Logic and Mechanized Reasoning Congruence Closure

Marijn J.H. Heule

Carnegie Mellon University

Second Midterm Exam

Second midterm on Monday, March 25, during class time.

- Iast name starts with A-H are in room GHC 4301
- last name starts with K-Z are in room NSH 1305

The exam will cover:

- ▶ DP and DPLL, following the slides from the 2/12 lecture
- Sections 8.2, 8.3, and 8.4 in the textbook
- Chapters 9-12 in the textbook
- Construct unifiers of terms by hand, but not the algorithm

Extra OH before the exam:

- Joseph, Friday, 12-1, in Baker Hall 139
- Alex, Sunday, 4-5 in Baker Hall 139.

Introduction

Data Structures

Example Runs

Proofs

Extensions

Introduction

Data Structures

Example Runs

Proofs

Extensions

Ground Terms

Letters early in the alphabet refer to constants, e.g. *a*, *b*, *c* ► Constants can be seen as 0-arity functions

Small letters starting with f refer to functions, e.g. f, g, h

Capital letters refer to relations, e.g. P, Q, R

No variables in ground terms

• Usually letters late in the alphabet, e.g. x, y, z

Consider the following equations and disequations:

1.
$$f(a,a) = b$$

2. $g(c,a) = c$
3. $g(c,f(a,a)) = f(g(c,a),g(c,a))$
4. $f(c,c) \neq g(c,b)$

Are they satisfiable?

Consider the following equations and disequations:

1.
$$f(a,a) = b$$

2. $g(c,a) = c$
3. $g(c,f(a,a)) = f(g(c,a),g(c,a))$
4. $f(c,c) \neq g(c,b)$
Are they satisfiable?

We can derive the following

5.
$$g(c, f(a, a)) = g(c, b)$$
 from 1.

Consider the following equations and disequations:

1.
$$f(a,a) = b$$

2. $g(c,a) = c$
3. $g(c,f(a,a)) = f(g(c,a),g(c,a))$
4. $f(c,c) \neq g(c,b)$
Are they satisfiable?

We can derive the following

5.
$$g(c,f(a,a)) = g(c,b)$$
 from 1.

6.
$$f(g(c,a),g(c,a)) = f(c,c)$$
 from 2.

Consider the following equations and disequations:

1.
$$f(a,a) = b$$

2. $g(c,a) = c$
3. $g(c,f(a,a)) = f(g(c,a),g(c,a))$
4. $f(c,c) \neq g(c,b)$

Are they satisfiable?

We can derive the following

5.
$$g(c,f(a,a)) = g(c,b)$$
 from 1.
6. $f(g(c,a),g(c,a)) = f(c,c)$ from 2.
7. $f(c,c) = g(c,b)$ from 3, 5, and 6.

Reasoning about equality is important

Interesting problems combine equations with disequations

Reasoning about equality is important

Interesting problems combine equations with disequations

A couple of examples. Which are satisfiable?

$$\blacktriangleright f(a) = f(b) \land a \neq b$$

Reasoning about equality is important

Interesting problems combine equations with disequations

A couple of examples. Which are satisfiable?

•
$$f(a) = f(b) \land a \neq b$$

satisfiable

$$\blacktriangleright f(a) = a \wedge f(f(a)) \neq a$$

Reasoning about equality is important

Interesting problems combine equations with disequations

A couple of examples. Which are satisfiable?

•
$$f(a) = f(b) \land a \neq b$$

satisfiable

•
$$f(a) = a \wedge f(f(a)) \neq a$$

unsatisfiable

$$\blacktriangleright f(f(f(a))) = a \wedge f(f(f(f(a)))) = a \wedge f(a) \neq a$$

Reasoning about equality is important

Interesting problems combine equations with disequations

A couple of examples. Which are satisfiable?

