
Logic and Mechanized Reasoning
Introduction, Induction, and Invariants

Marijn J.H. Heule

Logic and Mechanized Reasoning 1 / 39



Introduction

Induction Examples

Structural Induction

Invariants

Logic and Mechanized Reasoning 2 / 39



Introduction

Induction Examples

Structural Induction

Invariants

Logic and Mechanized Reasoning 3 / 39



The Team

Marijn Heule
Instructor

Jeremy Avigad
Instructor

Joseph Reeves
TA

Josh Clune
TA

Tika Naik
TA

Alex Knox
TA

Logic and Mechanized Reasoning 4 / 39



Material, Homework, and Grading

Homepage: https://www.cs.cmu.edu/~mheule/15311-s24/

Textbook: https://avigad.github.io/lamr/

Repository: https://github.com/avigad/lamr

Homework on gradescope

▶ Assignments each Wednesday and due a week later

▶ Obtain and submit homework on Gradescope

▶ One day late policy, penalty 3 points (10%)

▶ Email us if you didn’t receive an invitation

Grading

▶ Homework 40% (10 times 30 points)

▶ Exams 60% (3 times 150 points)

Logic and Mechanized Reasoning 5 / 39

https://www.cs.cmu.edu/~mheule/15311-s24/
https://avigad.github.io/lamr/
https://github.com/avigad/lamr


Office Hours

Jeremy: Tuesdays at 10-11am

Joseph: Wednesdays at 10:30-11:30am

Josh: Tuesdays at 4:30-5:30pm

Tika: Wednesdays at 2-3pm

Alex: Mondays at 4-5pm

What time would you prefer?

Logic and Mechanized Reasoning 6 / 39



Introduction: Ramon Lull, a 13th Century Monk

Three fundamental ideas in the work of Ramon Lull

1. Use symbols or tokens to stand for ideas or concepts

2. Compound ideas and concepts are formed by putting
together simpler ones

3. Mechanical devices can serve as aids to reasoning

Logic and Mechanized Reasoning 7 / 39



Introduction: Gottfried Leibniz

Leibniz about a calculus for reasoning:

If controversies were to arise, there would be no more
need of disputation between two philosophers than be-
tween two calculators. For it would suffice for them to
take their pencils in their hands and to sit down at the
abacus, and say to each other (and if they so wish also
to a friend called to help): Let us calculate.

Calculemus! has become a motto of computer scientists and
computationally-minded mathematicians today.

Logic and Mechanized Reasoning 8 / 39



Introduction: Kurt Gödel

In 1931, Kurt Gödel wrote:

The development of mathematics towards greater pre-
cision has led, as is well known, to the formalization of
large tracts of it, so that one can prove any theorem
using nothing but a few mechanical rules.

“Mechanical” predates the modern computer by a decade

Today we have a million-line mathematical library in Lean

Logic and Mechanized Reasoning 9 / 39



Introduction: Course Overview

▶ Theory We will teach you the syntax and semantics of
propositional and first-order logic. The goal is to teach
you to think about and talk about logic in a
mathematically rigorous way.

▶ Implementation We will teach you how to implement
logical syntax in a functional programming language called
Lean. We will also teach you how to carry out fundamental
operations and transformations on these objects.

▶ Application We will show you how to use logic-based
automated reasoning tools to solve interesting and difficult
problems.

Logic and Mechanized Reasoning 10 / 39



Introduction

Induction Examples

Structural Induction

Invariants

Logic and Mechanized Reasoning 11 / 39



Induction Examples: Sum of Natural Numbers

Theorem
For every natural number n,

∑
i≤n i = n(n + 1)/2

Proof by induction.

In the base case, we have
∑

i≤0 i = 0 = 0(0 + 1)/2

In the inductive case, assuming
∑

i≤n i = n(n + 1)/2

∑
i≤n+1

i =
∑
i≤n

i + (n + 1)

= n(n + 1)/2 + 2(n + 1)/2
= (n + 1)(n + 2)/2

Logic and Mechanized Reasoning 12 / 39



Induction Examples: Recursion

A close companion to induction is the principle of recursion

g(0) = 1
g(n + 1) = (n + 1)g(n)

The function g(n) is equivalent to factorial: n!

Logic and Mechanized Reasoning 13 / 39



Induction Examples: Factorial Example

Theorem ∑
i≤n

i · i! = (n + 1)! − 1

Proof by induction.

The base case is easy. Assuming the claim holds for n

∑
i≤n+1

i · i! =
∑
i≤n

i · i! + (n + 1) · (n + 1)!

