Logic and Mechanized Reasoning First-Order Logic

Marijn J.H. Heule

Carnegie
Mellon **University**

Logic and Mechanized Reasoning 1 / 31

[Introduction](#page-2-0)

[Syntax](#page-16-0)

[Using First-Order Logic](#page-26-0)

[Semantics](#page-39-0)

[Normal Forms](#page-48-0)

Logic and Mechanized Reasoning 2 / 31

[Introduction](#page-2-0)

[Syntax](#page-16-0)

[Using First-Order Logic](#page-26-0)

[Semantics](#page-39-0)

[Normal Forms](#page-48-0)

Logic and Mechanized Reasoning 3 / 31

15311 students are the best!

How to encode this in propositional logic?

Logic and Mechanized Reasoning 4 / 31

15311 students are the best!

How to encode this in propositional logic?

In first-order logic: $\forall x$. 15311(*x*) → $\neg \exists y$. *Better*(*y*, *x*)

Logic and Mechanized Reasoning 4 / 31

$$
\forall x. \exists y. \ R(x,y)
$$

Important changes compared to propositional logic:

- ▶ Variables range over objects instead of Boolean values
- ▶ Relations are Boolean and the new literals
- \blacktriangleright First-order logic includes quantifiers to bound variables

$$
\forall x. \exists y. \ R(x,y)
$$

Important changes compared to propositional logic:

- ▶ Variables range over objects instead of Boolean values
- ▶ Relations are Boolean and the new literals
- ▶ First-order logic includes quantifiers to bound variables

Many possible models:

$$
\forall x. \exists y. \ R(x,y)
$$

Important changes compared to propositional logic:

- ▶ Variables range over objects instead of Boolean values
- ▶ Relations are Boolean and the new literals
- ▶ First-order logic includes quantifiers to bound variables

Many possible models:

Logic and Mechanized Reasoning 5 / 31

$$
\forall x. \exists y. \ R(x,y)
$$

Important changes compared to propositional logic:

- ▶ Variables range over objects instead of Boolean values
- ▶ Relations are Boolean and the new literals
- ▶ First-order logic includes quantifiers to bound variables

Many possible models:

$$
\begin{array}{c}\n \blacktriangleright \left(\mathbb{Z}, < \right) \\
\blacktriangleright \left(\mathbb{N}, < \right) \\
\blacktriangleright \left(\mathbb{N}, > \right)\n \end{array}
$$

$$
\forall x. \exists y. \ R(x,y)
$$

Important changes compared to propositional logic:

- ▶ Variables range over objects instead of Boolean values
- ▶ Relations are Boolean and the new literals
- ▶ First-order logic includes quantifiers to bound variables

Many possible models:

Logic and Mechanized Reasoning 5 / 31

Introduction: Quantifiers

The quantifier ∀*x*: something holds for all choices of *x*.

The quantifier ∃*x*: something holds for some choice of *x*.

The quantifiers do not commute:

$$
\blacktriangleright \forall x. \exists y. \ x \neq y
$$

$$
\blacktriangleright \exists y. \forall x. \; x \neq y
$$

Logic and Mechanized Reasoning 6 / 31

Introduction: Quantifiers

The quantifier ∀*x*: something holds for all choices of *x*.

The quantifier ∃*x*: something holds for some choice of *x*.

The quantifiers do not commute:

\n- $$
\forall x. \exists y. \ x \neq y
$$
\n- For all objects there exist a different object
\n- $\exists y. \forall x. \ x \neq y$
\n

Logic and Mechanized Reasoning 6 / 31

Introduction: Quantifiers

The quantifier ∀*x*: something holds for all choices of *x*.

The quantifier ∃*x*: something holds for some choice of *x*.

