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Introduction: Motivation

15311 students are the best!

How to encode this in propositional logic?
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Introduction: Motivation

15311 students are the best!

How to encode this in propositional logic?

In first-order logic: Vx. 15311(x) — —3y. Better(y, x)
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Introduction: Examples

Vx.3y. R(x,y)

Important changes compared to propositional logic:

» Variables range over objects instead of Boolean values
» Relations are Boolean and the new literals

» First-order logic includes quantifiers to bound variables
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Introduction: Examples

Vx.3y. R(x,y)

Important changes compared to propositional logic:

» Variables range over objects instead of Boolean values
» Relations are Boolean and the new literals

» First-order logic includes quantifiers to bound variables

Many possible models:
> (2, <)

> (N, <)

> (N,>)

({People} Loves)

Logic and Mechanized Reasoning 5/31



Introduction: Quantifiers

The quantifier Vx: something holds for all choices of x.

The quantifier dx: something holds for some choice of x.

The quantifiers do not commute:

> Vx3dy. x #y

> JyVx.x #y
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Introduction: Quantifiers

The quantifier Vx: something holds for all choices of x.

The quantifier dx: something holds for some choice of x.

The quantifiers do not commute:

> Vxdy.x #y

For all objects there exist a different object
> JyVx. x #y

There exists an object that differs from all other objects
(including itself)
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Introduction: Terms and Formulas

Syntax and semantics are similar to propositional logic

Two additional categories of expression:
» Terms name things in the intended interpretation
» Formulas say things about those objects

We use recursive definitions to specify how to evaluate them
for a given interpretation
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Introduction: Propositional vs First-Order Logic

Propositional logic is decidable
» Assign truth values to finitely many variables
» Various decision procedures, e.g. truth table

First-order logic is undecidable

» Some satisfiable formulas require infinitely many objects
» A statement is true in all models if and only if it is provable
» Provability is equivalent to the halting problem
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Introduction: Decision Procedures

Decidable fragments:

» Equational reasoning

» Linear arithmetic on the real numbers
» Efficiently implemented in SMT solvers
» Strong tools: Z3 and CVC5H

First-order theorem proving:

» Searching for proofs from axioms

» Potentially infinite runtime if no proof exists
» Strong tool: Vampire

Logic and Mechanized Reasoning 9/31



Syntax
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Syntax: Language

» Functions map objects onto an object

> We use lowercase for functions, e.g. f, g, and h
» Functions can have arbitrary arity, e.g. f(x,y)
» (-arity functions are constants, e.g. a, b, and ¢
» We use x + y as shorthand for +(x, )

» Relations can be either true or false

» We use uppercase for relations, e.g. P, Q, and R
> Relations can have arbitrary arity, e.g. R(x,v)

P Q-arity relations are similar to Boolean variables
» Special relation = whether two objects are equal
» We use x # y as shorthand for —(x = y)

» We use x < y as shorthand for < (x,y)
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Syntax: Set of Terms

The set of terms of the language L is generated inductively:

» Each variable x,y,z,... is a term.
» Each constant symbol of L is a term.

» If f is any n-ary function symbol of L and t1,t5,...,t, are
terms of L, then f(ty,tp,...,t,) is a term.
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Syntax: Quantifiers and Renaming

The quantifiers V and 3 bound variables

Variables that are not bounded are free

Jz.x<zAz<y

Closed variable z is in between free variables x and y
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Syntax: Quantifiers and Renaming

The quantifiers V and 3 bound variables

Variables that are not bounded are free

Jz.x<zAz<y

Closed variable z is in between free variables x and y
This is the same as Jw. x < w Aw <y
Bound variables can be renamed

A formula without free variables is called a sentence
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Syntax: Set of Formulas

The set of formulas of the language L is generated inductively:

» If R is any n-ary relation symbol of L and tq,t>,...,t, are
terms of L, then R(t1,tp,...,t,) is a formula.

» |f s and t are terms, then s = t is a formula.
» T and L are formulas.

» If A and B are formulas, so are —A, A/\B, AV B,
A — B, and A & B.

» If Ais a formula and x is a variable, then Vx. A and dx. A.
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Syntax: Substitution

Recall substitution in propositional logic
Substitution in first-order logic is similar

» s[t/x| substitutes term t for variable x in term s
> A[t/x] substitutes term t for variable x in formula A
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Syntax: Substitution

Recall substitution in propositional logic
Substitution in first-order logic is similar

» s[t/x| substitutes term t for variable x in term s
> A[t/x] substitutes term t for variable x in formula A

Simultaneous substitution replaces multiple variables at once

Given a substitution ¢ and a term ¢, substitution is defined as

cx = o(x)
of(ty, ..., th) = floty,...,0ty)

Substitution oA is similar, though it may require renaming
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Using First-Order Logic
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Using FOL: Quantifier Examples

Bill and Ann are married and all their children are smart

How to express this in first-order logic?
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Using FOL: Quantifier Examples

Bill and Ann are married and all their children are smart

How to express this in first-order logic?

Married(Bill, Ann) A\ Vx. Child(x, Bill) A\ Child(x, Ann) — Smart(x)

First-order logic allows expressing many other things:
» Married(x,y) is symmetric, Married(x,y) <+ Married(y, x)
» Child(x,y) is asymmetric, —~Child(x,y) \/ —Child(y, x)
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Using FOL: Quantifier Examples

» dx. Dog(x) /\ Blue(x)
» Jx. Dog(x) — Blue(x)
» Vx. Dog(x) /\ Blue(x)
» Vx. Dog(x) — Blue(x)
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Using FOL: Integer Examples
even(x) = Jy.x=2-y
odd(x) dy.x=2-y+1
div(x,y) = Jz.y=x-z.