= (n + 1)! + (n + 1) · (n + 1)! − 1
= (n + 1)! · (1 + (n + 1))− 1
= (n + 2)! − 1

Logic and Mechanized Reasoning 14 / 39



Induction Examples: General Recursion I

In general, we can define a function recursively as long as
some well-founded measure on the arguments decreases.

Example (Greatest common divisor)

gcd(x, y) =

{
x if y = 0
gcd(y, mod(x, y)) otherwise

gcd(21, 15) ⇒ gcd(15, 6) ⇒ gcd(6, 3) ⇒ gcd(3, 0) ⇒ 3

Question: What decreases in the recursive call?

Logic and Mechanized Reasoning 15 / 39



Induction Examples: General Recursion II

Example

gcd(x, y) =

{
x if y = 0
gcd(y, mod(x, y)) otherwise

Homework: using the above definition, show that for every
nonnegative x and y, there are integers a and b such that
gcd(x, y) = ax + by.

E.g. gcd(21, 15) = −2 · 21 + 3 · 15

Hint: You can prove the claim as stated, assuming that it is
true for any smaller value of y and any x at all.

Logic and Mechanized Reasoning 16 / 39



Introduction

Induction Examples

Structural Induction

Invariants

Logic and Mechanized Reasoning 17 / 39



Structural Induction: Beyond the natural numbers

The natural numbers are an example of an inductively defined
structure:

▶ 0 is a natural number.

▶ If x is a natural number, so is succ(x).

Can we also define datastructures in a similar way?

Logic and Mechanized Reasoning 18 / 39



Structural Induction: Beyond the natural numbers

The natural numbers are an example of an inductively defined
structure:

▶ 0 is a natural number.

▶ If x is a natural number, so is succ(x).

Can we also define datastructures in a similar way?

Logic and Mechanized Reasoning 18 / 39



Structural Induction: Lists

Let α be a data type.

Let List(α) be the set of all lists of type α:

▶ The element nil is an element of List(α).
▶ If a is an element of α and ℓ is an element of List(α), then

the element cons(a, ℓ) is an element of List(α).

Notation:

▶ nil denotes the empty list, also denote by [].

▶ cons(a, ℓ) denotes adding a to the beginning of list ℓ, also
written as a :: ℓ

Example

The list of natural numbers [1, 2, 3] would be written as
cons(1, cons(2, cons(3, nil))) or 1 :: (2 :: (3 :: []))

Logic and Mechanized Reasoning 19 / 39



Structural Induction: Lists

Let α be a data type.

Let List(α) be the set of all lists of type α:

▶ The element nil is an element of List(α).
▶ If a is an element of α and ℓ is an element of List(α), then

the element cons(a, ℓ) is an element of List(α).

Notation:

▶ nil denotes the empty list, also denote by [].

▶ cons(a, ℓ) denotes adding a to the beginning of list ℓ, also
written as a :: ℓ

Example

The list of natural numbers [1, 2, 3] would be written as
cons(1, cons(2, cons(3, nil))) or 1 :: (2 :: (3 :: []))

Logic and Mechanized Reasoning 19 / 39



Structural Induction: Lists

Let α be a data type.

Let List(α) be the set of all lists of type α:

▶ The element nil is an element of List(α).
▶ If a is an element of α and ℓ is an element of List(α), then

the element cons(a, ℓ) is an element of List(α).

Notation:

▶ nil denotes the empty list, also denote by [].

▶ cons(a, ℓ) denotes adding a to the beginning of list ℓ, also
written as a :: ℓ

Example

The list of natural numbers [1, 2, 3] would be written as
cons(1, cons(2, cons(3, nil))) or 1 :: (2 :: (3 :: []))

Logic and Mechanized Reasoning 19 / 39



Structural Induction: Append

Definition of append:

append(nil, m) = m
append(cons(a, ℓ), m) = cons(a, append(ℓ, m))

Alternatively written as:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Logic and Mechanized Reasoning 20 / 39



Structural Induction: Append

Definition of append:

append(nil, m) = m
append(cons(a, ℓ), m) = cons(a, append(ℓ, m))

Alternatively written as:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Logic and Mechanized Reasoning 20 / 39



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, we have ℓ++ [] = ℓ.

Proof.
Base case: [] ++ [] = []
Inductive case: Suppose we have ℓ++ [] = ℓ

(a :: ℓ) ++ [] = a :: (ℓ++ [])

= a :: ℓ

Logic and Mechanized Reasoning 21 / 39



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, we have ℓ++ [] = ℓ.