•
$$f(a) = f(b) \land a \neq b$$

satisfiable

•
$$f(a) = a \wedge f(f(a)) \neq a$$

unsatisfiable

►
$$f(f(f(a))) = a \wedge f(f(f(f(a)))) = a \wedge f(a) \neq a$$

unsatisfiable

Decidable

Theorem

The question as to whether a finite set of ground equations and disequations is satisfiable is decidable.

The idea behind the proof is to use a saturation argument:

- Start from the equations in question
- Derive new equations until no more equations are derivable
- Unsatisfiable, if an equation contradicts a disequation
- Otherwise satisfiable

Derivation Rules

Reflexivity

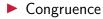
$$t = t$$

Symmetry

$$\frac{s=t}{t=s}$$

Transitivity of equality

$$\frac{r=s \quad s=t}{r=t}$$

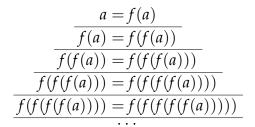


$$\frac{s_1 = t_1 \dots s_n = t_n}{f(s_1, \dots, s_n) = f(t_1, \dots, t_n)}$$

Avoiding Infinite Loops

Consider an equational problem with a = f(a)

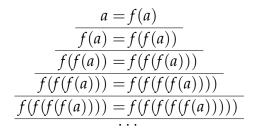
We can derive infinitely many new equations:



Avoiding Infinite Loops

Consider an equational problem with a = f(a)

We can derive infinitely many new equations:



We only need to consider the terms in the original problem!

Lemma (Congruence Closure)

Let Γ consist of a set of equations and disequations. Let S be the set of subterms of all the terms occurring in Γ . Let Γ' be the set of all equations between elements of S that can be derived from the equations in Γ using the derivation rules. Then Γ is satisfiable if and only if no disequation in Γ is the negation of an equation in Γ' .

Congruence Closure Proof

UNSAT direction of the lemma is easy

- The equational rules preserve truth in any model
- Deriving a contradiction implies unsatisfiable

Congruence Closure Proof

UNSAT direction of the lemma is easy

- The equational rules preserve truth in any model
- Deriving a contradiction implies unsatisfiable

SAT direction of the lemma

- ▶ Let *S* denote the set of all subterms in the formula
- Algorithm terminates because finite number of terms
- Let $t \equiv s$ denote that t is equivalent to s
- For each element t we have an equivalence class

$$[t] = \{s \in S \mid s \equiv t\}$$

After termination, construct a model as follows

$$f^{\mathfrak{M}}([t_1],\ldots,[t_n]) = \begin{cases} [f(t_1,\ldots,t_n)] & \text{if } f(t_1,\ldots,t_n) \text{ is in } S \\ \star & \text{otherwise} \end{cases}$$

- Given a set of equations and disequations, construct the set of all subterms.
- Merge subterms that are equal due to equations
- Keep merging based on the congruence rule

- Given a set of equations and disequations, construct the set of all subterms.
- Merge subterms that are equal due to equations
- Keep merging based on the congruence rule

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

- Given a set of equations and disequations, construct the set of all subterms.
- Merge subterms that are equal due to equations
- Keep merging based on the congruence rule

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

- Set of all subterms = {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}
- Merge subterms =

- Given a set of equations and disequations, construct the set of all subterms.
- Merge subterms that are equal due to equations
- Keep merging based on the congruence rule

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

- Set of all subterms = {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}
- Merge subterms = $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$
- Which two terms can be merge using the congruence rule?

