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Material, Homework, and Grading

Homepage: https://www.cs.cmu.edu/~mheule/15311-s24/

Textbook: https://avigad.github.io/lamr/

Repository: https://github.com/avigad/lamr

Homework on gradescope

▶ Assignments each Wednesday and due a week later

▶ Obtain and submit homework on Gradescope

▶ One day late policy, penalty 3 points (10%)

▶ Email us if you didn’t receive an invitation

Grading

▶ Homework 40% (10 times 30 points)

▶ Exams 60% (3 times 150 points)
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Office Hours

Jeremy: Tuesdays at 10-11am

Joseph: Wednesdays at 10:30-11:30am

Josh: Tuesdays at 4:30-5:30pm

Tika: Wednesdays at 2-3pm

Alex: Mondays at 4-5pm

What time would you prefer?
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Introduction: Ramon Lull, a 13th Century Monk

Three fundamental ideas in the work of Ramon Lull

1. Use symbols or tokens to stand for ideas or concepts

2. Compound ideas and concepts are formed by putting
together simpler ones

3. Mechanical devices can serve as aids to reasoning
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Introduction: Gottfried Leibniz

Leibniz about a calculus for reasoning:

If controversies were to arise, there would be no more
need of disputation between two philosophers than be-
tween two calculators. For it would suffice for them to
take their pencils in their hands and to sit down at the
abacus, and say to each other (and if they so wish also
to a friend called to help): Let us calculate.

Calculemus! has become a motto of computer scientists and
computationally-minded mathematicians today.
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Introduction: Kurt Gödel

In 1931, Kurt Gödel wrote:

The development of mathematics towards greater pre-
cision has led, as is well known, to the formalization of
large tracts of it, so that one can prove any theorem
using nothing but a few mechanical rules.

“Mechanical” predates the modern computer by a decade

Today we have a million-line mathematical library in Lean
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Introduction: Course Overview

▶ Theory We will teach you the syntax and semantics of
propositional and first-order logic. The goal is to teach
you to think about and talk about logic in a
mathematically rigorous way.

▶ Implementation We will teach you how to implement
logical syntax in a functional programming language called
Lean. We will also teach you how to carry out fundamental
operations and transformations on these objects.

▶ Application We will show you how to use logic-based
automated reasoning tools to solve interesting and difficult
problems.
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Induction Examples: Sum of Natural Numbers

Theorem
For every natural number n,

∑
i≤n i = n(n + 1)/2

Proof by induction.

In the base case, we have
∑

i≤0 i = 0 = 0(0 + 1)/2

In the inductive case, assuming
∑

i≤n i = n(n + 1)/2

∑
i≤n+1

i =
∑
i≤n

i + (n + 1)

= n(n + 1)/2 + 2(n + 1)/2
= (n + 1)(n + 2)/2
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Induction Examples: Recursion

A close companion to induction is the principle of recursion

g(0) = 1
g(n + 1) = (n + 1)g(n)

The function g(n) is equivalent to factorial: n!
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Induction Examples: Factorial Example

Theorem ∑
i≤n

i · i! = (n + 1)! − 1

Proof by induction.

The base case is easy. Assuming the claim holds for n

∑
i≤n+1

i · i! =
∑
i≤n

i · i! + (n + 1) · (n + 1)!

= (n + 1)! + (n + 1) · (n + 1)! − 1
= (n + 1)! · (1 + (n + 1))− 1
= (n + 2)! − 1
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Induction Examples: General Recursion I

In general, we can define a function recursively as long as
some well-founded measure on the arguments decreases.

Example (Greatest common divisor)

gcd(x, y) =

{
x if y = 0
gcd(y, mod(x, y)) otherwise

gcd(21, 15) ⇒ gcd(15, 6) ⇒ gcd(6, 3) ⇒ gcd(3, 0) ⇒ 3

Question: What decreases in the recursive call?
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Induction Examples: General Recursion II

Example

gcd(x, y) =

{
x if y = 0
gcd(y, mod(x, y)) otherwise

Homework: using the above definition, show that for every
nonnegative x and y, there are integers a and b such that
gcd(x, y) = ax + by.