Proof.
Base case:

[] ++ [] = []
Inductive case: Suppose we have ℓ++ [] = ℓ

(a :: ℓ) ++ [] = a :: (ℓ++ [])

= a :: ℓ

Logic and Mechanized Reasoning 21 / 39



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, we have ℓ++ [] = ℓ.

Proof.
Base case: [] ++ [] = []
Inductive case:

Suppose we have ℓ++ [] = ℓ

(a :: ℓ) ++ [] = a :: (ℓ++ [])

= a :: ℓ

Logic and Mechanized Reasoning 21 / 39



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, we have ℓ++ [] = ℓ.

Proof.
Base case: [] ++ [] = []
Inductive case: Suppose we have ℓ++ [] = ℓ

(a :: ℓ) ++ [] =

a :: (ℓ++ [])

= a :: ℓ

Logic and Mechanized Reasoning 21 / 39



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, we have ℓ++ [] = ℓ.

Proof.
Base case: [] ++ [] = []
Inductive case: Suppose we have ℓ++ [] = ℓ

(a :: ℓ) ++ [] = a :: (ℓ++ [])

= a :: ℓ

Logic and Mechanized Reasoning 21 / 39



Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, we have ℓ++ [] = ℓ.

Proof.
Base case: [] ++ [] = []
Inductive case: Suppose we have ℓ++ [] = ℓ

(a :: ℓ) ++ [] = a :: (ℓ++ [])

= a :: ℓ

Logic and Mechanized Reasoning 21 / 39



Structural Induction: Associativity of append
Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, m, n: ℓ++ (m ++ n) = (ℓ++ m) ++ n

Proof.
Base case: [] ++ (m ++ n) = m ++ n = ([] ++ m) ++ n
Inductive case:
Suppose we have ℓ++ (m ++ n) = (ℓ++ m) ++ n

(a :: ℓ) ++ (m ++ n) = a :: (ℓ++ (m ++ n))
= a :: ((ℓ++ m) ++ n)
= (a :: (ℓ++ m)) ++ n
= ((a :: ℓ) ++ m) ++ n

Logic and Mechanized Reasoning 22 / 39



Structural Induction: Associativity of append
Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, m, n: ℓ++ (m ++ n) = (ℓ++ m) ++ n

Proof.
Base case:

[] ++ (m ++ n) = m ++ n = ([] ++ m) ++ n
Inductive case:
Suppose we have ℓ++ (m ++ n) = (ℓ++ m) ++ n

(a :: ℓ) ++ (m ++ n) = a :: (ℓ++ (m ++ n))
= a :: ((ℓ++ m) ++ n)
= (a :: (ℓ++ m)) ++ n
= ((a :: ℓ) ++ m) ++ n

Logic and Mechanized Reasoning 22 / 39



Structural Induction: Associativity of append
Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, m, n: ℓ++ (m ++ n) = (ℓ++ m) ++ n

Proof.
Base case: [] ++ (m ++ n) = m ++ n = ([] ++ m) ++ n
Inductive case:

Suppose we have ℓ++ (m ++ n) = (ℓ++ m) ++ n

(a :: ℓ) ++ (m ++ n) = a :: (ℓ++ (m ++ n))
= a :: ((ℓ++ m) ++ n)
= (a :: (ℓ++ m)) ++ n
= ((a :: ℓ) ++ m) ++ n

Logic and Mechanized Reasoning 22 / 39



Structural Induction: Associativity of append
Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, m, n: ℓ++ (m ++ n) = (ℓ++ m) ++ n

Proof.
Base case: [] ++ (m ++ n) = m ++ n = ([] ++ m) ++ n
Inductive case:
Suppose we have ℓ++ (m ++ n) = (ℓ++ m) ++ n

(a :: ℓ) ++ (m ++ n) =

a :: (ℓ++ (m ++ n))
= a :: ((ℓ++ m) ++ n)
= (a :: (ℓ++ m)) ++ n
= ((a :: ℓ) ++ m) ++ n

Logic and Mechanized Reasoning 22 / 39



Structural Induction: Associativity of append
Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, m, n: ℓ++ (m ++ n) = (ℓ++ m) ++ n

Proof.
Base case: [] ++ (m ++ n) = m ++ n = ([] ++ m) ++ n
Inductive case:
Suppose we have ℓ++ (m ++ n) = (ℓ++ m) ++ n

