Logic and Mechanized Reasoning Propositional Logic

Marijn J.H. Heule

Carnegie
Mellon **University**

[Syntax](#page-2-0)

[Semantics](#page-22-0)

[Calculating with Propositions](#page-53-0)

[Random Formulas](#page-69-0)

[Syntax](#page-2-0)

[Semantics](#page-22-0)

[Calculating with Propositions](#page-53-0)

[Random Formulas](#page-69-0)

Syntax: Definition

The set of propositional formulas is generated inductively:

- \blacktriangleright Each variable p_i is a formula.
- \blacktriangleright \top and \vdash are formulas.
- \blacktriangleright If *A* is a formula, so is $\neg A$ ("not *A*").
- ▶ If *A* and *B* are formulas, so are

\n- $$
A \wedge B
$$
 ("A and B"),
\n- $A \vee B$ ("A or B"),
\n- $A \rightarrow B$ ("A implies B"), and
\n- $A \leftrightarrow B$ ("A if and only if B").
\n

Syntax: Complexity

Complexity: the number of connectives

complexity(
$$
p_i
$$
) = 0
\ncomplexity(\top) = 0
\ncomplexity(\bot) = 0
\ncomplexity($\neg A$) = complexity(A) + 1
\ncomplexity(A \wedge B) = complexity(A) + complexity(B) + 1
\ncomplexity(A \vee B) = complexity(A) + complexity(B) + 1
\ncomplexity(A \rightarrow B) = complexity(A) + complexity(B) + 1
\ncomplexity(A \leftrightarrow B) = complexity(A) + complexity(B) + 1
\ncomplexity(A \leftrightarrow B) = complexity(A) + complexity(B) + 1

Syntax: Depth

Depth of the parse tree

$$
depth(p_i) = 0
$$

\n
$$
depth(\top) = 0
$$

\n
$$
depth(\bot) = 0
$$

\n
$$
depth(\neg A) = depth(A) + 1
$$

\n
$$
depth(A \land B) = max(depth(A), depth(B)) + 1
$$

\n
$$
depth(A \rightarrow B) = max(depth(A), depth(B)) + 1
$$

\n
$$
depth(A \leftrightarrow B) = max(depth(A), depth(B)) + 1
$$

\n
$$
depth(A \leftrightarrow B) = max(depth(A), depth(B)) + 1
$$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$,

Inductive case (first \neg , afterwards \wedge):

 $complexity(\neg A)$ =

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \wedge):

> $complexity(\neg A)$ = $complexity(A) + 1$ ≤

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \wedge):

complexity
$$
(\neg A)
$$
 = complexity $(A) + 1$
 $\leq 2^{depth(A)} - 1 + 1$
 \leq

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$.

Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \wedge):

complexity
$$
(\neg A)
$$
 = complexity $(A) + 1$
\n $\leq 2^{depth(A)} - 1 + 1$
\n $\leq 2^{depth(A)} + 2^{depth(A)} - 1$
\n \leq

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$. Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \wedge):

complexity
$$
(\neg A)
$$
 = complexity $(A) + 1$
\n $\leq 2^{depth(A)} - 1 + 1$
\n $\leq 2^{depth(A)} + 2^{depth(A)} - 1$
\n $\leq 2^{depth(A)+1} - 1 = 2^{depth(\neg A)} - 1$.

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$. Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \wedge):

complexity
$$
(\neg A)
$$
 = complexity $(A) + 1$
\n $\leq 2^{depth(A)} - 1 + 1$
\n $\leq 2^{depth(A)} + 2^{depth(A)} - 1$
\n $\leq 2^{depth(A)+1} - 1 = 2^{depth(\neg A)} - 1$.

 $complexity(A \wedge B)$ =

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$. Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \wedge):

complexity
$$
(\neg A)
$$
 = complexity $(A) + 1$
\n $\leq 2^{depth(A)} - 1 + 1$
\n $\leq 2^{depth(A)} + 2^{depth(A)} - 1$
\n $\leq 2^{depth(A)+1} - 1 = 2^{depth(\neg A)} - 1$.
\n \leq $2^{depth(A) + 1} - 1 = 2^{depth(\neg A)} - 1$.

