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Introduction: Motivation

15311 students are the best!

How to encode this in propositional logic?

In first-order logic: ∀x. 15311(x) → ¬∃y. Better(y, x)
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Introduction: Examples

∀x.∃y. R(x, y)

Important changes compared to propositional logic:

▶ Variables range over objects instead of Boolean values

▶ Relations are Boolean and the new literals

▶ First-order logic includes quantifiers to bound variables

Many possible models:

▶ (Z,<)

▶ (N,<)

▶ (N,>)

▶ ({People}, Loves)

Logic and Mechanized Reasoning 5 / 31



Introduction: Examples

∀x.∃y. R(x, y)

Important changes compared to propositional logic:

▶ Variables range over objects instead of Boolean values

▶ Relations are Boolean and the new literals

▶ First-order logic includes quantifiers to bound variables

Many possible models:

▶ (Z,<)

▶ (N,<)

▶ (N,>)

▶ ({People}, Loves)

Logic and Mechanized Reasoning 5 / 31



Introduction: Examples

∀x.∃y. R(x, y)

Important changes compared to propositional logic:

▶ Variables range over objects instead of Boolean values

▶ Relations are Boolean and the new literals

▶ First-order logic includes quantifiers to bound variables

Many possible models:

▶ (Z,<)

▶ (N,<)

▶ (N,>)

▶ ({People}, Loves)

Logic and Mechanized Reasoning 5 / 31



Introduction: Examples

∀x.∃y. R(x, y)

Important changes compared to propositional logic:

▶ Variables range over objects instead of Boolean values

▶ Relations are Boolean and the new literals

▶ First-order logic includes quantifiers to bound variables

Many possible models:

▶ (Z,<)

▶ (N,<)

▶ (N,>)

▶ ({People}, Loves)

Logic and Mechanized Reasoning 5 / 31



Introduction: Examples

∀x.∃y. R(x, y)

Important changes compared to propositional logic:

▶ Variables range over objects instead of Boolean values

▶ Relations are Boolean and the new literals

▶ First-order logic includes quantifiers to bound variables

Many possible models:

▶ (Z,<)

▶ (N,<)

▶ (N,>)

▶ ({People}, Loves)

Logic and Mechanized Reasoning 5 / 31



Introduction: Quantifiers

The quantifier ∀x: something holds for all choices of x.

The quantifier ∃x: something holds for some choice of x.

The quantifiers do not commute:

▶ ∀x.∃y. x ̸= y

▶ ∃y.∀x. x ̸= y
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The quantifiers do not commute:

▶ ∀x.∃y. x ̸= y
For all objects there exist a different object

▶ ∃y.∀x. x ̸= y
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Introduction: Terms and Formulas

Syntax and semantics are similar to propositional logic

Two additional categories of expression:

▶ Terms name things in the intended interpretation

▶ Formulas say things about those objects

We use recursive definitions to specify how to evaluate them
for a given interpretation
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Introduction: Propositional vs First-Order Logic

Propositional logic is decidable

▶ Assign truth values to finitely many variables

▶ Various decision procedures, e.g. truth table

First-order logic is undecidable

▶ Some satisfiable formulas require infinitely many objects

▶ A statement is true in all models if and only if it is provable

▶ Provability is equivalent to the halting problem
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Introduction: Decision Procedures

Decidable fragments:

▶ Equational reasoning

▶ Linear arithmetic on the real numbers

▶ Efficiently implemented in SMT solvers

▶ Strong tools: Z3 and CVC5

First-order theorem proving:

▶ Searching for proofs from axioms

▶ Potentially infinite runtime if no proof exists

▶ Strong tool: Vampire
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Syntax: Language

▶ Functions map objects onto an object
▶ We use lowercase for functions, e.g. f , g, and h
▶ Functions can have arbitrary arity, e.g. f (x, y)
▶ 0-arity functions are constants, e.g. a, b, and c
▶ We use x + y as shorthand for +(x, y)

▶ Relations can be either true or false
▶ We use uppercase for relations, e.g. P, Q, and R
▶ Relations can have arbitrary arity, e.g. R(x, y)
▶ 0-arity relations are similar to Boolean variables
▶ Special relation = whether two objects are equal
▶ We use x ̸= y as shorthand for ¬(x = y)
▶ We use x ≤ y as shorthand for ≤ (x, y)
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Syntax: Set of Terms

The set of terms of the language L is generated inductively:

▶ Each variable x, y, z, . . . is a term.

▶ Each constant symbol of L is a term.