(a :: ℓ) ++ (m ++ n) = a :: (ℓ++ (m ++ n))
= a :: ((ℓ++ m) ++ n)
= (a :: (ℓ++ m)) ++ n
= ((a :: ℓ) ++ m) ++ n

Logic and Mechanized Reasoning 22 / 39



Structural Induction: The function append1 (or snoc)

The function append1 adds an element to the end of a list:

append1(nil, a) = cons(a, nil)
append1(cons(b, ℓ), a) = cons(b, append1(ℓ, a))

More compactly it can be written as:

append1([], a) = [a]
append1(b :: ℓ, a) = b :: append1(ℓ, a)

Observe that append1(ℓ, a) equals ℓ++ [a]

Logic and Mechanized Reasoning 23 / 39



Structural Induction: The function append1 (or snoc)

The function append1 adds an element to the end of a list:

append1(nil, a) = cons(a, nil)
append1(cons(b, ℓ), a) = cons(b, append1(ℓ, a))

More compactly it can be written as:

append1([], a) = [a]
append1(b :: ℓ, a) = b :: append1(ℓ, a)

Observe that append1(ℓ, a) equals ℓ++ [a]

Logic and Mechanized Reasoning 23 / 39



Structural Induction: The function append1 (or snoc)

The function append1 adds an element to the end of a list:

append1(nil, a) = cons(a, nil)
append1(cons(b, ℓ), a) = cons(b, append1(ℓ, a))

More compactly it can be written as:

append1([], a) = [a]
append1(b :: ℓ, a) = b :: append1(ℓ, a)

Observe that append1(ℓ, a) equals ℓ++ [a]

Logic and Mechanized Reasoning 23 / 39



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For all List ℓ, m: reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

reverse((a :: ℓ) ++ m) = reverse(a :: (ℓ++ m))

= reverse(ℓ++ m) ++ [a]
= (reverse(m) ++ reverse(ℓ)) ++ [a]
= reverse(m) ++ (reverse(ℓ) ++ [a])
= reverse(m) ++ reverse(a :: ℓ)

Logic and Mechanized Reasoning 24 / 39



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For all List ℓ, m: reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

reverse((a :: ℓ) ++ m) = reverse(a :: (ℓ++ m))

= reverse(ℓ++ m) ++ [a]
= (reverse(m) ++ reverse(ℓ)) ++ [a]
= reverse(m) ++ (reverse(ℓ) ++ [a])
= reverse(m) ++ reverse(a :: ℓ)

Logic and Mechanized Reasoning 24 / 39



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For all List ℓ, m: reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

Proof.
Base case:

r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

reverse((a :: ℓ) ++ m) = reverse(a :: (ℓ++ m))

= reverse(ℓ++ m) ++ [a]
= (reverse(m) ++ reverse(ℓ)) ++ [a]
= reverse(m) ++ (reverse(ℓ) ++ [a])
= reverse(m) ++ reverse(a :: ℓ)

Logic and Mechanized Reasoning 24 / 39



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For all List ℓ, m: reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:

Suppose we have reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

reverse((a :: ℓ) ++ m) = reverse(a :: (ℓ++ m))

= reverse(ℓ++ m) ++ [a]
= (reverse(m) ++ reverse(ℓ)) ++ [a]
= reverse(m) ++ (reverse(ℓ) ++ [a])
= reverse(m) ++ reverse(a :: ℓ)

Logic and Mechanized Reasoning 24 / 39



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For all List ℓ, m: reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

reverse((a :: ℓ) ++ m) =

reverse(a :: (ℓ++ m))

= reverse(ℓ++ m) ++ [a]
= (reverse(m) ++ reverse(ℓ)) ++ [a]
= reverse(m) ++ (reverse(ℓ) ++ [a])
= reverse(m) ++ reverse(a :: ℓ)

Logic and Mechanized Reasoning 24 / 39



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For all List ℓ, m: reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

reverse((a :: ℓ) ++ m) = reverse(a :: (ℓ++ m))

= reverse(ℓ++ m) ++ [a]
= (reverse(m) ++ reverse(ℓ)) ++ [a]
= reverse(m) ++ (reverse(ℓ) ++ [a])
= reverse(m) ++ reverse(a :: ℓ)

Logic and Mechanized Reasoning 24 / 39



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For all List ℓ, m: reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

reverse((a :: ℓ) ++ m) = reverse(a :: (ℓ++ m))

= reverse(ℓ++ m) ++ [a]

