Logic and Mechanized ReasoningPropositional Logic

Marijn J.H. Heule

Carnegie Mellon University Syntax

Semantics

Calculating with Propositions

Random Formulas

Syntax

Semantics

Calculating with Propositions

Random Formulas

Syntax: Definition

The set of propositional formulas is generated inductively:

- ightharpoonup Each variable p_i is a formula.
- ightharpoonup and \perp are formulas.
- ▶ If A is a formula, so is $\neg A$ ("not A").
- ▶ If A and B are formulas, so are
 - $ightharpoonup A \wedge B$ ("A and B"),
 - \triangleright $A \lor B$ ("A or B"),
 - ightharpoonup A
 ightharpoonup B ("A implies B"), and
 - $ightharpoonup A \leftrightarrow B$ ("A if and only if B").

Syntax: Complexity

Complexity: the number of connectives

```
complexity(p_i) = 0

complexity(\top) = 0

complexity(\bot) = 0

complexity(\neg A) = complexity(A) + 1

complexity(A \land B) = complexity(A) + complexity(B) + 1

complexity(A \lor B) = complexity(A) + complexity(B) + 1

complexity(A \to B) = complexity(A) + complexity(B) + 1

complexity(A \leftrightarrow B) = complexity(A) + complexity(B) + 1
```

Syntax: Depth

Depth of the parse tree

```
depth(p_i) = 0
depth(\top) = 0
depth(\bot) = 0
depth(\neg A) = depth(A) + 1
depth(A \land B) = \max(depth(A), depth(B)) + 1
depth(A \lor B) = \max(depth(A), depth(B)) + 1
depth(A \to B) = \max(depth(A), depth(B)) + 1
depth(A \leftrightarrow B) = \max(depth(A), depth(B)) + 1
```

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$,

Inductive case (first \neg , afterwards \wedge):

$$complexity(\neg A) =$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$,

Inductive case (first \neg , afterwards \wedge):

$$complexity(\neg A) = complexity(A) + 1$$
 \leq

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

$$\begin{array}{lcl} \textit{complexity}(\neg A) & = & \textit{complexity}(A) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 1 \\ & \leq & \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

$$\begin{array}{lll} \textit{complexity}(\neg A) & = & \textit{complexity}(A) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 1 \\ & \leq & 2^{\textit{depth}(A)} + 2^{\textit{depth}(A)} - 1 \\ & \leq & \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

$$\begin{array}{lll} \textit{complexity}(\neg A) & = & \textit{complexity}(A) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 1 \\ & \leq & 2^{\textit{depth}(A)} + 2^{\textit{depth}(A)} - 1 \\ & \leq & 2^{\textit{depth}(A) + 1} - 1 = 2^{\textit{depth}(\neg A)} - 1. \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

$$\begin{array}{lll} \textit{complexity}(\neg A) & = & \textit{complexity}(A) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 1 \\ & \leq & 2^{\textit{depth}(A)} + 2^{\textit{depth}(A)} - 1 \\ & \leq & 2^{\textit{depth}(A) + 1} - 1 = 2^{\textit{depth}(\neg A)} - 1. \\ \\ \textit{complexity}(A \land B) & = & \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

$$\begin{array}{lll} \textit{complexity}(\neg A) & = & \textit{complexity}(A) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 1 \\ & \leq & 2^{\textit{depth}(A)} + 2^{\textit{depth}(A)} - 1 \\ & \leq & 2^{\textit{depth}(A) + 1} - 1 = 2^{\textit{depth}(\neg A)} - 1. \\ \\ \textit{complexity}(A \wedge B) & = & \textit{complexity}(A) + \textit{complexity}(B) + 1 \\ & \leq & \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

$$\begin{array}{lll} \textit{complexity}(\neg A) & = & \textit{complexity}(A) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 1 \\ & \leq & 2^{\textit{depth}(A)} + 2^{\textit{depth}(A)} - 1 \\ & \leq & 2^{\textit{depth}(A) + 1} - 1 = 2^{\textit{depth}(\neg A)} - 1. \\ \\ \textit{complexity}(A \land B) & = & \textit{complexity}(A) + \textit{complexity}(B) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 2^{\textit{depth}(B)} - 1 + 1 \\ & \leq & \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