The quantifiers do not commute:

$$
\forall x. \exists y. x \neq y
$$
 For all objects there exist a different object

►
$$
\exists y. \forall x. x \neq y
$$

There exists an object that differs from all other objects (including itself)

Introduction: Terms and Formulas

Syntax and semantics are similar to propositional logic

Two additional categories of expression:

- \blacktriangleright Terms name things in the intended interpretation
- \blacktriangleright Formulas say things about those objects

We use recursive definitions to specify how to evaluate them for a given interpretation

Introduction: Propositional vs First-Order Logic

Propositional logic is decidable

- \triangleright Assign truth values to finitely many variables
- ▶ Various decision procedures, e.g. truth table

First-order logic is undecidable

- \triangleright Some satisfiable formulas require infinitely many objects
- \triangleright A statement is true in all models if and only if it is provable
- \blacktriangleright Provability is equivalent to the halting problem

Logic and Mechanized Reasoning 8 / 31

Introduction: Decision Procedures

Decidable fragments:

- \blacktriangleright Equational reasoning
- ▶ Linear arithmetic on the real numbers
- ▶ Efficiently implemented in SMT solvers
- ▶ Strong tools: Z3 and CVC5

First-order theorem proving:

- ▶ Searching for proofs from axioms
- \triangleright Potentially infinite runtime if no proof exists
- ▶ Strong tool: Vampire

[Introduction](#page-2-0)

[Syntax](#page-16-0)

[Using First-Order Logic](#page-26-0)

[Semantics](#page-39-0)

[Normal Forms](#page-48-0)

Logic and Mechanized Reasoning 10 / 31

Syntax: Language

- ▶ Functions map objects onto an object
	- ▶ We use lowercase for functions, e.g. *^f*, *^g*, and *^h*
	- \blacktriangleright Functions can have arbitrary arity, e.g. $f(x, y)$
	- ▶ 0-arity functions are constants, e.g. *^a*, *^b*, and *^c*
	- \triangleright We use $x + y$ as shorthand for $+(x, y)$
- ▶ Relations can be either true or false
	- ▶ We use uppercase for relations, e.g. *^P*, *^Q*, and *^R*
	- \blacktriangleright Relations can have arbitrary arity, e.g. $R(x, y)$
	- \triangleright 0-arity relations are similar to Boolean variables
	- \triangleright Special relation $=$ whether two objects are equal
	- \triangleright We use $x \neq y$ as shorthand for $\neg(x = y)$
	- ▶ We use $x < y$ as shorthand for $\lt (x, y)$

Logic and Mechanized Reasoning 11 / 31 / 31 / 31

The set of terms of the language *L* is generated inductively:

- \blacktriangleright Each variable x, y, z, \ldots is a term.
- ▶ Each constant symbol of *L* is a term.
- \blacktriangleright If *f* is any *n*-ary function symbol of *L* and t_1, t_2, \ldots, t_n are terms of *L*, then $f(t_1, t_2, \ldots, t_n)$ is a term.

Syntax: Quantifiers and Renaming

The quantifiers ∀ and ∃ bound variables

Variables that are not bounded are free

∃*z*. *x* < *z* ∧ *z* < *y*

Closed variable *z* is in between free variables *x* and *y*

Syntax: Quantifiers and Renaming

The quantifiers ∀ and ∃ bound variables

Variables that are not bounded are free

∃*z*. *x* < *z* ∧ *z* < *y*

Closed variable *z* is in between free variables *x* and *y*

This is the same as $\exists w. x < w \land w < y$

Bound variables can be renamed

Syntax: Quantifiers and Renaming

The quantifiers ∀ and ∃ bound variables

Variables that are not bounded are free

∃*z*. *x* < *z* ∧ *z* < *y*

Closed variable *z* is in between free variables *x* and *y*

This is the same as $\exists w. x < w \land w < y$

Bound variables can be renamed

A formula without free variables is called a sentence

Syntax: Set of Formulas

The set of formulas of the language *L* is generated inductively:

- \blacktriangleright If *R* is any *n*-ary relation symbol of *L* and t_1, t_2, \ldots, t_n are terms of L, then $R(t_1, t_2, \ldots, t_n)$ is a formula.
- \blacktriangleright If *s* and *t* are terms, then $s = t$ is a formula.
- \blacktriangleright \top and \vdash are formulas.
- ▶ If *A* and *B* are formulas, so are $\neg A$, $A \wedge B$, $A \vee B$, $A \rightarrow B$, and $A \leftrightarrow B$.
- ▶ If *^A* is a formula and *^x* is a variable, then ∀*x*. *^A* and ∃*x*. *^A*.

Logic and Mechanized Reasoning 14 / 31

Syntax: Substitution

Recall substitution in propositional logic Substitution in first-order logic is similar

 \blacktriangleright *s*[t/x] substitutes term *t* for variable *x* in term *s* \blacktriangleright *A*[t/x] substitutes term *t* for variable *x* in formula *A*

Syntax: Substitution

Recall substitution in propositional logic Substitution in first-order logic is similar

\n- $$
s[t/x]
$$
 substitutes term *t* for variable *x* in term *s*
\n- $A[t/x]$ substitutes term *t* for variable *x* in formula *A*
\n

Simultaneous substitution replaces multiple variables at once

Given a substitution *σ* and a term *t*, substitution is defined as

$$
\sigma x = \sigma(x)
$$

$$
\sigma f(t_1,...,t_n) = f(\sigma t_1,...,\sigma t_n)
$$

Logic and Mechanized Reasoning 15 / 31

Syntax: Substitution

Recall substitution in propositional logic Substitution in first-order logic is similar

\n- $$
s[t/x]
$$
 substitutes term *t* for variable *x* in term *s*
\n- $A[t/x]$ substitutes term *t* for variable *x* in formula *A*
\n

Simultaneous substitution replaces multiple variables at once

Given a substitution *σ* and a term *t*, substitution is defined as

$$
\sigma x = \sigma(x)
$$

$$
\sigma f(t_1,...,t_n) = f(\sigma t_1,...,\sigma t_n)
$$

Substitution *σA* is similar, though it may require renaming

Logic and Mechanized Reasoning 15 / 31

[Introduction](#page-2-0)

[Syntax](#page-16-0)

[Using First-Order Logic](#page-26-0)

[Semantics](#page-39-0)

[Normal Forms](#page-48-0)

Logic and Mechanized Reasoning 16 / 31

Bill and Ann are married and all their children are smart

How to express this in first-order logic?

Logic and Mechanized Reasoning 17 / 31

Bill and Ann are married and all their children are smart

How to express this in first-order logic?

Married(*Bill, Ann*) ∧ $\forall x$. *Child*(*x, Bill*) ∧ *Child*(*x, Ann*) → *Smart*(*x*)

Logic and Mechanized Reasoning 17 / 31

Bill and Ann are married and all their children are smart

How to express this in first-order logic?

Married(*Bill, Ann*) ∧ $\forall x$. *Child*(*x, Bill*) ∧ *Child*(*x, Ann*) → *Smart*(*x*)

First-order logic allows expressing many other things:

- \blacktriangleright *Married*(*x*, *y*) is symmetric, *Married*(*x*, *y*) \leftrightarrow *Married*(*y*, *x*)
- ▶ *Child*(*x*, *y*) is asymmetric, $\neg Child(x, y) \vee \neg Child(y, x)$

Logic and Mechanized Reasoning 17 / 31

▶ ∃*x*. *Dog*(*x*) [∧] *Blue*(*x*) ▶ [∃]*x*. *Dog*(*x*) [→] *Blue*(*x*) ▶ ∀*x*. *Dog*(*x*) [∧] *Blue*(*x*) $\blacktriangleright \forall x. \, \text{Dog}(x) \rightarrow \text{Blue}(x)$

Logic and Mechanized Reasoning 18 / 31

$$
even(x) \equiv \exists y. x = 2 \cdot y
$$

\n
$$
odd(x) \equiv \exists y. x = 2 \cdot y + 1
$$

\n
$$
div(x,y) \equiv \exists z. y = x \cdot z.
$$

Every integer is even or odd, but not both.