Every integer is even or odd, but not both.
A integer is even if and only if it is divisible by two.
If some integer, x, is even, then so is x2.

A integer x is even if and only if x + 1 is odd.

If x divides y and y divides z, then x divides z.
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A integer x is even if and only if x + 1 is odd.
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Using FOL: Integer Examples
even(x) = Jy.x=2-y
odd(x) dy.x=2-y+1
div(x,y) = Jz.y=x-z.

Every integer is even or odd, but not both.

> Vx. (even(x)V odd(x)) N\ —(even(x) /\odd(x))

A integer is even if and only if it is divisible by two.
> Vx. even(x) < div(2,x)

If some integer, x, is even, then so is x2.
> V. even(x) — even(x?)

A integer x is even if and only if x + 1 is odd.
> Vx. even(x) < odd(x + 1)

If x divides y and y divides z, then x divides z.
> Vx. Vy. Vz. div(x,y) Ndiv(y,z) — div(x, z)
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Using FOL: Relativization

Quantifiers always range over the entire universe
Propositional connectives can restrict the domain of a quantifier

There is an even number between 1 and 3
> dx. even(x) N1 < xAx <3

Every even number greater than 1 is greater than 3
> Vx.even(x) Ax >1—x>3
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Using FOL: Many-Sorted FOL

First-order logic formulas can have multiple sorts of variables

Example
Consider a geometry problem with multiple sorts:
» points: p, q, 7, ...
» lines: L, M, N, ...
> circles: a, B, 77, ...
» On(p,L) denoting point p lies on line L

We will focus on first-order logic with a single sort
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Semantics
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Semantics: Model

A model 991 for a language consists of
> A set of objects, |91, called the universe of 9.

» For each function symbol f in the language, a function f™
from the universe of 91 to itself, with the corresponding
arity.

» For each relation symbol R in the language, a relation R™
on the universe of 901, with the corresponding arity.
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Semantics: Model

A model 991 for a language consists of
> A set of objects, |91, called the universe of 9.

» For each function symbol f in the language, a function f™
from the universe of 91 to itself, with the corresponding
arity.

» For each relation symbol R in the language, a relation R™
on the universe of 901, with the corresponding arity.

Example
Vx,y. (f(x) #f(F(x) AR(x,y) & x #y)

» Set of objects: {x, o}

> f7(x) = o, fM(0) =%
» R™(x,%) = R™M(0,0) = L, R™(x,0) =R™M(0,x) =T
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Semantics: Finite and Infinite Models

Example

Vx,y. (f(x) # f(F(0) A (R(x,y) & x # y)
» Set of objects: {x, o}

> f7(x) = o, fM(0) =%
» R™(x,%) = R™M(0,0) = L, R™(x,0) =RM(0,x) =T

What about the formula

Vx. (f(x) # ) A (F(x) #f(y) Vx=y)
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Semantics: Assignment

Let o be an assignment of elements of |91] to free variables.
Then every term t has a value [t]on - in [901] defined recursively:

> [x]one = o(x)
» For every n-ary function symbol f and every tuple of terms
tl/ c ey tl’lr [[f(tll c ey ti’l)]]f)ﬁ,(f :fm([[tl]]im,m c ey [[tl’l]]m,(f)
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Semantics: Evaluation

> ME,t= t'iff [[t]]gmlg = [[t,]]gm,a.

> Mo R(to, .-, tn1) iff R ([t - - -, [tn1]ome)-
> M =, L is always false.

> M =, T is always true.

> ME, AABIff M E, A and M =, B.

> ME, AVBIff ME, A or M=, B.

> M=, A— Biff M £, A or M =, B.

> ME, A Biff M E, A and 91 =, B either both hold
or both don’t hold.

> M =, Vx. A iff for every a € |90, M |:U[x,_m} A.
> M =, dx. A iff for some a € |90, M ):a[XHa] A.
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Semantics: Satisfiable, Unsatisfiable, and Valid

> A formula A is satisfiable if and only if there exists a
model 9T and assignment ¢, such that 91 =, A.

» A formula A unsatisfiable if it is not satisfiable.
» A formula A is valid if it is satisfied by every model.
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Semantics: Satisfiable, Unsatisfiable, and Valid

> A formula A is satisfiable if and only if there exists a
model 9T and assignment ¢, such that 91 =, A.

» A formula A unsatisfiable if it is not satisfiable.
» A formula A is valid if it is satisfied by every model.

Example
Which one(s) of the formulas is satisfiable/unsatisfiable /valid?

» dx. R(x) A—=R(x)
> Vx. x #x
> Vx. R(x)V —=R(x)
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Normal Forms
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Normal Forms: De Morgan Laws for Quantifiers

Recall De Morgan laws for propositional logic:

~(AAB) = —AV-B
~(AVB) = —AA-B

Additionally, we have De Morgan laws for quantifiers:

—-Vx. A=3dx. A
—dx. A =Vx. A

These rules allow you to move negations inward
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Normal Forms: Bring Quantifiers to the Front

These rules allow you to move the quantifiers to the front:

(Vx. A)VB « Vx.AVB
Vx. AANB
dx. AVB
dx. AAB

/\/LD/-\
=
z2z22
<
oy’
111

Some renaming might be required
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Normal Forms: Bring Quantifiers to the Front

These rules allow you to move the quantifiers to the front:

(Vx. A)VB « Vx.AVB
( ) — Vx. AAB
(Ix. A)VB < dx.AVB
(3x. A)AB « 3x. AAB

Some renaming might be required

In practice it is better to apply Skolemization to get rid of
quantifiers (covered in a future lecture)
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One More Thing

Natural Number Game

Go to https://adam.math.hhu.de
Click on “Natural Number Game” to start
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