- Given a set of equations and disequations, construct the set of all subterms.
- Merge subterms that are equal due to equations
- Keep merging based on the congruence rule

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

- Set of all subterms = {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}
- Merge subterms = $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$
- Which two terms can be merge using the congruence rule?

$$\frac{f(a,b) = a \qquad b = b}{f(f(a,b),b) = f(a,b)}$$

- Given a set of equations and disequations, construct the set of all subterms.
- Merge subterms that are equal due to equations
- Keep merging based on the congruence rule

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

- Set of all subterms = $\{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}$
- Merge subterms = $\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$
- Which two terms can be merge using the congruence rule?

$$\frac{f(a,b) = a \qquad b = b}{f(f(a,b),b) = f(a,b)}$$

• Unsatisfiable because a and f(f(a, b), b) in the same set

Example

$$f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

Initial set of congruence classes:

Example

$$f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

Initial set of congruence classes:

$$\left\{\{a\},\{f(a)\},\{f^2(a)\},\{f^3(a)\},\{f^4(a)\},\{f^5(a)\}\right\}$$

Merge classes using equalities:

Example

$$f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

Initial set of congruence classes:

$$\left\{\{a\},\{f(a)\},\{f^2(a)\},\{f^3(a)\},\{f^4(a)\},\{f^5(a)\}\right\}$$

Merge classes using equalities:

$$\left\{\{a, f^3(a), f^5(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}\right\}$$

Which terms can be merged using the congruence rule?

Example

$$f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

Initial set of congruence classes:

$$\left\{\{a\},\{f(a)\},\{f^2(a)\},\{f^3(a)\},\{f^4(a)\},\{f^5(a)\}\right\}$$

Merge classes using equalities:

$$\left\{\{a, f^3(a), f^5(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}\right\}$$

Which terms can be merged using the congruence rule?

$$\frac{a = f^3(a)}{f(a) = f^4(a)}$$

Example

$$f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

Initial set of congruence classes:

$$\left\{\{a\},\{f(a)\},\{f^2(a)\},\{f^3(a)\},\{f^4(a)\},\{f^5(a)\}\right\}$$

Merge classes using equalities:

$$\left\{\{a, f^3(a), f^5(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}\right\}$$

Which terms can be merged using the congruence rule?

$$\frac{a = f^{3}(a)}{f(a) = f^{4}(a)} \quad \frac{f(a) = f^{4}(a)}{f^{2}(a) = f^{5}(a)}$$

Example

$$f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$

Initial set of congruence classes:

$$\left\{\{a\},\{f(a)\},\{f^2(a)\},\{f^3(a)\},\{f^4(a)\},\{f^5(a)\}\right\}$$

Merge classes using equalities:

$$\left\{\{a, f^3(a), f^5(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}\right\}$$

Which terms can be merged using the congruence rule?

$$\frac{a = f^{3}(a)}{f(a) = f^{4}(a)} \quad \frac{f(a) = f^{4}(a)}{f^{2}(a) = f^{5}(a)} \quad \{\{a, f^{2}(a), f^{3}(a), f^{5}(a)\}, \{f(a), f^{4}(a)\}\}$$

Which terms can be merged using the congruence rule?

Example

$$f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$

Initial set of congruence classes:

$$\left\{\{a\},\{f(a)\},\{f^2(a)\},\{f^3(a)\},\{f^4(a)\},\{f^5(a)\}\right\}$$

Merge classes using equalities:

$$\left\{\{a, f^3(a), f^5(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}\right\}$$

Which terms can be merged using the congruence rule?

$$\frac{a = f^3(a)}{f(a) = f^4(a)} \quad \frac{f(a) = f^4(a)}{f^2(a) = f^5(a)} \quad \{\{a, f^2(a), f^3(a), f^5(a)\}, \{f(a), f^4(a)\}\}$$

Which terms can be merged using the congruence rule?

$$\frac{a = f^2(a)}{f(a) = f^3(a)}$$

Example

$$f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$

Initial set of congruence classes:

$$\left\{\{a\},\{f(a)\},\{f^2(a)\},\{f^3(a)\},\{f^4(a)\},\{f^5(a)\}\right\}$$

Merge classes using equalities:

$$\left\{\{a, f^3(a), f^5(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}\right\}$$

Which terms can be merged using the congruence rule?

$$\frac{a = f^3(a)}{f(a) = f^4(a)} \quad \frac{f(a) = f^4(a)}{f^2(a) = f^5(a)} \quad \{\{a, f^2(a), f^3(a), f^5(a)\}, \{f(a), f^4(a)\}\}$$

