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Syntax: Definition

The set of propositional formulas is generated inductively:

▶ Each variable pi is a formula.

▶ ⊤ and ⊥ are formulas.

▶ If A is a formula, so is ¬A (“not A”).
▶ If A and B are formulas, so are

▶ A ∧ B (“A and B”),
▶ A ∨ B (“A or B”),
▶ A → B (“A implies B”), and
▶ A ↔ B (“A if and only if B”).
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Syntax: Complexity

Complexity: the number of connectives

complexity(pi) = 0
complexity(⊤) = 0
complexity(⊥) = 0

complexity(¬A) = complexity(A) + 1
complexity(A ∧ B) = complexity(A) + complexity(B) + 1
complexity(A ∨ B) = complexity(A) + complexity(B) + 1

complexity(A → B) = complexity(A) + complexity(B) + 1
complexity(A ↔ B) = complexity(A) + complexity(B) + 1
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Syntax: Depth

Depth of the parse tree

depth(pi) = 0
depth(⊤) = 0
depth(⊥) = 0

depth(¬A) = depth(A) + 1
depth(A ∧ B) = max(depth(A), depth(B)) + 1
depth(A ∨ B) = max(depth(A), depth(B)) + 1

depth(A → B) = max(depth(A), depth(B)) + 1
depth(A ↔ B) = max(depth(A), depth(B)) + 1
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Syntax: Complexity and Depth

Theorem
For every formula A, we have complexity(A) ≤ 2depth(A) − 1.

Proof.
Base case: complexity(pi) = 0 = 20 − 1 = 2depth(pi) − 1,
Inductive case (first ¬, afterwards ∧):

complexity(¬A) =

complexity(A) + 1

≤ 2depth(A) − 1 + 1
≤ 2depth(A) + 2depth(A) − 1
≤ 2depth(A)+1 − 1 = 2depth(¬A) − 1.

complexity(A ∧ B) = complexity(A) + complexity(B) + 1

≤ 2depth(A) − 1 + 2depth(B) − 1 + 1
≤ 2 · 2max(depth(A),depth(B)) − 1
= 2max(depth(A),depth(B))+1 − 1
= 2depth(A∧B) − 1
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Syntax: Subformulas

subformulas(A) = {A} if A is atomic

subformulas(¬A) = {¬A}∪ subformulas(A)

subformulas(A ⋆ B) = {A ⋆ B}∪ subformulas(A) ∪
subformulas(B)

Example

Consider the formula (¬A ∧ C) → ¬(B ∨ C).
The subformulas function returns
{(¬A ∧ C) → ¬(B ∨ C),¬A ∧ C,¬A, A, C,¬(B ∨ C), B ∨ C, B)}
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Syntax: Proposition

Proposition

For every pair of formulas A and B, if B ∈ subformulas(A)
and A ∈ subformulas(B) then A and B are atomic.

True or false?

Proof.
False. A counterexample is A = B = ¬p.
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Semantics: Introduction

Consider the formula p ∧ (¬q ∨ r). Is it true?

It depends on the truth of p, q, and r.

Once we specify which of p, q, and r are true and which are
false, the truth value of p∧ (¬q∨ r) is completely determined.

A truth assignment τ provides this specification by mapping
propositional variables to the constants ⊤ and ⊥.
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Semantics: Evaluation

[[pi]]τ = τ(pi)

[[⊤]]τ = ⊤
[[⊥]]τ = ⊥

[[¬A]]τ =

{
⊤ if [[A]]τ = ⊥
⊥ otherwise

[[A ∧ B]]τ =

{
⊤ if [[A]]τ = ⊤ and [[B]]τ = ⊤
⊥ otherwise

[[A ∨ B]]τ =

{
⊤ if [[A]]τ = ⊤ or [[B]]τ = ⊤
⊥ otherwise

[[A → B]]τ =

{
⊤ if [[A]]τ = ⊥ or [[B]]τ = ⊤
⊥ otherwise

[[A ↔ B]]τ =

{
⊤ if [[A]]τ = [[B]]τ
⊥ otherwise
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Semantics: Satisfiable, Unsatisfiable, and Valid

▶ If [[A]]τ = ⊤, then A is satisfied by τ. In that case, τ is a
satisfying assignment of A.