$$\begin{array}{lll} \textit{complexity}(\neg A) & = & \textit{complexity}(A) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 1 \\ & \leq & 2^{\textit{depth}(A)} + 2^{\textit{depth}(A)} - 1 \\ & \leq & 2^{\textit{depth}(A) + 1} - 1 = 2^{\textit{depth}(\neg A)} - 1. \\ \\ \textit{complexity}(A \land B) & = & \textit{complexity}(A) + \textit{complexity}(B) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 2^{\textit{depth}(B)} - 1 + 1 \\ & \leq & 2 \cdot 2^{\max(\textit{depth}(A),\textit{depth}(B))} - 1 \\ & = & \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case:
$$complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$$
, Inductive case (first \neg , afterwards \wedge):

$$\begin{array}{lll} \textit{complexity}(\neg A) & = & \textit{complexity}(A) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 1 \\ & \leq & 2^{\textit{depth}(A)} + 2^{\textit{depth}(A)} - 1 \\ & \leq & 2^{\textit{depth}(A) + 1} - 1 = 2^{\textit{depth}(\neg A)} - 1. \\ \\ \textit{complexity}(A \land B) & = & \textit{complexity}(A) + \textit{complexity}(B) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 2^{\textit{depth}(B)} - 1 + 1 \\ & \leq & 2 \cdot 2^{\max(\textit{depth}(A),\textit{depth}(B))} - 1 \\ & = & 2^{\max(\textit{depth}(A),\textit{depth}(B)) + 1} - 1 \end{array}$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$,

Inductive case (first \neg , afterwards \wedge):

$$\begin{array}{lll} \textit{complexity}(\neg A) & = & \textit{complexity}(A) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 1 \\ & \leq & 2^{\textit{depth}(A)} + 2^{\textit{depth}(A)} - 1 \\ & \leq & 2^{\textit{depth}(A)} + 2^{\textit{depth}(A)} - 1 \\ & \leq & 2^{\textit{depth}(A) + 1} - 1 = 2^{\textit{depth}(\neg A)} - 1. \\ \\ \textit{complexity}(A \wedge B) & = & \textit{complexity}(A) + \textit{complexity}(B) + 1 \\ & \leq & 2^{\textit{depth}(A)} - 1 + 2^{\textit{depth}(B)} - 1 + 1 \\ & \leq & 2 \cdot 2^{\max(\textit{depth}(A),\textit{depth}(B))} - 1 \\ & = & 2^{\textit{depth}(A \wedge B)} - 1 \\ \\ & = & 2^{\textit{depth}(A \wedge B)} - 1 \end{array}$$

Syntax: Subformulas

```
subformulas(A) = \{A\} if A is atomic

subformulas(\neg A) = \{\neg A\} \cup subformulas(A)

subformulas(A \star B) = \{A \star B\} \cup subformulas(A) \cup

subformulas(B)
```

Syntax: Subformulas

```
subformulas(A) = \{A\} if A is atomic subformulas(\neg A) = \{\neg A\} \cup subformulas(A) subformulas(A \star B) = \{A \star B\} \cup subformulas(A) \cup subformulas(B)
```

Example

Consider the formula $(\neg A \land C) \rightarrow \neg (B \lor C)$.

The *subformulas* function returns

Syntax: Subformulas

$$subformulas(A) = \{A\}$$
 if A is atomic $subformulas(\neg A) = \{\neg A\} \cup subformulas(A)$ $subformulas(A \star B) = \{A \star B\} \cup subformulas(A) \cup subformulas(B)$

```
Example Consider the formula (\neg A \land C) \rightarrow \neg (B \lor C). The subformulas function returns \{(\neg A \land C) \rightarrow \neg (B \lor C), \neg A \land C, \neg A, A, C, \neg (B \lor C), B \lor C, B)\}
```

Syntax: Proposition

Proposition

For every pair of formulas A and B, if $B \in subformulas(A)$ and $A \in subformulas(B)$ then A and B are atomic.

True or false?

Syntax: Proposition

Proposition

For every pair of formulas A and B, if $B \in subformulas(A)$ and $A \in subformulas(B)$ then A and B are atomic.

True or false?

Proof.

False. A counterexample is $A = B = \neg p$.

Syntax

Semantics

Calculating with Propositions

Random Formulas

Consider the formula $p \wedge (\neg q \vee r)$. Is it true?

Consider the formula $p \wedge (\neg q \vee r)$. Is it true?

It depends on the truth of p, q, and r.