Which terms can be merged using the congruence rule?

$$\frac{a = f^2(a)}{f(a) = f^3(a)} \quad \{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\}$$

Logic and Mechanized Reasoning

14 / 31

Introduction

Data Structures

Example Runs

Proofs

Extensions

Union-Find

High-level of Union-Find:

- Each element has a (pointer to its) parent
- An element is the representative of an equivalence class if it is equal to its parent
- **Find** *e* returns the representative of element *e*
- ▶ Union *e f*, merges the equivalences classes of *e* and *f*

Union-Find

High-level of Union-Find:

- Each element has a (pointer to its) parent
- An element is the representative of an equivalence class if it is equal to its parent
- **Find** *e* returns the representative of element *e*
- ▶ Union *e f*, merges the equivalences classes of *e* and *f*

Find e

• if
$$(e.parent = e)$$
 return e

else return Find e.parent

Union-Find

High-level of Union-Find:

- Each element has a (pointer to its) parent
- An element is the representative of an equivalence class if it is equal to its parent
- **Find** *e* returns the representative of element *e*
- ▶ Union *e f*, merges the equivalences classes of *e* and *f*

Find e

• if
$$(e.parent = e)$$
 return e

else return Find e.parent

```
Union e f

if (Find e \neq Find f) Merge e f
```

Union-Find Optimizations

Path compression: Update the paths to the representative

Find e

- ▶ if (e.parent \neq e) e.parent := Find e.parent
- return e.parent

Two heuristics of selecting the new representative:

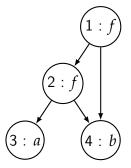
- Rank Length of the longest path
- Tree Size of the tree

Implemented in Lean: DisjointSet

Subterm Set as Directed Acyclic Graph

To compute congruence closure efficiently, we will represent the subterm set of the formula as a Directed Acyclic Graph

- Each node corresponds to a subterm and has unique id
- Edges point from function symbol to arguments
- What subterm does node labeled 1 represent?

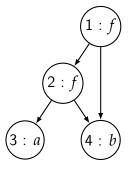


Subterm Set as Directed Acyclic Graph

To compute congruence closure efficiently, we will represent the subterm set of the formula as a Directed Acyclic Graph

- Each node corresponds to a subterm and has unique id
- Edges point from function symbol to arguments
- What subterm does node labeled 1 represent?

f(f(a,b),b)

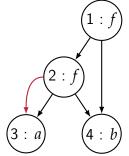


Representatives and Predecessors

Each equivalence class has a single representative / root

The set of predecessors is stored only with the representative

- Initially each node is its own representative
- When two equivalence classes are merged, their set of predecessors is merged as well
- In the image f(a) and a are merged (denoted by red edge)
- Their set of predecessors is $\{f(a,b), f(f(a,b),b)\}$



Introduction

Data Structures

Example Runs

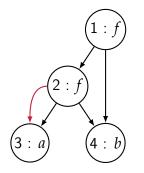
Proofs

Extensions

Small Example

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

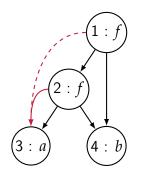


- Construct initial DAG
- Process equality f(a, b) = a denoted by red edges
- Are the predecessors f(a, b) = a and f(f(a, b), b) congruent?

Small Example

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$



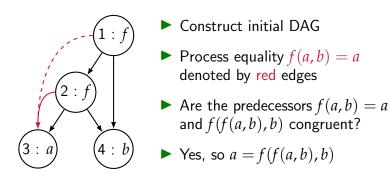
- Construct initial DAG
- Process equality f(a, b) = a denoted by red edges
- Are the predecessors f(a, b) = a and f(f(a, b), b) congruent?