complexity
$$
(A \wedge B)
$$
 = complexity (A) + complexity (B) + 1
 \le

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$. Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \wedge):

complexity
$$
(\neg A)
$$
 = complexity $(A) + 1$
\n $\leq 2^{depth(A)} - 1 + 1$
\n $\leq 2^{depth(A)} + 2^{depth(A)} - 1$
\n $\leq 2^{depth(A)+1} - 1 = 2^{depth(\neg A)} - 1$.
\ncomplexity $(A \land B)$ = complexity $(A) + complexity(B) + 1$
\n $\leq 2^{depth(A)} - 1 + 2^{depth(B)} - 1 + 1$

≤

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$. Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \wedge):

complexity
$$
(\neg A)
$$
 = complexity $(A) + 1$
\n $\leq 2^{depth(A)} - 1 + 1$
\n $\leq 2^{depth(A)} + 2^{depth(A)} - 1$
\n $\leq 2^{depth(A)+1} - 1 = 2^{depth(\neg A)} - 1.$
\nnumberity $(A \land B)$ = complexity $(A) + complexity(B) +$

complexity
$$
(A \wedge B)
$$
 = complexity $(A) + complexity(B) + 1$
\n $\leq 2^{depth(A)} - 1 + 2^{depth(B)} - 1 + 1$
\n $\leq 2 \cdot 2^{\max(depth(A), depth(B))} - 1$

=

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$. Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \wedge):

complexity
$$
(\neg A)
$$
 = complexity $(A) + 1$
\n $\leq 2^{depth(A)} - 1 + 1$
\n $\leq 2^{depth(A)} + 2^{depth(A)} - 1$
\n $\leq 2^{depth(A) + 1} - 1 = 2^{depth(\neg A)} - 1$.

complexity
$$
(A \wedge B)
$$
 = complexity (A) + complexity (B) + 1
\n $\leq 2^{depth(A)} - 1 + 2^{depth(B)} - 1 + 1$
\n $\leq 2 \cdot 2^{\max(depth(A), depth(B))} - 1$
\n= $2^{\max(depth(A), depth(B)) + 1} - 1$

Theorem

For every formula A, we have $complexity(A) \leq 2^{depth(A)} - 1$. Proof.

Base case: $complexity(p_i) = 0 = 2^0 - 1 = 2^{depth(p_i)} - 1$, Inductive case (first \neg , afterwards \wedge):

complexity
$$
(\neg A)
$$
 = complexity $(A) + 1$
\n $\leq 2^{depth(A)} - 1 + 1$
\n $\leq 2^{depth(A)} + 2^{depth(A)} - 1$
\n $\leq 2^{depth(A)+1} - 1 = 2^{depth(\neg A)} - 1$.
\ncomplexity $(A \land B)$ = complexity $(A) + complexity(B) + 1$
\n $\leq 2^{depth(A)} - 1 + 2^{depth(B)} - 1 + 1$
\n $\leq 2 \cdot 2^{max(depth(A), depth(B))} - 1$

 $= 2^{\max(depth(A),depth(B))+1}-1$

$$
= 2^{depth(A \wedge B)} - 1
$$

Logic and Mechanical Reasoning

Syntax: Subformulas

$$
subformulas(A) = {A} \text{ if } A \text{ is atomic}
$$
\n
$$
subformulas(\neg A) = {\neg A} \cup subformulas(A)
$$
\n
$$
subformulas(A * B) = {A * B} \cup subformulas(A) \cup
$$
\n
$$
subformulas(B)
$$

Syntax: Subformulas

$$
subformulas(A) = {A} \text{ if } A \text{ is atomic}
$$
\n
$$
subformulas(\neg A) = {\neg A} \cup subformulas(A)
$$
\n
$$
subformulas(A * B) = {A * B} \cup subformulas(A) \cup
$$
\n
$$
subformulas(B)
$$

Example

Consider the formula $(\neg A \land C) \rightarrow \neg (B \lor C)$. The *subformulas* function returns

Syntax: Subformulas

$$
subformulas(A) = {A} \text{ if } A \text{ is atomic}
$$
\n
$$
subformulas(\neg A) = {\neg A} \cup subformulas(A)
$$
\n
$$
subformulas(A * B) = {A * B} \cup subformulas(A) \cup
$$
\n
$$
subformulas(B)
$$

Example

Consider the formula $(\neg A \land C) \rightarrow \neg (B \lor C)$. The *subformulas* function returns ${ (¬A ∧ C) → ¬(B ∨ C), ¬A ∧ C, ¬A, A, C, ¬(B ∨ C), B ∨ C, B) }$

Proposition

For every pair of formulas A and B, if $B \in subformulas(A)$ and $A \in subformulas(B)$ then A and B are atomic.

