifiers to the Front

These rules allow you to move the quantifiers to the front:

$$(\forall x. A) \lor B \iff \forall x. A \lor B$$
$$(\forall x. A) \land B \iff \forall x. A \land B$$
$$(\exists x. A) \lor B \iff \exists x. A \lor B$$
$$(\exists x. A) \land B \iff \exists x. A \land B$$

Some renaming might be required

In practice it is better to apply Skolemization to get rid of quantifiers (covered in a future lecture)

One More Thing

Natural Number Game

Go to https://adam.math.hhu.de

Click on "Natural Number Game" to start