Consider the formula $p \wedge (\neg q \vee r)$. Is it true?

It depends on the truth of p, q, and r.

Once we specify which of p, q, and r are true and which are false, the truth value of $p \wedge (\neg q \vee r)$ is completely determined.

Consider the formula $p \wedge (\neg q \vee r)$. Is it true?

It depends on the truth of p, q, and r.

Once we specify which of p, q, and r are true and which are false, the truth value of $p \wedge (\neg q \vee r)$ is completely determined.

A truth assignment τ provides this specification by mapping propositional variables to the constants \top and \bot .

Semantics: Evaluation

Semantics: Satisfiable, Unsatisfiable, and Valid

- ▶ If $[\![A]\!]_{\tau} = \top$, then A is satisfied by τ . In that case, τ is a satisfying assignment of A.
- ightharpoonup A propositional formula A is satisfiable iff there exists an assignment au that satisfies it and unsatisfiable otherwise.
- ► A propositional formula *A* is valid iff every assignment satisfies it.

Semantics: Satisfiable, Unsatisfiable, and Valid

- ▶ If $[\![A]\!]_{\tau} = \top$, then A is satisfied by τ . In that case, τ is a satisfying assignment of A.
- ightharpoonup A propositional formula A is satisfiable iff there exists an assignment au that satisfies it and unsatisfiable otherwise.
- ► A propositional formula *A* is valid iff every assignment satisfies it.

Example

Which one(s) of the formulas is satisfiable/unsatisfiable/valid?

- $\blacktriangleright (A \leftrightarrow B) \lor (\neg C)$
- \blacktriangleright $(A) \lor (\neg B) \lor (\neg A \land B)$
- \blacktriangleright $(A) \land (\neg B) \land (A \rightarrow B)$

Theorem

A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Theorem

A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.

A is valid if and only if $[\![A]\!]_{\tau} = \top$ for every assignment τ .

Theorem

A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.

A is valid if and only if $[\![A]\!]_{\tau} = \top$ for every assignment τ .

By the def of $\llbracket \neg A \rrbracket_{\tau}$, this happens iff $\llbracket \neg A \rrbracket_{\tau} = \bot$ for every τ .

Theorem

A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.

A is valid if and only if $[\![A]\!]_{\tau} = \top$ for every assignment τ .

By the def of $\llbracket \neg A \rrbracket_{\tau}$, this happens iff $\llbracket \neg A \rrbracket_{\tau} = \bot$ for every τ .

This is the same as saying that $\neg A$ is unsatisfiable.

Semantics: Proposition 1

Proposition

For every pair of formulas A and B, $A \wedge B$ is valid if and only if A is valid and B is valid.

True or false?

Semantics: Proposition 1

Proposition

For every pair of formulas A and B, $A \wedge B$ is valid if and only if A is valid and B is valid.

True or false?

Proof.

True. $A \wedge B$ is valid means that for every assignment τ we have $[\![A \wedge B]\!]_{\tau} = \top$. By the definition of $[\![A \wedge B]\!]_{\tau}$, this happens if and only if $[\![A]\!]_{\tau} = \top$ and $[\![B]\!]_{\tau} = \top$ for every τ , i.e. if and only if A and B are both valid.

Proposition

For every pair of formulas A and B, $A \wedge B$ is satisfiable if and only if A is satisfiable and B is satisfiable.

True or false?

Proposition

For every pair of formulas A and B, $A \wedge B$ is satisfiable if and only if A is satisfiable and B is satisfiable.

True or false?

Proof.

False. Consider the formula $A \wedge B$ with A = p and $B = \neg p$. Clearly both A and B are satisfiable, while $A \wedge B$ is unsatisfiable

Proposition

For every pair of formulas A and B, $A \vee B$ is valid if and only if A is valid or B is valid.

True or false?

Proposition

For every pair of formulas A and B, $A \lor B$ is valid if and only if A is valid or B is valid.

True or false?

Proof.

False. Consider the formula $A \vee B$ with A = p and $B = \neg p$.

The formula $A \vee B$ is valid, while either A nor B is valid.

Proposition

For every pair of formulas A and B, $A \vee B$ is satisfiable if and only if A is satisfiable or B is satisfiable.

True or false?

Proposition

For every pair of formulas A and B, $A \vee B$ is satisfiable if and only if A is satisfiable or B is satisfiable.

True or false?