True or false?

Proposition

For every pair of formulas A and B, if $B \in subformulas(A)$ and $A \in subformulas(B)$ then A and B are atomic.

True or false? Proof. False. A counterexample is $A = B = \neg p$.

[Syntax](#page-2-0)

[Semantics](#page-22-0)

[Calculating with Propositions](#page-53-0)

[Random Formulas](#page-69-0)

Consider the formula $p \wedge (\neg q \vee r)$. Is it true?

Consider the formula $p \wedge (\neg q \vee r)$. Is it true?

It depends on the truth of *p*, *q*, and *r*.

Consider the formula $p \wedge (\neg q \vee r)$. Is it true?

It depends on the truth of *p*, *q*, and *r*.

Once we specify which of *p*, *q*, and *r* are true and which are false, the truth value of $p \wedge (\neg q \vee r)$ is completely determined.

Consider the formula $p \wedge (\neg q \vee r)$. Is it true?

It depends on the truth of *p*, *q*, and *r*.

Once we specify which of *p*, *q*, and *r* are true and which are false, the truth value of $p \wedge (\neg q \vee r)$ is completely determined.

A truth assignment *τ* provides this specification by mapping propositional variables to the constants \top and \bot .

Semantics: Evaluation

$$
[\![p_i]\!]_{\tau} = \tau(p_i)
$$

\n
$$
[\![\top]\!]_{\tau} = \top
$$

\n
$$
[\![\bot]\!]_{\tau} = \bot
$$

\n
$$
[\![\neg A]\!]_{\tau} = \begin{cases} \top & \text{if } [\![A]\!]_{\tau} = \bot \\ \bot & \text{otherwise} \end{cases}
$$

\n
$$
[\![A \wedge B]\!]_{\tau} = \begin{cases} \top & \text{if } [\![A]\!]_{\tau} = \top \text{ and } [\![B]\!]_{\tau} = \top \\ \bot & \text{otherwise} \end{cases}
$$

\n
$$
[\![A \vee B]\!]_{\tau} = \begin{cases} \top & \text{if } [\![A]\!]_{\tau} = \top \text{ or } [\![B]\!]_{\tau} = \top \\ \bot & \text{otherwise} \end{cases}
$$

\n
$$
[\![A \rightarrow B]\!]_{\tau} = \begin{cases} \top & \text{if } [\![A]\!]_{\tau} = \bot \text{ or } [\![B]\!]_{\tau} = \top \\ \bot & \text{otherwise} \end{cases}
$$

\n
$$
[\![A \leftrightarrow B]\!]_{\tau} = \begin{cases} \top & \text{if } [\![A]\!]_{\tau} = [\![B]\!]_{\tau} \\ \bot & \text{otherwise} \end{cases}
$$

Semantics: Satisfiable, Unsatisfiable, and Valid

- ▶ If [[*A*]]*^τ* ⁼ [⊤], then *^A* is satisfied by *^τ*. In that case, *^τ* is a satisfying assignment of *A*.
- \triangleright A propositional formula A is satisfiable iff there exists an assignment τ that satisfies it and unsatisfiable otherwise.
- \triangleright A propositional formula A is valid iff every assignment satisfies it.

Semantics: Satisfiable, Unsatisfiable, and Valid

- $▶$ If $[[A]]_7 = T$, then *A* is satisfied by *τ*. In that case, *τ* is a satisfying assignment of *A*.
- \triangleright A propositional formula A is satisfiable iff there exists an assignment τ that satisfies it and unsatisfiable otherwise.
- \triangleright A propositional formula A is valid iff every assignment satisfies it.

Example

Which one(s) of the formulas is satisfiable/unsatisfiable/valid?

$$
(A \leftrightarrow B) \lor (\neg C)
$$

\n
$$
(A) \lor (\neg B) \lor (\neg A \land B)
$$

\n
$$
(A) \land (\neg B) \land (A \to B)
$$

Theorem

A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Theorem

A propositional formula \overline{A} is valid if and only if $\neg A$ is unsatisfiable.

Proof.

A is valid if and only if $[[A]]_{\tau} = \top$ for every assignment τ .

Theorem

A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.

A is valid if and only if $[[A]]_{\tau} = \top$ for every assignment τ . By the def of $[\lceil \neg A \rceil]_{\tau}$, this happens iff $[\lceil \neg A \rceil]_{\tau} = \bot$ for every τ .