• Yes, so
$$a = f(f(a, b), b)$$

Small Example

Example

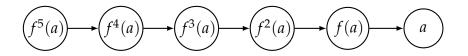
$$f(a,b) = a \land f(f(a,b),b) \neq a$$



Formula is unsatisfiable because a and f(f(a,b),b) are in the same equivalence class

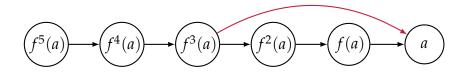
Example

$$f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$$



Example

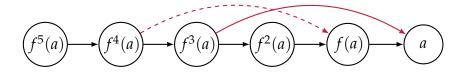
$$f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$$



• Process
$$f^3(a) = (a)$$

Example

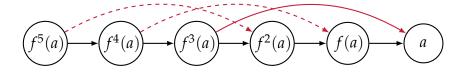
$$f^{3}(a) = a \wedge f^{5}(a) = a \wedge f(a) \neq a$$



• Process
$$f^3(a) = (a)$$

Example

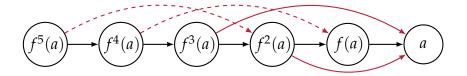
$$f^{3}(a) = a \wedge f^{5}(a) = a \wedge f(a) \neq a$$



• Process
$$f^3(a) = (a)$$

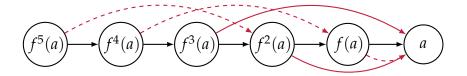
Example

$$f^{3}(a) = a \wedge f^{5}(a) = a \wedge f(a) \neq a$$



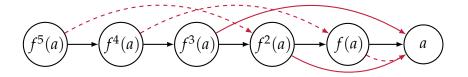
Example

$$f^{3}(a) = a \wedge f^{5}(a) = a \wedge f(a) \neq a$$



Example

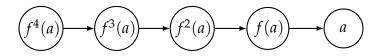
$$f^{3}(a) = a \land f^{5}(a) = a \land f(a) \neq a$$



- Process f³(a) = (a)
 Process f⁵(a) = (a)
- Unsatisfiable

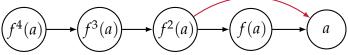
Example

$$f^2(a) = a \wedge f^4(a) = a \wedge f(a) \neq a \wedge f(a) \neq b$$



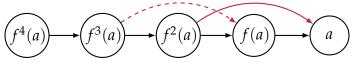
Example

$$f^{2}(a) = a \wedge f^{4}(a) = a \wedge f(a) \neq a \wedge f(a) \neq b$$



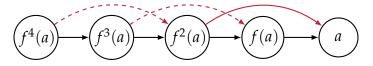
Example

$$f^{2}(a) = a \wedge f^{4}(a) = a \wedge f(a) \neq a \wedge f(a) \neq b$$



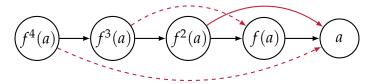
Example

$$f^2(a) = a \wedge f^4(a) = a \wedge f(a) \neq a \wedge f(a) \neq b$$



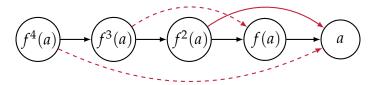
Example

$$f^2(a) = a \wedge f^4(a) = a \wedge f(a) \neq a \wedge f(a) \neq b$$



Example

$$f^2(a) = a \land f^4(a) = a \land f(a) \neq a \land f(a) \neq b$$



Equivalence classes:

- [a] = {a,f²(a),f⁴(a)}
 [f(a)] = {f(a),f³(a)}
 [b] = {b}
- ► No contradiction, thus satisfiable

Introduction

Data Structures

Example Runs

Proofs

Extensions

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

$$f(a,b) = a \qquad b = b$$

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

$$\frac{f(a,b) = a \qquad b = b}{f(f(a,b),b) = f(a,b)}$$

 \bot

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

$$\frac{f(a,b) = a \qquad b = b}{f(f(a,b),b) = f(a,b)} \qquad f(a,b) = a$$

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

$$\frac{f(a,b) = a \qquad b = b}{f(f(a,b),b) = f(a,b)} \qquad f(a,b) = a$$
$$\frac{f(f(a,b),b) = a}{\bot}$$