Proof.

True. Suppose $A \vee B$ is satisfied by τ . By definition it must be the case that $[\![A]\!]_{\tau} = \top$ or $[\![B]\!]_{\tau} = \top$, so τ satisfies A or B. Conversely, if an assignment τ satisfies either A or B, then $[\![A]\!]_{\tau} = \top$ or $[\![B]\!]_{\tau} = \top$. In either case, $[\![A \vee B]\!]_{\tau} = \top$. So if A is satisfiable or B is satisfiable, so is $A \vee B$.

Semantics: Entailment and Equivalence

- ▶ If every satisfying assignment of a formula A, also satisfies formula B, the A entails B, denoted by $A \models B$.
- ▶ If $A \models B$ and $B \models A$, then A and B are logically equivalent, denoted by $A \equiv B$.

Semantics: Entailment and Equivalence

- ▶ If every satisfying assignment of a formula A, also satisfies formula B, the A entails B, denoted by $A \models B$.
- ▶ If $A \models B$ and $B \models A$, then A and B are logically equivalent, denoted by $A \equiv B$.

Example

Which formula entails which other formula?

- \triangleright A
- $ightharpoonup \neg A \rightarrow B$
- $ightharpoonup \neg (\neg A \lor \neg B)$

Proposition

Suppose A and B are formulas and $A \models B$. If A is valid, then B is valid.

True or false?

Proposition

Suppose A and B are formulas and $A \models B$. If A is valid, then B is valid.

True or false?

Proof.

True. Suppose $A \models B$, and suppose A is valid. Let τ be any truth assignment. Since A is valid, $[\![A]\!]_{\tau} = \top$. Since $A \models B$, $[\![B]\!]_{\tau} = \top$. We have shown $[\![B]\!]_{\tau} = \top$ for every τ , i.e. B is valid.

Proposition

Suppose A and B are formulas and $A \models B$. If B is satisfiable, then A is satisfiable.

True or false?

Proposition

Suppose A and B are formulas and $A \models B$. If B is satisfiable, then A is satisfiable.

True or false?

Proof.

False. A counterexample is $A = p \land \neg p$ and B = p.

Proposition

For every triple of formulas A, B, and C, if $A \models B \models C \models A$ then $A \equiv B \equiv C$.

True or false?

Proposition

For every triple of formulas A, B, and C, if $A \models B \models C \models A$ then $A \equiv B \equiv C$.

True or false?

```
True. Suppose A \models B \models C \models A. Let \tau be any truth assignment. We need to show [\![A]\!]_{\tau} = [\![B]\!]_{\tau} = [\![C]\!]_{\tau}. Suppose [\![A]\!]_{\tau} = \top. Since A \models B, [\![B]\!]_{\tau} = \top, and since B \models C, we have [\![C]\!]_{\tau} = \top. So, in that case, [\![A]\!]_{\tau} = [\![B]\!]_{\tau} = [\![C]\!]_{\tau}. The other possibility is [\![A]\!]_{\tau} = \bot. Since C \models A, we must have [\![C]\!]_{\tau} = \bot, and since B \models C, we have [\![B]\!]_{\tau} = \bot. So, in that case also, [\![A]\!]_{\tau} = [\![B]\!]_{\tau} = [\![C]\!]_{\tau}.
```

Semantics: Diplomacy Problem

"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite *Peru* or to exclude *Qatar*. The queen asks you to invite either *Qatar* or *Romania* or both. The king, in a spiteful mood, wants to snub either *Romania* or *Peru* or both. Is there a guest list that will satisfy the whims of the entire royal family?"

Semantics: Diplomacy Problem

"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite *Peru* or to exclude *Qatar*. The queen asks you to invite either *Qatar* or *Romania* or both. The king, in a spiteful mood, wants to snub either *Romania* or *Peru* or both. Is there a guest list that will satisfy the whims of the entire royal family?"

$$(p \vee \neg q) \wedge (q \vee r) \wedge (\neg r \vee \neg p)$$

Semantics: Truth Table

$$\begin{split} \Gamma &= (p \vee \neg q) \wedge (q \vee r) \wedge (\neg r \vee \neg p) \\ & \underbrace{\begin{array}{c|cccc} p & q & r & \text{falsifies} & \llbracket \Gamma \rrbracket_{\tau} \\ \bot & \bot & \bot & (q \vee r) & \bot \\ \bot & \bot & \top & - & \top \\ \bot & \top & \bot & (p \vee \neg q) & \bot \\ \bot & \top & \top & (p \vee \neg q) & \bot \\ \top & \bot & \bot & (q \vee r) & \bot \\ \top & \bot & \top & (\neg r \vee \neg p) & \bot \\ \top & \top & \top & - & \top \\ \top & \top & \top & (\neg r \vee \neg p) & \bot \\ \end{array}} \end{split}$$