Theorem

A propositional formula A is valid if and only if $\neg A$ is unsatisfiable.

Proof.

A is valid if and only if $[[A]]_{\tau} = \top$ for every assignment τ . By the def of $[\lceil \neg A \rceil]_{\tau}$, this happens iff $[\lceil \neg A \rceil]_{\tau} = \bot$ for every τ . This is the same as saying that $\neg A$ is unsatisfiable.

Semantics: Proposition 1

Proposition

For every pair of formulas A and B , $A \wedge B$ is valid if and only if *A* is valid and *B* is valid.

True or false?

Semantics: Proposition 1

Proposition

For every pair of formulas A and B, $A \wedge B$ is valid if and only if *A* is valid and *B* is valid.

True or false?

Proof.

True. $A \wedge B$ is valid means that for every assignment τ we have $[(A \wedge B)]_{\tau} = \top$. By the definition of $[(A \wedge B)]$, this happens if and only if $||A||_{\tau} = \top$ and $||B||_{\tau} = \top$ for every τ , i.e. if and only if *A* and *B* are both valid.
Proposition

For every pair of formulas A and B , $A \wedge B$ is satisfiable if and only if *A* is satisfiable and *B* is satisfiable.

True or false?

Proposition

For every pair of formulas A and B , $A \wedge B$ is satisfiable if and only if *A* is satisfiable and *B* is satisfiable.

True or false?

Proof.

```
False. Consider the formula A \wedge B with A = p and B = \neg p.
Clearly both A and B are satisfiable, while A \wedge B is
unsatisfiable.
                                                                       \mathbf{L}
```
Proposition

For every pair of formulas A and B , $A \vee B$ is valid if and only if *A* is valid or *B* is valid.

True or false?

Proposition

For every pair of formulas A and B, $A \vee B$ is valid if and only if *A* is valid or *B* is valid.

True or false?

Proof. False. Consider the formula $A \lor B$ with $A = p$ and $B = \neg p$. The formula $A \vee B$ is valid, while either A nor B is valid. \Box

Proposition

For every pair of formulas A and B , $A \vee B$ is satisfiable if and only if *A* is satisfiable or *B* is satisfiable.

True or false?

Proposition

For every pair of formulas A and B, $A \vee B$ is satisfiable if and only if *A* is satisfiable or *B* is satisfiable.

True or false?

Proof.

True. Suppose $A \vee B$ is satisfied by τ . By definition it must be the case that $||A||_{\tau} = \top$ or $||B||_{\tau} = \top$, so τ satisfies A or B. Conversely, if an assignment *τ* satisfies either *A* or *B*, then $[[A]]_{\tau} = \top$ or $[[B]]_{\tau} = \top$. In either case, $[[A \vee B]]_{\tau} = \top$. So if *A* is satisfiable or *B* is satisfiable, so is $A \vee B$.

Semantics: Entailment and Equivalence

- \blacktriangleright If every satisfying assignment of a formula A , also satisfies formula *B*, the *A* entails *B*, denoted by $A \models B$.
- \blacktriangleright If $A \models B$ and $B \models A$, then A and B are logically equivalent, denoted by $A \equiv B$.

Semantics: Entailment and Equivalence

- \blacktriangleright If every satisfying assignment of a formula A , also satisfies formula *B*, the *A* entails *B*, denoted by $A \models B$.
- \blacktriangleright If $A \models B$ and $B \models A$, then A and B are logically equivalent, denoted by $A \equiv B$.

Example

Which formula entails which other formula?

$$
\begin{array}{c}\n\blacktriangleright A \\
\blacktriangleright \neg A \to B \\
\blacktriangleright \neg(\neg A \lor \neg B)\n\end{array}
$$

Proposition

Suppose *A* and *B* are formulas and $A \models B$. If *A* is valid, then *B* is valid.

True or false?

Proposition

Suppose A and B are formulas and $A \models B$. If *A* is valid, then *B* is valid.

True or false?

Proof.

True. Suppose $A \models B$, and suppose A is valid. Let τ be any truth assignment. Since *A* is valid, $||A||_{\tau} = \top$. Since $A \models B$, $[[B]]_{\tau} = \top$. We have shown $[[B]]_{\tau} = \top$ for every τ , i.e. *B* is valid.

Proposition Suppose *A* and *B* are formulas and $A \models B$. If *B* is satisfiable, then *A* is satisfiable.

True or false?