= (reverse(m) ++ reverse(ℓ)) ++ [a]
= reverse(m) ++ (reverse(ℓ) ++ [a])
= reverse(m) ++ reverse(a :: ℓ)

Logic and Mechanized Reasoning 24 / 39



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For all List ℓ, m: reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

reverse((a :: ℓ) ++ m) = reverse(a :: (ℓ++ m))

= reverse(ℓ++ m) ++ [a]
= (reverse(m) ++ reverse(ℓ)) ++ [a]

= reverse(m) ++ (reverse(ℓ) ++ [a])
= reverse(m) ++ reverse(a :: ℓ)

Logic and Mechanized Reasoning 24 / 39



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For all List ℓ, m: reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

reverse((a :: ℓ) ++ m) = reverse(a :: (ℓ++ m))

= reverse(ℓ++ m) ++ [a]
= (reverse(m) ++ reverse(ℓ)) ++ [a]
= reverse(m) ++ (reverse(ℓ) ++ [a])

= reverse(m) ++ reverse(a :: ℓ)

Logic and Mechanized Reasoning 24 / 39



Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For all List ℓ, m: reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

reverse((a :: ℓ) ++ m) = reverse(a :: (ℓ++ m))

= reverse(ℓ++ m) ++ [a]
= (reverse(m) ++ reverse(ℓ)) ++ [a]
= reverse(m) ++ (reverse(ℓ) ++ [a])
= reverse(m) ++ reverse(a :: ℓ)

Logic and Mechanized Reasoning 24 / 39



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For every List ℓ holds that reverse(reverse(ℓ)) = ℓ

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(ℓ)) = ℓ

reverse(reverse(a :: ℓ)) = reverse(reverse(ℓ) ++ [a])
= reverse([a]) ++ reverse(reverse(ℓ))
= [a] ++ reverse(reverse(ℓ))
= [a] ++ ℓ

= a :: ℓ

Logic and Mechanized Reasoning 25 / 39



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For every List ℓ holds that reverse(reverse(ℓ)) = ℓ

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(ℓ)) = ℓ

reverse(reverse(a :: ℓ)) =

reverse(reverse(ℓ) ++ [a])
= reverse([a]) ++ reverse(reverse(ℓ))
= [a] ++ reverse(reverse(ℓ))
= [a] ++ ℓ

= a :: ℓ

Logic and Mechanized Reasoning 25 / 39



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For every List ℓ holds that reverse(reverse(ℓ)) = ℓ

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(ℓ)) = ℓ

reverse(reverse(a :: ℓ)) = reverse(reverse(ℓ) ++ [a])

= reverse([a]) ++ reverse(reverse(ℓ))
= [a] ++ reverse(reverse(ℓ))
= [a] ++ ℓ

= a :: ℓ

Logic and Mechanized Reasoning 25 / 39



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For every List ℓ holds that reverse(reverse(ℓ)) = ℓ

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(ℓ)) = ℓ

reverse(reverse(a :: ℓ)) = reverse(reverse(ℓ) ++ [a])
= reverse([a]) ++ reverse(reverse(ℓ))

= [a] ++ reverse(reverse(ℓ))
= [a] ++ ℓ

= a :: ℓ

Logic and Mechanized Reasoning 25 / 39



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For every List ℓ holds that reverse(reverse(ℓ)) = ℓ

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(ℓ)) = ℓ

reverse(reverse(a :: ℓ)) = reverse(reverse(ℓ) ++ [a])
= reverse([a]) ++ reverse(reverse(ℓ))
= [a] ++ reverse(reverse(ℓ))

= [a] ++ ℓ

= a :: ℓ

Logic and Mechanized Reasoning 25 / 39



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For every List ℓ holds that reverse(reverse(ℓ)) = ℓ

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(ℓ)) = ℓ

reverse(reverse(a :: ℓ)) = reverse(reverse(ℓ) ++ [a])
= reverse([a]) ++ reverse(reverse(ℓ))
= [a] ++ reverse(reverse(ℓ))
= [a] ++ ℓ

= a :: ℓ

Logic and Mechanized Reasoning 25 / 39



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For every List ℓ holds that reverse(reverse(ℓ)) = ℓ

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(ℓ)) = ℓ

reverse(reverse(a :: ℓ)) = reverse(reverse(ℓ) ++ [a])
= reverse([a]) ++ reverse(reverse(ℓ))
= [a] ++ reverse(reverse(ℓ))
= [a] ++ ℓ

= a :: ℓ
Logic and Mechanized Reasoning 25 / 39



Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For every List ℓ holds that reverse(reverse(ℓ)) = ℓ

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(ℓ)) = ℓ

reverse(reverse(a :: ℓ)) = reverse(reverse(ℓ) ++ [a])
= reverse([a]) ++ reverse(reverse(ℓ))
= [a] ++ reverse(reverse(ℓ))
= [a] ++ ℓ

= a :: ℓ
Logic and Mechanized Reasoning 25 / 39



Structural Induction: What is the complexity of reverse?