Syntax

Semantics

Calculating with Propositions

Random Formulas

Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

$$A \lor \top \equiv \top$$

$$A \land \top \equiv A$$

$$A \lor B \equiv B \lor A$$

$$(A \lor B) \lor C \equiv A \lor (B \lor C)$$

$$A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$$

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

$$A \land (A \lor B) \equiv A$$

Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

$$A \lor \top \equiv \top$$

$$A \land \top \equiv A$$

$$A \lor B \equiv B \lor A$$

$$(A \lor B) \lor C \equiv A \lor (B \lor C)$$

$$A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$$

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

$$A \land (A \lor B) \equiv A$$

De Morgan's laws:

$$\neg (A \land B) \equiv \neg A \lor \neg B$$
$$\neg (A \lor B) \equiv \neg A \land \neg B$$

Theorem

For any propositional formulas A and B, we have $(A \land \neg B) \lor B \equiv A \lor B$.

$$(A \land \neg B) \lor B \equiv$$

Theorem

For any propositional formulas A and B, we have $(A \land \neg B) \lor B \equiv A \lor B$.

$$(A \wedge \neg B) \vee B \equiv (A \vee B) \wedge (\neg B \vee B)$$
$$\equiv$$

Theorem

For any propositional formulas A and B, we have $(A \land \neg B) \lor B \equiv A \lor B$.

$$(A \wedge \neg B) \vee B \equiv (A \vee B) \wedge (\neg B \vee B)$$

$$\equiv (A \vee B) \wedge \top$$

$$\equiv$$

Theorem

For any propositional formulas A and B, we have $(A \land \neg B) \lor B \equiv A \lor B$.

$$(A \wedge \neg B) \vee B \equiv (A \vee B) \wedge (\neg B \vee B)$$
$$\equiv (A \vee B) \wedge \top$$
$$\equiv (A \vee B).$$

Theorem

For any propositional formulas
$$A$$
, B , and C , we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

$$\neg((A \lor B) \land (B \to C)) \equiv$$

Theorem

For any propositional formulas
$$A$$
, B , and C , we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv$$

Theorem

For any propositional formulas
$$A$$
, B , and C , we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$
$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$
$$\equiv$$

Theorem

For any propositional formulas
$$A$$
, B , and C , we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$

$$\equiv (\neg A \land \neg B) \lor (B \land \neg C)$$

$$\equiv$$

Theorem

For any propositional formulas
$$A$$
, B , and C , we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$

$$\equiv (\neg A \land \neg B) \lor (B \land \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))$$

$$\equiv$$

Theorem

For any propositional formulas
$$A$$
, B , and C , we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C)$.

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$

$$\equiv (\neg A \land \neg B) \lor (B \land \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))$$

$$\equiv$$

Theorem

For any propositional formulas
$$A$$
, B , and C , we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C)$.

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$

$$\equiv (\neg A \land \neg B) \lor (B \land \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land \top \land (\neg B \lor \neg C)$$

$$\equiv$$

Theorem

For any propositional formulas
$$A$$
, B , and C , we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C)$.

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$

$$\equiv (\neg A \land \neg B) \lor (B \land \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)$$

$$= (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)$$

Theorem

For any propositional formulas A, B, and C, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C)$.

$$\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))$$

$$\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)$$

$$\equiv (\neg A \land \neg B) \lor (B \land \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)$$

$$\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)$$

$$\equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$$

Syntax

Semantics

Calculating with Propositions

Random Formulas

Random Formulas: Introduction

- ► Formulas in conjunctive normal form
- ightharpoonup All clauses have length k
- Variables have the same probability to occur
- ► Each literal is negated with probability of 50%
- Density is ratio Clauses to Variables

Random Formulas: Phase Transition

Random Formulas: Exponential Runtime

Random Formulas: SAT Game

SAT Game

by Olivier Roussel

http://www.cs.utexas.edu/~marijn/game/