A integer is even if and only if it is divisible by two.

If some integer, x , is even, then so is x^2 .

A integer x is even if and only if $x + 1$ is odd.

If *x* divides *y* and *y* divides *z*, then *x* divides *z*.

Logic and Mechanized Reasoning 19 / 31

$$
even(x) \equiv \exists y. x = 2 \cdot y
$$

\n
$$
odd(x) \equiv \exists y. x = 2 \cdot y + 1
$$

\n
$$
div(x,y) \equiv \exists z. y = x \cdot z.
$$

Every integer is even or odd, but not both.

▶ ∀*x*. (*even*(*x*) [∨] *odd*(*x*)) ∧ ¬(*even*(*x*) [∧] *odd*(*x*)) A integer is even if and only if it is divisible by two.

If some integer,
$$
x
$$
, is even, then so is x^2 .

A integer x is even if and only if $x + 1$ is odd.

If *x* divides *y* and *y* divides *z*, then *x* divides *z*.

Logic and Mechanized Reasoning 19 / 31 and 19 / 31

$$
even(x) \equiv \exists y. x = 2 \cdot y
$$

\n
$$
odd(x) \equiv \exists y. x = 2 \cdot y + 1
$$

\n
$$
div(x, y) \equiv \exists z. y = x \cdot z.
$$

Every integer is even or odd, but not both.

▶ ∀*x*. (*even*(*x*) [∨] *odd*(*x*)) ∧ ¬(*even*(*x*) [∧] *odd*(*x*)) A integer is even if and only if it is divisible by two. ▶ $\forall x.$ *even* $(x) \leftrightarrow div(2, x)$ If some integer, x , is even, then so is x^2 .

A integer x is even if and only if $x + 1$ is odd.

If *x* divides *y* and *y* divides *z*, then *x* divides *z*.

$$
even(x) \equiv \exists y. x = 2 \cdot y
$$

\n
$$
odd(x) \equiv \exists y. x = 2 \cdot y + 1
$$

\n
$$
div(x,y) \equiv \exists z. y = x \cdot z.
$$

Every integer is even or odd, but not both.

▶ ∀*x*. (*even*(*x*) [∨] *odd*(*x*)) ∧ ¬(*even*(*x*) [∧] *odd*(*x*)) A integer is even if and only if it is divisible by two. ▶ $\forall x.$ *even* $(x) \leftrightarrow div(2, x)$

If some integer, x , is even, then so is x^2 .

$$
\blacktriangleright \forall x. \ even(x) \rightarrow even(x^2)
$$

A integer x is even if and only if $x + 1$ is odd.

If *x* divides *y* and *y* divides *z*, then *x* divides *z*.

Logic and Mechanized Reasoning 19 / 31 and 19 / 31

$$
even(x) \equiv \exists y. x = 2 \cdot y
$$

\n
$$
odd(x) \equiv \exists y. x = 2 \cdot y + 1
$$

\n
$$
div(x,y) \equiv \exists z. y = x \cdot z.
$$

Every integer is even or odd, but not both.

$$
\rightarrow \forall x. (even(x) \lor odd(x)) \land \neg (even(x) \land odd(x))
$$

A integer is even if and only if it is divisible by two.

$$
\blacktriangleright \forall x. \ even(x) \leftrightarrow \text{div}(2, x)
$$

If some integer, x , is even, then so is x^2 .

$$
\blacktriangleright \forall x. \ even(x) \rightarrow even(x^2)
$$

A integer x is even if and only if $x + 1$ is odd.

$$
\blacktriangleright \forall x. \ even(x) \leftrightarrow \text{odd}(x+1)
$$

If *x* divides *y* and *y* divides *z*, then *x* divides *z*.