E.g. gcd(21, 15) = −2 · 21 + 3 · 15

Hint: You can prove the claim as stated, assuming that it is
true for any smaller value of y and any x at all.
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Structural Induction: Beyond the natural numbers

The natural numbers are an example of an inductively defined
structure:

▶ 0 is a natural number.

▶ If x is a natural number, so is succ(x).

Can we also define datastructures in a similar way?
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Structural Induction: Lists

Let α be a data type.

Let List(α) be the set of all lists of type α:

▶ The element nil is an element of List(α).
▶ If a is an element of α and ℓ is an element of List(α), then

the element cons(a, ℓ) is an element of List(α).

Notation:

▶ nil denotes the empty list, also denote by [].

▶ cons(a, ℓ) denotes adding a to the beginning of list ℓ, also
written as a :: ℓ

Example

The list of natural numbers [1, 2, 3] would be written as
cons(1, cons(2, cons(3, nil))) or 1 :: (2 :: (3 :: []))
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Structural Induction: Append

Definition of append:

append(nil, m) = m
append(cons(a, ℓ), m) = cons(a, append(ℓ, m))

Alternatively written as:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)
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Structural Induction: append Lemma

Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, we have ℓ++ [] = ℓ.

Proof.
Base case: [] ++ [] = []
Inductive case: Suppose we have ℓ++ [] = ℓ

(a :: ℓ) ++ [] = a :: (ℓ++ [])

= a :: ℓ
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Structural Induction: Associativity of append
Recall the definition of append:

[] ++ m = m
(a :: ℓ) ++ m = a :: (ℓ++ m)

Lemma
For every List ℓ, m, n: ℓ++ (m ++ n) = (ℓ++ m) ++ n

Proof.
Base case: [] ++ (m ++ n) = m ++ n = ([] ++ m) ++ n
Inductive case:
Suppose we have ℓ++ (m ++ n) = (ℓ++ m) ++ n

(a :: ℓ) ++ (m ++ n) = a :: (ℓ++ (m ++ n))
= a :: ((ℓ++ m) ++ n)
= (a :: (ℓ++ m)) ++ n
= ((a :: ℓ) ++ m) ++ n
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Structural Induction: The function append1 (or snoc)

The function append1 adds an element to the end of a list:

append1(nil, a) = cons(a, nil)
append1(cons(b, ℓ), a) = cons(b, append1(ℓ, a))

More compactly it can be written as:

append1([], a) = [a]
append1(b :: ℓ, a) = b :: append1(ℓ, a)

Observe that append1(ℓ, a) equals ℓ++ [a]
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Structural Induction: reverse of Lists

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For all List ℓ, m: reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

Proof.
Base case: r([] ++ m) = r(m) = r(m) ++ [] = r(m) ++ r([])
Induction:
Suppose we have reverse(ℓ++ m) = reverse(m) ++ reverse(ℓ)

reverse((a :: ℓ) ++ m) = reverse(a :: (ℓ++ m))

= reverse(ℓ++ m) ++ [a]
= (reverse(m) ++ reverse(ℓ)) ++ [a]
= reverse(m) ++ (reverse(ℓ) ++ [a])
= reverse(m) ++ reverse(a :: ℓ)
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Structural Induction: reverse of reverse

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Lemma
For every List ℓ holds that reverse(reverse(ℓ)) = ℓ

Proof.
Base case: reverse(reverse([])) = reverse([]) = []
Induction: Suppose we have reverse(reverse(ℓ)) = ℓ

reverse(reverse(a :: ℓ)) = reverse(reverse(ℓ) ++ [a])
= reverse([a]) ++ reverse(reverse(ℓ))
= [a] ++ reverse(reverse(ℓ))
= [a] ++ ℓ

= a :: ℓ
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Structural Induction: What is the complexity of reverse?

reverse([]) = []

reverse(a :: ℓ) = reverse(ℓ) ++ [a]

Example
reverse([1, 2, 3]) = (reverse([2, 3])) ++ [1]