Proposition Suppose A and B are formulas and $A \models B$. If *B* is satisfiable, then *A* is satisfiable.

True or false? Proof. False. A counterexample is $A = p \wedge \neg p$ and $B = p$.

Proposition

For every triple of formulas A, B, and C, if $A \models B \models C \models A$ then $A \equiv B \equiv C$.

True or false?

Proposition

For every triple of formulas A, B, and C, if $A \models B \models C \models A$ then $A \equiv B \equiv C$.

True or false?

Proof.

True. Suppose $A \models B \models C \models A$. Let τ be any truth assignment. We need to show $[[A]]_{\tau} = [[B]]_{\tau} = [[C]]_{\tau}$. Suppose $[[A]]_{\tau} = \top$. Since $A \models B$, $||B||_T = T$, and since $B \models C$, we have $||C||_T = T$. So, in that case, $||A||_{\tau} = ||B||_{\tau} = ||C||_{\tau}$. The other possibility is $\llbracket A \rrbracket_{\tau} = \bot$. Since $C \models A$, we must have $\llbracket \mathcal{C} \rrbracket_{\tau} = \perp$, and since $B \models C$, we have $\llbracket B \rrbracket_{\tau} = \perp$. So, in that case also, $\llbracket A \rrbracket_{\tau} = \llbracket B \rrbracket_{\tau} = \llbracket C \rrbracket_{\tau}$.

Semantics: Diplomacy Problem

"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite Peru or to exclude *Qatar*. The queen asks you to invite either Qatar or Romania or both. The king, in a spiteful mood, wants to snub either Romania or Peru or both. Is there a guest list that will satisfy the whims of the entire royal family?"

Semantics: Diplomacy Problem

"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite Peru or to exclude *Qatar*. The queen asks you to invite either Qatar or Romania or both. The king, in a spiteful mood, wants to snub either Romania or Peru or both. Is there a guest list that will satisfy the whims of the entire royal family?"

$$
(p \vee \neg q) \wedge (q \vee r) \wedge (\neg r \vee \neg p)
$$

Semantics: Truth Table

$$
\Gamma = (p \lor \neg q) \land (q \lor r) \land (\neg r \lor \neg p)
$$
\n
$$
\begin{array}{c|c|c|c|c|c} p & q & r & \text{false} & \text{[[}\Gamma]\text{[}\tau \\\hline \bot & \bot & \top & (q \lor r) & \bot \\\hline \bot & \top & \bot & (p \lor \neg q) & \bot \\\hline \bot & \top & \top & (p \lor \neg q) & \bot \\\hline \top & \bot & \bot & (q \lor r) & \bot \\\hline \top & \bot & \top & (q \lor r) & \bot \\\hline \top & \top & \top & \top & (\neg r \lor \neg p) & \bot \\\hline \top & \top & \top & (\neg r \lor \neg p) & \bot \\\hline \end{array}
$$

[Syntax](#page-2-0)

[Semantics](#page-22-0)

[Calculating with Propositions](#page-53-0)

[Random Formulas](#page-69-0)

Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

$$
A \lor \top \equiv \top
$$

\n
$$
A \land \top \equiv A
$$

\n
$$
A \lor B \equiv B \lor A
$$

\n
$$
(A \lor B) \lor C \equiv A \lor (B \lor C)
$$

\n
$$
A \land (B \lor C) \equiv (A \land B) \lor (A \land C)
$$

\n
$$
A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)
$$

\n
$$
A \land (A \lor B) \equiv A
$$

Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

$$
A \lor \top \equiv \top
$$

\n
$$
A \land \top \equiv A
$$

\n
$$
A \lor B \equiv B \lor A
$$

\n
$$
(A \lor B) \lor C \equiv A \lor (B \lor C)
$$

\n
$$
A \land (B \lor C) \equiv (A \land B) \lor (A \land C)
$$

\n
$$
A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)
$$

\n
$$
A \land (A \lor B) \equiv A
$$

De Morgan's laws:

$$
\neg(A \land B) \equiv \neg A \lor \neg B
$$

$$
\neg(A \lor B) \equiv \neg A \land \neg B
$$

Theorem For any propositional formulas *A* and *B*, we have $(A \wedge \neg B) \vee B \equiv A \vee B$.

Proof.

$$
(A \wedge \neg B) \vee B \equiv
$$

Theorem For any propositional formulas *A* and *B*, we have $(A \wedge \neg B) \vee B \equiv A \vee B$.