Logic and Mechanized Reasoning 19 / 31

$$
even(x) \equiv \exists y. x = 2 \cdot y
$$

\n
$$
odd(x) \equiv \exists y. x = 2 \cdot y + 1
$$

\n
$$
div(x, y) \equiv \exists z. y = x \cdot z.
$$

Every integer is even or odd, but not both.

$$
\blacktriangleright \forall x. (even(x) \lor odd(x)) \land \neg (even(x) \land odd(x))
$$

A integer is even if and only if it is divisible by two.

$$
\blacktriangleright \forall x. \ even(x) \leftrightarrow div(2, x)
$$

If some integer, x , is even, then so is x^2 .

$$
\blacktriangleright \forall x. \ even(x) \rightarrow even(x^2)
$$

A integer x is even if and only if $x + 1$ is odd.

$$
\blacktriangleright \forall x. \ even(x) \leftrightarrow \text{odd}(x+1)
$$

If *x* divides *y* and *y* divides *z*, then *x* divides *z*.

▶ [∀]*x*. [∀]*y*. [∀]*z*. *div*(*x*, *^y*) [∧] *div*(*y*, *^z*) [→] *div*(*x*, *^z*) Logic and Mechanized Reasoning 19 / 31 Quantifiers always range over the entire universe

Propositional connectives can restrict the domain of a quantifier

There is an even number between 1 and 3 ▶ $\exists x.$ *even* (x) \wedge 1 \lt $x \wedge x$ \lt 3

Every even number greater than 1 is greater than 3 ▶ $\forall x.$ *even*(*x*) $\land x > 1 \rightarrow x > 3$

Using FOL: Many-Sorted FOL

First-order logic formulas can have multiple sorts of variables

Example

Consider a geometry problem with multiple sorts:

- \blacktriangleright points: p, q, r, ...
- ▶ lines: *L*, *M*, *N*, . . .
- ▶ circles: *^α*, *^β*, *^γ*, . . .
- \triangleright $On(p, L)$ denoting point p lies on line L

We will focus on first-order logic with a single sort

[Introduction](#page-2-0)

[Syntax](#page-16-0)

[Using First-Order Logic](#page-26-0)

[Semantics](#page-39-0)

[Normal Forms](#page-48-0)

Logic and Mechanized Reasoning 22 / 31

Semantics: Model

A model M for a language consists of

- \triangleright A set of objects, $|\mathfrak{M}|$, called the universe of \mathfrak{M} .
- \blacktriangleright For each function symbol *f* in the language, a function $f^{\mathfrak{M}}$ from the universe of $\mathfrak M$ to itself, with the corresponding arity.
- \blacktriangleright For each relation symbol *R* in the language, a relation $R^{\mathfrak{M}}$ on the universe of \mathfrak{M} , with the corresponding arity.

Semantics: Model

A model M for a language consists of

- \triangleright A set of objects, $|\mathfrak{M}|$, called the universe of \mathfrak{M} .
- \blacktriangleright For each function symbol f in the language, a function $f^{\mathfrak{M}}$ from the universe of $\mathfrak M$ to itself, with the corresponding arity.
- \blacktriangleright For each relation symbol *R* in the language, a relation $R^{\mathfrak{M}}$ on the universe of \mathfrak{M} , with the corresponding arity.

Example

$$
\forall x, y. (f(x) \neq f(f(x)) \land (R(x, y) \leftrightarrow x \neq y)
$$

Logic and Mechanized Reasoning 23 / 31

Semantics: Model

A model M for a language consists of

- \triangleright A set of objects, $|\mathfrak{M}|$, called the universe of \mathfrak{M} .
- \blacktriangleright For each function symbol f in the language, a function $f^{\mathfrak{M}}$ from the universe of $\mathfrak M$ to itself, with the corresponding arity.
- \blacktriangleright For each relation symbol *R* in the language, a relation $R^{\mathfrak{M}}$ on the universe of \mathfrak{M} , with the corresponding arity.