▶ If f is any n-ary function symbol of L and t1, t2, . . . , tn are
terms of L, then f (t1, t2, . . . , tn) is a term.
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Syntax: Quantifiers and Renaming

The quantifiers ∀ and ∃ bound variables

Variables that are not bounded are free

∃z. x < z ∧ z < y

Closed variable z is in between free variables x and y

This is the same as ∃w. x < w ∧ w < y

Bound variables can be renamed

A formula without free variables is called a sentence
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Syntax: Set of Formulas

The set of formulas of the language L is generated inductively:

▶ If R is any n-ary relation symbol of L and t1, t2, . . . , tn are
terms of L, then R(t1, t2, . . . , tn) is a formula.

▶ If s and t are terms, then s = t is a formula.

▶ ⊤ and ⊥ are formulas.

▶ If A and B are formulas, so are ¬A, A ∧ B, A ∨ B,
A → B, and A ↔ B.

▶ If A is a formula and x is a variable, then ∀x. A and ∃x. A.
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Syntax: Substitution

Recall substitution in propositional logic
Substitution in first-order logic is similar

▶ s[t/x] substitutes term t for variable x in term s
▶ A[t/x] substitutes term t for variable x in formula A

Simultaneous substitution replaces multiple variables at once

Given a substitution σ and a term t, substitution is defined as

σ x = σ(x)
σ f (t1, . . . , tn) = f (σ t1, . . . , σ tn)

Substitution σA is similar, though it may require renaming
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Using FOL: Quantifier Examples

Bill and Ann are married and all their children are smart

How to express this in first-order logic?

Married(Bill, Ann)∧ ∀x. Child(x, Bill)∧ Child(x, Ann) → Smart(x)

First-order logic allows expressing many other things:

▶ Married(x, y) is symmetric, Married(x, y) ↔ Married(y, x)
▶ Child(x, y) is asymmetric, ¬Child(x, y)∨¬Child(y, x)
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Using FOL: Quantifier Examples

▶ ∃x. Dog(x)∧ Blue(x)
▶ ∃x. Dog(x) → Blue(x)
▶ ∀x. Dog(x)∧ Blue(x)
▶ ∀x. Dog(x) → Blue(x)
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Using FOL: Integer Examples

even(x) ≡ ∃y. x = 2 · y
odd(x) ≡ ∃y. x = 2 · y + 1

div(x, y) ≡ ∃z. y = x · z.

Every integer is even or odd, but not both.

▶ ∀x. (even(x)∨ odd(x))∧¬(even(x)∧ odd(x))

A integer is even if and only if it is divisible by two.

▶ ∀x. even(x) ↔ div(2, x)

If some integer, x, is even, then so is x2.

▶ ∀x. even(x) → even(x2)

A integer x is even if and only if x + 1 is odd.

▶ ∀x. even(x) ↔ odd(x + 1)

If x divides y and y divides z, then x divides z.

▶ ∀x. ∀y. ∀z. div(x, y)∧ div(y, z) → div(x, z)
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Using FOL: Relativization

Quantifiers always range over the entire universe

Propositional connectives can restrict the domain of a quantifier

There is an even number between 1 and 3

▶ ∃x. even(x)∧ 1 < x ∧ x < 3

Every even number greater than 1 is greater than 3

▶ ∀x. even(x)∧ x > 1 → x > 3
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Using FOL: Many-Sorted FOL

First-order logic formulas can have multiple sorts of variables

Example

Consider a geometry problem with multiple sorts:

▶ points: p, q, r, . . .
▶ lines: L, M, N, . . .

▶ circles: α, β, γ, . . .

▶ On(p, L) denoting point p lies on line L

We will focus on first-order logic with a single sort
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Semantics: Model

A model M for a language consists of

▶ A set of objects, |M|, called the universe of M.

▶ For each function symbol f in the language, a function fM
from the universe of M to itself, with the corresponding
arity.

▶ For each relation symbol R in the language, a relation RM

on the universe of M, with the corresponding arity.

Example

∀x, y. (f (x) ̸= f (f (x))∧ (R(x, y) ↔ x ̸= y)

▶ Set of objects: {⋆, ◦}
▶ fM(⋆) = ◦, fM(◦) = ⋆

▶ RM(⋆, ⋆) = RM(◦, ◦) = ⊥, RM(⋆, ◦) = RM(◦, ⋆) = ⊤

Logic and Mechanized Reasoning 23 / 31



Semantics: Model

A model M for a language consists of

▶ A set of objects, |M|, called the universe of M.

▶ For each function symbol f in the language, a function fM
from the universe of M to itself, with the corresponding
arity.

▶ For each relation symbol R in the language, a relation RM

on the universe of M, with the corresponding arity.