Proof.

$$
(A \wedge \neg B) \vee B \equiv (A \vee B) \wedge (\neg B \vee B)
$$

$$
\equiv
$$

Theorem For any propositional formulas *A* and *B*, we have $(A \wedge \neg B) \vee B \equiv A \vee B$.

Proof.

$$
(A \wedge \neg B) \vee B \equiv (A \vee B) \wedge (\neg B \vee B)
$$

$$
\equiv (A \vee B) \wedge \top
$$

$$
\equiv
$$

Theorem For any propositional formulas *A* and *B*, we have $(A \wedge \neg B) \vee B \equiv A \vee B$.

Proof.

$$
(A \land \neg B) \lor B \equiv (A \lor B) \land (\neg B \lor B)
$$

\n
$$
\equiv (A \lor B) \land \top
$$

\n
$$
\equiv (A \lor B).
$$

Theorem

For any propositional formulas *A*, *B*, and *C*, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof. \neg ($(A \vee B) \wedge (B \rightarrow C)$) \equiv

Theorem

For any propositional formulas *A*, *B*, and *C*, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.

$$
\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))
$$

$$
\equiv
$$

Theorem

For any propositional formulas *A*, *B*, and *C*, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.

$$
\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))
$$

$$
\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)
$$

$$
\equiv
$$

Theorem

For any propositional formulas *A*, *B*, and *C*, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.
\n
$$
\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))
$$
\n
$$
\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)
$$
\n
$$
\equiv (\neg A \land \neg B) \lor (B \land \neg C)
$$
\n
$$
\equiv
$$

Theorem

For any propositional formulas *A*, *B*, and *C*, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.
\n
$$
\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))
$$
\n
$$
\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)
$$
\n
$$
\equiv (\neg A \land \neg B) \lor (B \land \neg C)
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))
$$
\n
$$
\equiv
$$

Theorem

For any propositional formulas *A*, *B*, and *C*, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.
\n
$$
\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))
$$
\n
$$
\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)
$$
\n
$$
\equiv (\neg A \land \neg B) \lor (B \land \neg C)
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))
$$
\n
$$
\equiv
$$

Theorem

For any propositional formulas *A*, *B*, and *C*, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.
\n
$$
\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))
$$
\n
$$
\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)
$$
\n
$$
\equiv (\neg A \land \neg B) \lor (B \land \neg C)
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C)
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land \top \land (\neg B \lor \neg C)
$$
\n
$$
\equiv
$$

Theorem

For any propositional formulas *A*, *B*, and *C*, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.
\n
$$
\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))
$$
\n
$$
\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)
$$
\n
$$
\equiv (\neg A \land \neg B) \lor (B \land \neg C)
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land \top \land (\neg B \lor \neg C)
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land \top \land (\neg B \lor \neg C)
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)
$$
\n
$$
\equiv
$$

Theorem

For any propositional formulas *A*, *B*, and *C*, we have $\neg((A \lor B) \land (B \to C)) \equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).$

Proof.
\n
$$
\neg((A \lor B) \land (B \to C)) \equiv \neg((A \lor B) \land (\neg B \lor C))
$$
\n
$$
\equiv \neg(A \lor B) \lor \neg(\neg B \lor C)
$$
\n
$$
\equiv (\neg A \land \neg B) \lor (B \land \neg C)
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor (B \land \neg C))
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C))
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor B) \land (\neg B \lor \neg C)
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)
$$
\n
$$
\equiv (\neg A \lor (B \land \neg C)) \land (\neg B \lor \neg C)
$$
\n
$$
\equiv (\neg A \lor B) \land (\neg A \lor \neg C) \land (\neg B \lor \neg C).
$$

[Syntax](#page-2-0)

[Semantics](#page-22-0)

[Calculating with Propositions](#page-53-0)

[Random Formulas](#page-69-0)

Random Formulas: Introduction

- ▶ Formulas in conjunctive normal form
- ▶ All clauses have length *k*
- \blacktriangleright Variables have the same probability to occur
- \blacktriangleright Each literal is negated with probability of 50%
- ▶ Density is ratio Clauses to Variables

Random Formulas: Phase Transition

Random Formulas: Exponential Runtime

Logic and Mechanized Reasoning 32 / 33

Random Formulas: SAT Game

SAT Game

by Olivier Roussel

<http://www.cs.utexas.edu/~marijn/game/>

Logic and Mechanized Reasoning 33 / 33 / 33 / 33