= ((reverse([3])) ++ [2]) ++ [1]
= (((reverse([])) ++ [3]) ++ [2]) ++ [1]
= (([] ++ [3]) ++ [2]) ++ [1]
= ([3] ++ [2]) ++ [1]
= ((3 :: []) ++ [2]) ++ [1]
= (3 :: ([] ++ [2])) ++ [1]
= (3 :: [2]) ++ [1]
= 3 :: ([2] ++ [1])
= 3 :: ((2 :: []) ++ [1])
= 3 :: (2 :: ([] ++ [1]) = 3 :: (2 :: [1]) = [3, 2, 1]
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Structural Induction: Efficient Execution
Consider an alternative function to reverse a list:

reverseAux([], m) = m
reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

reverse ′(ℓ) = reverseAux(ℓ, [])

Lemma
For every List ℓ, m: reverseAux(ℓ, m) = reverse(ℓ) ++ m

Proof.
Base case: reverseAux([], m) = m = [] ++ m = reverse([]) ++ m
Induction: Assume reverseAux(ℓ, m) = reverse(ℓ) ++ m

reverseAux((a :: ℓ), m) = reverseAux(ℓ, (a :: m))

= reverse(ℓ) ++ (a :: m)

= reverse(ℓ) ++ ([a] ++ m)

= (reverse(ℓ) ++ [a]) ++ m
= reverse(a :: ℓ) ++ m
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Structural Induction: Complexity Measurements

We can assign any complexity measure to a data type, and do
induction on complexity, as long as the measure is well founded.

length([]) = 0
length(a :: ℓ) = length(ℓ) + 1
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Structural Induction: Properties of Extended Binary Trees

▶ The element empty is a binary tree.

▶ If s and t are finite binary trees, so is the node(s, t).

Compute the size of an extended binary tree as follows:

size(empty) = 0
size(node(s, t)) = 1 + size(s) + size(t)

Compute the depth of an extended binary tree as follows:

depth(empty) = 0
depth(node(s, t)) = 1 + max(depth(s), depth(t))
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Invariants: Mutilated Chessboard I

Can a chessboard be fully covered with dominos after
removing two diagonally opposite corner squares?

Easy to refute based on the following two observations:

▶ There are more white squares than black squares; and

▶ A domino covers exactly one white and one black square.
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Invariants: Mutilated Chessboard II

The chessboard pattern invariant is hard to find

Mechanized reasoning can find alternative invariants
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Invariants: MU Puzzle by Douglas Hofstadter

Consider string with letters M, I, and U.

1. Replace xI by xIU: append any string ending in I with U.

2. Replace Mx by Mxx: double the string after the initial M.

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

The starting with the string MI. Can we get to MU?

What is the invariant?

Logic and Mechanized Reasoning 33 / 39



Invariants: MU Puzzle by Douglas Hofstadter

Consider string with letters M, I, and U.

1. Replace xI by xIU: append any string ending in I with U.

2. Replace Mx by Mxx: double the string after the initial M.

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.

The starting with the string MI. Can we get to MU?

What is the invariant?

Logic and Mechanized Reasoning 33 / 39



Invariants: MU Puzzle Invariant

Invariant: The number of Is is 2a (mod 3) for a ∈ N

Base case: a = 0

Induction:

1. Replace xI by xIU: append any string ending in I with U.

2. Replace Mx by Mxx: double the string after the initial M.

3. Replace xIIIy by xUy: replace three consecutive Is by U.

4. Replace xUUy by xy: delete any consecutive pair of Us.
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Invariants: Golomb’s Tromino Theorem

A tromino is an L-shaped configuration of three squares.

Theorem (Golomb’s Trominoes Theorem)

Any 2n × 2n chessboard with one square removed can be tiled
with trominoes.
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Invariants: Trominoes 2 × 2 grid

Theorem (Golomb’s Trominoes Theorem)

Any 2n × 2n chessboard with one square removed can be tiled
with trominoes.

Let’s first consider the n = 1 case.

All cases are isomorphic. A tromino covers the remaining grid.
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Invariants: Larger Trominoes

Use 4 trominoes of size n to make on of size 2n
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Invariants: Trominoes 8 × 8 grid

Cover the three quadrants that are not blocked by the square
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Invariants: Loop Invariants

Invariants are not restricted to recursive definitions. Imperative
code frequently has invariants and the can be crucial to prove
correctness.

Example (Loop invariant)

int j = 9;

for (int i=0; i<10; i++)

j--;

The code above has the loop invariant i + j == 9
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