▶ A propositional formula A is satisfiable iff there exists an
assignment τ that satisfies it and unsatisfiable otherwise.

▶ A propositional formula A is valid iff every assignment
satisfies it.

Example

Which one(s) of the formulas is satisfiable/unsatisfiable/valid?

▶ (A ↔ B)∨ (¬C)
▶ (A)∨ (¬B)∨ (¬A ∧ B)
▶ (A)∧ (¬B)∧ (A → B)
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Semantics: Relation Valid and Unsatisfiable

Theorem
A propositional formula A is valid if and only if ¬A is
unsatisfiable.

Proof.
A is valid if and only if [[A]]τ = ⊤ for every assignment τ.

By the def of [[¬A]]τ, this happens iff [[¬A]]τ = ⊥ for every τ.

This is the same as saying that ¬A is unsatisfiable.
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Semantics: Proposition 1

Proposition

For every pair of formulas A and B, A ∧ B is valid if and only
if A is valid and B is valid.

True or false?

Proof.
True. A ∧ B is valid means that for every assignment τ we
have [[A ∧ B]]τ = ⊤. By the definition of [[A ∧ B]], this
happens if and only if [[A]]τ = ⊤ and [[B]]τ = ⊤ for every τ,
i.e. if and only if A and B are both valid.
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Semantics: Proposition 2

Proposition

For every pair of formulas A and B, A ∧ B is satisfiable if and
only if A is satisfiable and B is satisfiable.

True or false?

Proof.
False. Consider the formula A ∧ B with A = p and B = ¬p.
Clearly both A and B are satisfiable, while A ∧ B is
unsatisfiable.
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Semantics: Proposition 3

Proposition

For every pair of formulas A and B, A ∨ B is valid if and only
if A is valid or B is valid.

True or false?

Proof.
False. Consider the formula A ∨ B with A = p and B = ¬p.
The formula A ∨ B is valid, while either A nor B is valid.
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Semantics: Proposition 4

Proposition

For every pair of formulas A and B, A ∨ B is satisfiable if and
only if A is satisfiable or B is satisfiable.

True or false?

Proof.
True. Suppose A∨B is satisfied by τ. By definition it must be
the case that [[A]]τ = ⊤ or [[B]]τ = ⊤, so τ satisfies A or B.
Conversely, if an assignment τ satisfies either A or B, then
[[A]]τ = ⊤ or [[B]]τ = ⊤. In either case, [[A ∨ B]]τ = ⊤. So if
A is satisfiable or B is satisfiable, so is A ∨ B.
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Semantics: Entailment and Equivalence

▶ If every satisfying assignment of a formula A, also satisfies
formula B, the A entails B, denoted by A |= B.

▶ If A |= B and B |= A, then A and B are logically
equivalent, denoted by A ≡ B.

Example

Which formula entails which other formula?

▶ A
▶ ¬A → B
▶ ¬(¬A ∨¬B)
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Semantics: Proposition 5

Proposition

Suppose A and B are formulas and A |= B.
If A is valid, then B is valid.

True or false?

Proof.
True. Suppose A |= B, and suppose A is valid. Let τ be any
truth assignment. Since A is valid, [[A]]τ = ⊤. Since A |= B,
[[B]]τ = ⊤. We have shown [[B]]τ = ⊤ for every τ, i.e. B is
valid.

Logic and Mechanized Reasoning 20 / 33



Semantics: Proposition 5
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Semantics: Proposition 6

Proposition

Suppose A and B are formulas and A |= B.
If B is satisfiable, then A is satisfiable.

True or false?

Proof.
False. A counterexample is A = p ∧¬p and B = p.
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Semantics: Proposition 7

Proposition

For every triple of formulas A, B, and C, if A |= B |= C |= A
then A ≡ B ≡ C.