Example

∀x, y. (f (x) ̸= f (f (x))∧ (R(x, y) ↔ x ̸= y)

▶ Set of objects: {⋆, ◦}
▶ fM(⋆) = ◦, fM(◦) = ⋆

▶ RM(⋆, ⋆) = RM(◦, ◦) = ⊥, RM(⋆, ◦) = RM(◦, ⋆) = ⊤

Logic and Mechanized Reasoning 23 / 31



Semantics: Model

A model M for a language consists of

▶ A set of objects, |M|, called the universe of M.

▶ For each function symbol f in the language, a function fM
from the universe of M to itself, with the corresponding
arity.

▶ For each relation symbol R in the language, a relation RM

on the universe of M, with the corresponding arity.

Example

∀x, y. (f (x) ̸= f (f (x))∧ (R(x, y) ↔ x ̸= y)

▶ Set of objects: {⋆, ◦}
▶ fM(⋆) = ◦, fM(◦) = ⋆

▶ RM(⋆, ⋆) = RM(◦, ◦) = ⊥, RM(⋆, ◦) = RM(◦, ⋆) = ⊤

Logic and Mechanized Reasoning 23 / 31



Semantics: Finite and Infinite Models

Example

∀x, y. (f (x) ̸= f (f (x))∧ (R(x, y) ↔ x ̸= y)

▶ Set of objects: {⋆, ◦}
▶ fM(⋆) = ◦, fM(◦) = ⋆

▶ RM(⋆, ⋆) = RM(◦, ◦) = ⊥, RM(⋆, ◦) = RM(◦, ⋆) = ⊤

What about the formula

∀x. (f (x) ̸= c)∧ (f (x) ̸= f (y)∨ x = y)
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Semantics: Assignment

Let σ be an assignment of elements of |M| to free variables.
Then every term t has a value JtKM,σ in |M| defined recursively:

▶ JxKM,σ = σ(x)
▶ For every n-ary function symbol f and every tuple of terms

t1, . . . , tn, Jf (t1, . . . , tn)KM,σ = fM(Jt1KM,σ, . . . , JtnKM,σ)
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Semantics: Evaluation

▶ M |=σ t = t ′ iff JtKM,σ = Jt ′KM,σ.

▶ M |=σ R(t0, . . . , tn−1) iff RM(Jt0KM,σ, . . . , Jtn−1KM,σ).

▶ M |=σ ⊥ is always false.

▶ M |=σ ⊤ is always true.

▶ M |=σ A ∧ B iff M |=σ A and M |=σ B.
▶ M |=σ A ∨ B iff M |=σ A or M |=σ B.
▶ M |=σ A → B iff M ̸|=σ A or M |=σ B.
▶ M |=σ A ↔ B iff M |=σ A and M |=σ B either both hold

or both don’t hold.

▶ M |=σ ∀x. A iff for every a ∈ |M|, M |=σ[x 7→a] A.

▶ M |=σ ∃x. A iff for some a ∈ |M|, M |=σ[x 7→a] A.
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Semantics: Satisfiable, Unsatisfiable, and Valid

▶ A formula A is satisfiable if and only if there exists a
model M and assignment σ, such that M |=σ A.

▶ A formula A unsatisfiable if it is not satisfiable.

▶ A formula A is valid if it is satisfied by every model.

Example

Which one(s) of the formulas is satisfiable/unsatisfiable/valid?

▶ ∃x. R(x)∧¬R(x)
▶ ∀x. x ̸= x
▶ ∀x. R(x)∨¬R(x)
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Normal Forms: De Morgan Laws for Quantifiers

Recall De Morgan laws for propositional logic:

¬(A ∧ B) ≡ ¬A ∨¬B
¬(A ∨ B) ≡ ¬A ∧¬B

Additionally, we have De Morgan laws for quantifiers:

¬∀x. A ≡ ∃x. ¬A
¬∃x. A ≡ ∀x. ¬A

These rules allow you to move negations inward
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Normal Forms: Bring Quantifiers to the Front

These rules allow you to move the quantifiers to the front:

(∀x. A)∨ B ↔ ∀x. A ∨ B
(∀x. A)∧ B ↔ ∀x. A ∧ B
(∃x. A)∨ B ↔ ∃x. A ∨ B
(∃x. A)∧ B ↔ ∃x. A ∧ B

Some renaming might be required

In practice it is better to apply Skolemization to get rid of
quantifiers (covered in a future lecture)
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One More Thing

Natural Number Game

Go to https://adam.math.hhu.de

Click on “Natural Number Game” to start
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