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Example
reverse([1, 2, 3]) = (reverse([2, 3])) ++ [1]

= ((reverse([3])) ++ [2]) ++ [1]
= (((reverse([])) ++ [3]) ++ [2]) ++ [1]
= (([] ++ [3]) ++ [2]) ++ [1]
= ([3] ++ [2]) ++ [1]
= ((3 :: []) ++ [2]) ++ [1]
= (3 :: ([] ++ [2])) ++ [1]
= (3 :: [2]) ++ [1]
= 3 :: ([2] ++ [1])
= 3 :: ((2 :: []) ++ [1])
= 3 :: (2 :: ([] ++ [1]) = 3 :: (2 :: [1]) = [3, 2, 1]

Logic and Mechanized Reasoning 26 / 39



Structural Induction: What is the complexity of reverse?

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Example
reverse([1, 2, 3]) = (reverse([2, 3])) ++ [1]

= ((reverse([3])) ++ [2]) ++ [1]
= (((reverse([])) ++ [3]) ++ [2]) ++ [1]
= (([] ++ [3]) ++ [2]) ++ [1]
= ([3] ++ [2]) ++ [1]

= ((3 :: []) ++ [2]) ++ [1]
= (3 :: ([] ++ [2])) ++ [1]
= (3 :: [2]) ++ [1]
= 3 :: ([2] ++ [1])
= 3 :: ((2 :: []) ++ [1])
= 3 :: (2 :: ([] ++ [1]) = 3 :: (2 :: [1]) = [3, 2, 1]

Logic and Mechanized Reasoning 26 / 39



Structural Induction: What is the complexity of reverse?

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Example
reverse([1, 2, 3]) = (reverse([2, 3])) ++ [1]

= ((reverse([3])) ++ [2]) ++ [1]
= (((reverse([])) ++ [3]) ++ [2]) ++ [1]
= (([] ++ [3]) ++ [2]) ++ [1]
= ([3] ++ [2]) ++ [1]
= ((3 :: []) ++ [2]) ++ [1]
= (3 :: ([] ++ [2])) ++ [1]
= (3 :: [2]) ++ [1]
= 3 :: ([2] ++ [1])
= 3 :: ((2 :: []) ++ [1])
= 3 :: (2 :: ([] ++ [1]) = 3 :: (2 :: [1]) = [3, 2, 1]

Logic and Mechanized Reasoning 26 / 39



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

reverse ′(ℓ) = reverseAux(ℓ, [])

Lemma
For every List ℓ, m: reverseAux(ℓ, m) = reverse(ℓ) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(ℓ, m) = reverse(ℓ) ++ m

reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

= reverse(ℓ) ++ (a :: m)

= reverse(ℓ) ++ ([a] ++ m)

= (reverse(ℓ) ++ [a]) ++ m
= reverse(a :: ℓ) ++ m

Logic and Mechanized Reasoning 27 / 39



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

reverse ′(ℓ) = reverseAux(ℓ, [])
Lemma
For every List ℓ, m: reverseAux(ℓ, m) = reverse(ℓ) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(ℓ, m) = reverse(ℓ) ++ m

reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

= reverse(ℓ) ++ (a :: m)

= reverse(ℓ) ++ ([a] ++ m)

= (reverse(ℓ) ++ [a]) ++ m
= reverse(a :: ℓ) ++ m

Logic and Mechanized Reasoning 27 / 39



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

reverse ′(ℓ) = reverseAux(ℓ, [])
Lemma
For every List ℓ, m: reverseAux(ℓ, m) = reverse(ℓ) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(ℓ, m) = reverse(ℓ) ++ m

reverseAux((a :: ℓ), m) =

reverseAux(ℓ, (a :: m))

= reverse(ℓ) ++ (a :: m)

= reverse(ℓ) ++ ([a] ++ m)