Example

$$
\forall x, y. (f(x) \neq f(f(x)) \land (R(x, y) \leftrightarrow x \neq y)
$$

\n- Set of objects:
$$
\{\star, \circ\}
$$
\n- $f^{\mathfrak{M}}(\star) = \circ, f^{\mathfrak{M}}(\circ) = \star$
\n- $R^{\mathfrak{M}}(\star, \star) = R^{\mathfrak{M}}(\circ, \circ) = \bot, R^{\mathfrak{M}}(\star, \circ) = R^{\mathfrak{M}}(\circ, \star) = \top$
\n

Logic and Mechanized Reasoning 23 / 31

Semantics: Finite and Infinite Models

Example

$$
\forall x, y. (f(x) \neq f(f(x)) \land (R(x, y) \leftrightarrow x \neq y)
$$
\n
$$
\triangleright \text{ Set of objects: } \{ \star, \circ \}
$$
\n
$$
\triangleright f^{\mathfrak{M}}(\star) = \circ, f^{\mathfrak{M}}(\circ) = \star
$$
\n
$$
\triangleright R^{\mathfrak{M}}(\star, \star) = R^{\mathfrak{M}}(\circ, \circ) = \bot, R^{\mathfrak{M}}(\star, \circ) = R^{\mathfrak{M}}(\circ, \star) = \top
$$

What about the formula

$$
\forall x. (f(x) \neq c) \land (f(x) \neq f(y) \lor x = y)
$$

Logic and Mechanized Reasoning 24 / 31

Let σ be an assignment of elements of $|\mathfrak{M}|$ to free variables. Then every term *t* has a value $\llbracket t \rrbracket_{\mathfrak{M},\sigma}$ in $|\mathfrak{M}|$ defined recursively:

\n- \n
$$
\llbracket x \rrbracket_{\mathfrak{M},\sigma} = \sigma(x)
$$
\n
\n- \n For every *n*-ary function symbol *f* and every tuple of terms\n t_1, \ldots, t_n ,\n $\llbracket f(t_1, \ldots, t_n) \rrbracket_{\mathfrak{M},\sigma} = f^{\mathfrak{M}}(\llbracket t_1 \rrbracket_{\mathfrak{M},\sigma}, \ldots, \llbracket t_n \rrbracket_{\mathfrak{M},\sigma})$ \n
\n

Logic and Mechanized Reasoning 25 / 31

Semantics: Evaluation

$$
\mathfrak{M} \models_{\sigma} t = t' \text{ iff } [t]_{\mathfrak{M},\sigma} = [t']_{\mathfrak{M},\sigma}.
$$

$$
\mathfrak{M} \models_{\sigma} R(t_0,\ldots,t_{n-1}) \text{ iff } R^{\mathfrak{M}}([t_0]_{\mathfrak{M},\sigma},\ldots,[t_{n-1}]_{\mathfrak{M},\sigma}).
$$

- \triangleright $\mathfrak{M} \models_{\sigma} \bot$ is always false.
- \triangleright $\mathfrak{M} \models_{\sigma} \top$ is always true.
- \triangleright $\mathfrak{M} \models_{\sigma} A \land B$ iff $\mathfrak{M} \models_{\sigma} A$ and $\mathfrak{M} \models_{\sigma} B$.
- \triangleright $\mathfrak{M} \models_{\sigma} A \vee B$ iff $\mathfrak{M} \models_{\sigma} A$ or $\mathfrak{M} \models_{\sigma} B$.
- \triangleright $\mathfrak{M} \models_{\sigma} A \rightarrow B$ iff $\mathfrak{M} \not\models_{\sigma} A$ or $\mathfrak{M} \models_{\sigma} B$.
- \triangleright $\mathfrak{M} \models_{\sigma} A \leftrightarrow B$ iff $\mathfrak{M} \models_{\sigma} A$ and $\mathfrak{M} \models_{\sigma} B$ either both hold or both don't hold.
- ▶ $\mathfrak{M} \models_{\sigma} \forall x$. *A* iff for every $a \in |\mathfrak{M}|$, $\mathfrak{M} \models_{\sigma[x \mapsto a]} A$.
- ▶ $\mathfrak{M} \models_{\sigma} \exists x$. *A* iff for some $a \in |\mathfrak{M}|$, $\mathfrak{M} \models_{\sigma[x \mapsto a]} A$.