True or false?

Proof.
True. Suppose A |= B |= C |= A. Let τ be any truth assignment.
We need to show [[A]]τ = [[B]]τ = [[C]]τ. Suppose [[A]]τ = ⊤.
Since A |= B,[[B]]τ = ⊤, and since B |= C, we have [[C]]τ = ⊤.
So, in that case, [[A]]τ = [[B]]τ = [[C]]τ.
The other possibility is [[A]]τ = ⊥. Since C |= A, we must
have [[C]]τ = ⊥, and since B |= C, we have [[B]]τ = ⊥. So, in
that case also, [[A]]τ = [[B]]τ = [[C]]τ.
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Semantics: Diplomacy Problem

“You are chief of protocol for the embassy ball. The
crown prince instructs you either to invite Peru or to
exclude Qatar. The queen asks you to invite either
Qatar or Romania or both. The king, in a spiteful
mood, wants to snub either Romania or Peru or
both. Is there a guest list that will satisfy the whims
of the entire royal family?”

(p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)
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Semantics: Truth Table

Γ = (p ∨¬q)∧ (q ∨ r)∧ (¬r ∨¬p)

p q r falsifies [[Γ]]τ
⊥ ⊥ ⊥ (q ∨ r) ⊥
⊥ ⊥ ⊤ — ⊤
⊥ ⊤ ⊥ (p ∨¬q) ⊥
⊥ ⊤ ⊤ (p ∨¬q) ⊥
⊤ ⊥ ⊥ (q ∨ r) ⊥
⊤ ⊥ ⊤ (¬r ∨¬p) ⊥
⊤ ⊤ ⊥ — ⊤
⊤ ⊤ ⊤ (¬r ∨¬p) ⊥
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Calculating with Propositions: Laws

Some propositional laws (more in the textbook):

A ∨⊤ ≡ ⊤
A ∧⊤ ≡ A
A ∨ B ≡ B ∨ A

(A ∨ B)∨ C ≡ A ∨ (B ∨ C)
A ∧ (B ∨ C) ≡ (A ∧ B)∨ (A ∧ C)
A ∨ (B ∧ C) ≡ (A ∨ B)∧ (A ∨ C)
A ∧ (A ∨ B) ≡ A

De Morgan’s laws:

¬(A ∧ B) ≡ ¬A ∨¬B
¬(A ∨ B) ≡ ¬A ∧¬B
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Calculating with Propositions: Example

Theorem
For any propositional formulas A and B, we have
(A ∧¬B)∨ B ≡ A ∨ B.

Proof.

(A ∧¬B)∨ B ≡

(A ∨ B)∧ (¬B ∨ B)
≡ (A ∨ B)∧⊤
≡ (A ∨ B).
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Calculating with Propositions: A Harder Example

Theorem
For any propositional formulas A, B, and C, we have
¬((A ∨ B)∧ (B → C)) ≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).

Proof.

¬((A ∨ B)∧ (B → C)) ≡

¬((A ∨ B)∧ (¬B ∨ C))
≡ ¬(A ∨ B)∨¬(¬B ∨ C)
≡ (¬A ∧¬B)∨ (B ∧¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ (B ∧¬C))
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨ B)∧ (¬B ∨¬C))
≡ (¬A ∨ (B ∧¬C))∧⊤∧ (¬B ∨¬C)
≡ (¬A ∨ (B ∧¬C))∧ (¬B ∨¬C)
≡ (¬A ∨ B)∧ (¬A ∨¬C)∧ (¬B ∨¬C).
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Random Formulas: Introduction

▶ Formulas in conjunctive normal form

▶ All clauses have length k
▶ Variables have the same probability to occur

▶ Each literal is negated with probability of 50%

▶ Density is ratio Clauses to Variables
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Random Formulas: Phase Transition
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Random Formulas: Exponential Runtime
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Random Formulas: SAT Game

SAT Game
by Olivier Roussel

http://www.cs.utexas.edu/~marijn/game/
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