= (reverse(ℓ) ++ [a]) ++ m
= reverse(a :: ℓ) ++ m

Logic and Mechanized Reasoning 27 / 39



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

reverse ′(ℓ) = reverseAux(ℓ, [])
Lemma
For every List ℓ, m: reverseAux(ℓ, m) = reverse(ℓ) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(ℓ, m) = reverse(ℓ) ++ m

reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

= reverse(ℓ) ++ (a :: m)

= reverse(ℓ) ++ ([a] ++ m)

= (reverse(ℓ) ++ [a]) ++ m
= reverse(a :: ℓ) ++ m

Logic and Mechanized Reasoning 27 / 39



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

reverse ′(ℓ) = reverseAux(ℓ, [])
Lemma
For every List ℓ, m: reverseAux(ℓ, m) = reverse(ℓ) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(ℓ, m) = reverse(ℓ) ++ m

reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

= reverse(ℓ) ++ (a :: m)

= reverse(ℓ) ++ ([a] ++ m)

= (reverse(ℓ) ++ [a]) ++ m
= reverse(a :: ℓ) ++ m

Logic and Mechanized Reasoning 27 / 39



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

reverse ′(ℓ) = reverseAux(ℓ, [])
Lemma
For every List ℓ, m: reverseAux(ℓ, m) = reverse(ℓ) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(ℓ, m) = reverse(ℓ) ++ m

reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

= reverse(ℓ) ++ (a :: m)

= reverse(ℓ) ++ ([a] ++ m)

= (reverse(ℓ) ++ [a]) ++ m
= reverse(a :: ℓ) ++ m

Logic and Mechanized Reasoning 27 / 39



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

reverse ′(ℓ) = reverseAux(ℓ, [])
Lemma
For every List ℓ, m: reverseAux(ℓ, m) = reverse(ℓ) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(ℓ, m) = reverse(ℓ) ++ m

reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

= reverse(ℓ) ++ (a :: m)

= reverse(ℓ) ++ ([a] ++ m)

= (reverse(ℓ) ++ [a]) ++ m

= reverse(a :: ℓ) ++ m

Logic and Mechanized Reasoning 27 / 39



Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

reverse ′(ℓ) = reverseAux(ℓ, [])
Lemma
For every List ℓ, m: reverseAux(ℓ, m) = reverse(ℓ) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(ℓ, m) = reverse(ℓ) ++ m

reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

= reverse(ℓ) ++ (a :: m)

= reverse(ℓ) ++ ([a] ++ m)

= (reverse(ℓ) ++ [a]) ++ m
= reverse(a :: ℓ) ++ m

Logic and Mechanized Reasoning 27 / 39



Structural Induction: Complexity Measurements

We can assign any complexity measure to a data type, and do
induction on complexity, as long as the measure is well founded.

length([]) = 0
length(a :: ℓ) = length(ℓ) + 1

Logic and Mechanized Reasoning 28 / 39



Structural Induction: Properties of Extended Binary Trees

▶ The element empty is a binary tree.

▶ If s and t are finite binary trees, so is the node(s, t).

Compute the size of an extended binary tree as follows:

size(empty) = 0
size(node(s, t)) = 1 + size(s) + size(t)

Compute the depth of an extended binary tree as follows:

depth(empty) = 0
depth(node(s, t)) = 1 + max(depth(s), depth(t))

Logic and Mechanized Reasoning 29 / 39



Structural Induction: Properties of Extended Binary Trees

▶ The element empty is a binary tree.

▶ If s and t are finite binary trees, so is the node(s, t).

Compute the size of an extended binary tree as follows:

size(empty) = 0
size(node(s, t)) = 1 + size(s) + size(t)

Compute the depth of an extended binary tree as follows:

depth(empty) = 0
depth(node(s, t)) = 1 + max(depth(s), depth(t))

Logic and Mechanized Reasoning 29 / 39



Structural Induction: Properties of Extended Binary Trees

▶ The element empty is a binary tree.

▶ If s and t are finite binary trees, so is the node(s, t).

Compute the size of an extended binary tree as follows:

size(empty) = 0
size(node(s, t)) = 1 + size(s) + size(t)

Compute the depth of an extended binary tree as follows:

depth(empty) = 0
depth(node(s, t)) = 1 + max(depth(s), depth(t))

Logic and Mechanized Reasoning 29 / 39



Introduction

Induction Examples

Structural Induction

Invariants

Logic and Mechanized Reasoning 30 / 39



Invariants: Mutilated Chessboard I

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:

▶ There are more white squares than black squares; and

▶ A domino covers exactly one white and one black square.