Logic and Mechanized Reasoning 26 / 31

Semantics: Satisfiable, Unsatisfiable, and Valid

- \blacktriangleright A formula A is satisfiable if and only if there exists a model \mathfrak{M} and assignment σ , such that $\mathfrak{M} \models_{\sigma} A$.
- \triangleright A formula A unsatisfiable if it is not satisfiable.
- \triangleright A formula A is valid if it is satisfied by every model.

Semantics: Satisfiable, Unsatisfiable, and Valid

- \blacktriangleright A formula A is satisfiable if and only if there exists a model \mathfrak{M} and assignment σ , such that $\mathfrak{M} \models_{\sigma} A$.
- \triangleright A formula A unsatisfiable if it is not satisfiable.
- \blacktriangleright A formula A is valid if it is satisfied by every model.

Example

Which one(s) of the formulas is satisfiable/unsatisfiable/valid?

$$
\Rightarrow \exists x. R(x) \land \neg R(x)
$$

\n
$$
\forall x. x \neq x
$$

\n
$$
\Rightarrow \forall x. R(x) \lor \neg R(x)
$$

Logic and Mechanized Reasoning 27 / 31

[Introduction](#page-2-0)

[Syntax](#page-16-0)

[Using First-Order Logic](#page-26-0)

[Semantics](#page-39-0)

[Normal Forms](#page-48-0)

Logic and Mechanized Reasoning 28 / 31

Normal Forms: De Morgan Laws for Quantifiers

Recall De Morgan laws for propositional logic:

$$
\neg(A \land B) \equiv \neg A \lor \neg B
$$

$$
\neg(A \lor B) \equiv \neg A \land \neg B
$$

Additionally, we have De Morgan laws for quantifiers:

$$
\neg \forall x. A \equiv \exists x. \neg A
$$

$$
\neg \exists x. A \equiv \forall x. \neg A
$$

These rules allow you to move negations inward

Logic and Mechanized Reasoning 29 / 31

Normal Forms: Bring Quantifiers to the Front

These rules allow you to move the quantifiers to the front:

$$
(\forall x. A) \lor B \leftrightarrow \forall x. A \lor B
$$

$$
(\forall x. A) \land B \leftrightarrow \forall x. A \land B
$$

$$
(\exists x. A) \lor B \leftrightarrow \exists x. A \lor B
$$

$$
(\exists x. A) \land B \leftrightarrow \exists x. A \land B
$$

Some renaming might be required

Normal Forms: Bring Quantifiers to the Front

These rules allow you to move the quantifiers to the front:

$$
(\forall x. A) \lor B \leftrightarrow \forall x. A \lor B
$$

$$
(\forall x. A) \land B \leftrightarrow \forall x. A \land B
$$

$$
(\exists x. A) \lor B \leftrightarrow \exists x. A \lor B
$$

$$
(\exists x. A) \land B \leftrightarrow \exists x. A \land B
$$

Some renaming might be required

In practice it is better to apply Skolemization to get rid of quantifiers (covered in a future lecture)

One More Thing

Natural Number Game

Go to <https://adam.math.hhu.de>

Click on "Natural Number Game" to start

Logic and Mechanized Reasoning 31 / 31 / 32