Example

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

$$\frac{f(a,b) = a \qquad b = b}{f(f(a,b),b) = f(a,b)} \qquad f(a,b) = a}{\underline{f(f(a,b),b) = a}} \qquad f(f(a,b),b) \neq a}$$

Larger Refutation Proof

Example

$$f^3(a) = a \land f^5(a) = a \land f(a) \neq a$$

$$\frac{\frac{f^{3}(a) = a}{f^{4}(a) = f(a)}}{\frac{f^{5}(a) = f^{2}(a)}{f^{2}(a) = f^{5}(a)}} f^{5}(a) = a}$$

$$\frac{\frac{f^{2}(a) = a}{\frac{f^{3}(a) = f(a)}{f(a) = f^{3}(a)}} f^{3}(a) = a}{\frac{f(a) = a}{\frac{f(a)$$

Model for Satisfiable Run

Example

$$f^2(a) = a \wedge f^4(a) = a \wedge f(a) \neq a \wedge f(a) \neq b$$

Congruence classes:

Model:

►
$$f^{\mathfrak{M}}([a]) = [f(a)]$$

► $f^{\mathfrak{M}}([f(a)]) = [a]$
► $f^{\mathfrak{M}}([b]) = \star$
► $f^{\mathfrak{M}}(\star) = \star$

Model for Satisfiable Run

Example

$$f^2(a) = a \wedge f^4(a) = a \wedge f(a) \neq a \wedge f(a) \neq b$$

Congruence classes:

Model:

$$f^{\mathfrak{M}}([a]) = [f(a)]$$

$$f^{\mathfrak{M}}([f(a)]) = [a]$$

$$f^{\mathfrak{M}}([b]) = \star$$

$$f^{\mathfrak{M}}(\star) = \star$$

Congruence closure in Lean with proofs Logic and Mechanized Reasoning Introduction

Data Structures

Example Runs

Proofs

Extensions

Equality Reasoning with Relations

So far we only considered formulas with functions

We can include relations using the following rule

$$\frac{s_1 = t_1 \qquad \dots \qquad s_n = t_n \qquad R(s_1, \dots, s_n)}{R(t_1, \dots, t_n)}$$

If the algorithm terminates without contradiction $\triangleright R^{\mathfrak{M}}([t_1], \dots, [t_n])$ holds iff $R(t_1, \dots, t_n)$ is a consequence

Validity of Universally Quantified Formulas

Throughout the lecture we didn't use variables

The same techniques can be used to checked the validity of $\forall x_1, \dots, x_n$. $P[x_1, \dots, x_n]$ where $P[x_1, \dots, x_n]$ doesn't include any relations besides =

The method works as follows

• Replace variables x_1, \ldots, x_n by constants c_1, \ldots, c_n

- Turn $\neg P[c_1, \ldots, c_n]$ into a DNF formula $D[c_1, \ldots, c_n]$
- Each D_i is a disjunction of equations and disequations
- ► $\forall x_1, \ldots, x_n$. $P[x_1, \ldots, x_n]$ is valid if D is unsatisfiable

Validity of Universally Quantified Formulas Example

Example

$$\forall x_1, x_2. x_1 \neq x_2 \lor f(x_1) = f(x_2)$$

Replace the variables with constants and negate the formula

$$c_1 = c_2 \wedge f(c_1) \neq f(c_2)$$

Is this formula satisfiable?

Validity of Universally Quantified Formulas Example

Example

$$\forall x_1, x_2. x_1 \neq x_2 \lor f(x_1) = f(x_2)$$

Replace the variables with constants and negate the formula

$$c_1 = c_2 \wedge f(c_1) \neq f(c_2)$$

Is this formula satisfiable? No, thus for original one is valid