Logic and Mechanized Reasoning 31 / 39



Invariants: Mutilated Chessboard I

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:

▶ There are more white squares than black squares; and

▶ A domino covers exactly one white and one black square.

Logic and Mechanized Reasoning 31 / 39



Invariants: Mutilated Chessboard II

The chessboard pattern invariant is hard to find

Mechanized reasoning can find alternative invariants

Logic and Mechanized Reasoning 32 / 39



Invariants: MU Puzzle by Douglas Hofstadter

Consider string with letters M, I, and U.

1. Replace xI by xIU: append any string ending in I with U.

2. Replace Mx by Mxx: double the string after the initial M.

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

The starting with the string MI. Can we get to MU?

What is the invariant?

Logic and Mechanized Reasoning 33 / 39



Invariants: MU Puzzle by Douglas Hofstadter

Consider string with letters M, I, and U.

1. Replace xI by xIU: append any string ending in I with U.

2. Replace Mx by Mxx: double the string after the initial M.

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

The starting with the string MI. Can we get to MU?

What is the invariant?

Logic and Mechanized Reasoning 33 / 39



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2a (mod 3) for a ∈ N

Base case: a = 0

Induction:

1. Replace xI by xIU: append any string ending in I with U.

2. Replace Mx by Mxx: double the string after the initial M.

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 34 / 39



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2a (mod 3) for a ∈ N

Base case: a = 0

Induction:
1. Replace xI by xIU: append any string ending in I with U.

▶ This doesn’t change the number of Is

2. Replace Mx by Mxx: double the string after the initial M.

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 34 / 39



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2a (mod 3) for a ∈ N

Base case: a = 0

Induction:
1. Replace xI by xIU: append any string ending in I with U.

▶ This doesn’t change the number of Is
2. Replace Mx by Mxx: double the string after the initial M.

▶ This doubles the number of Is: increases a by 1

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 34 / 39



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2a (mod 3) for a ∈ N

Base case: a = 0

Induction:
1. Replace xI by xIU: append any string ending in I with U.

▶ This doesn’t change the number of Is
2. Replace Mx by Mxx: double the string after the initial M.

▶ This doubles the number of Is: increases a by 1
3. Replace xIIIy by xUy: replace three consecutive Is by U.

▶ It reduces the number of Is by 3: no change (mod 3)
4. Replace xUUy by xy: delete any consecutive pair of Us.

Logic and Mechanized Reasoning 34 / 39



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2a (mod 3) for a ∈ N

Base case: a = 0

Induction:
1. Replace xI by xIU: append any string ending in I with U.

▶ This doesn’t change the number of Is
2. Replace Mx by Mxx: double the string after the initial M.

▶ This doubles the number of Is: increases a by 1
3. Replace xIIIy by xUy: replace three consecutive Is by U.

▶ It reduces the number of Is by 3: no change (mod 3)
4. Replace xUUy by xy: delete any consecutive pair of Us.

▶ This doesn’t change the number of Is

Logic and Mechanized Reasoning 34 / 39



Invariants: Golomb’s Tromino Theorem

A tromino is an L-shaped configuration of three squares.

Theorem (Golomb’s Trominoes Theorem)

Any 2n × 2n chessboard with one square removed can be tiled
with trominoes.

Logic and Mechanized Reasoning 35 / 39



Invariants: Trominoes 2 × 2 grid

Theorem (Golomb’s Trominoes Theorem)

Any 2n × 2n chessboard with one square removed can be tiled
with trominoes.

Let’s first consider the n = 1 case.

All cases are isomorphic. A tromino covers the remaining grid.

Logic and Mechanized Reasoning 36 / 39



Invariants: Larger Trominoes

Use 4 trominoes of size n to make on of size 2n

Logic and Mechanized Reasoning 37 / 39



Invariants: Trominoes 8 × 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning 38 / 39



Invariants: Trominoes 8 × 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning 38 / 39



Invariants: Trominoes 8 × 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning 38 / 39



Invariants: Trominoes 8 × 8 grid

Cover the three quadrants that are not blocked by the square

Logic and Mechanized Reasoning 38 / 39



Invariants: Loop Invariants

Invariants are not restricted to recursive definitions. Imperative
code frequently has invariants and the can be crucial to prove
correctness.

Example (Loop invariant)

int j = 9;

for (int i=0; i<10; i++)

j--;

The code above has the loop invariant i + j == 9

Logic and Mechanized Reasoning 39 / 39


	Introduction
	Induction Examples
	Structural Induction
	Invariants

