
Logic and Mechanized Reasoning
First-Order Resolution

Josh Clune

Logic and Mechanized Reasoning 1 / 24



Normal Forms

First-Order Resolution

Decision Procedures and Completeness

First-Order Resolution Completeness

Logic and Mechanized Reasoning 2 / 24



Normal Forms

First-Order Resolution

Decision Procedures and Completeness

First-Order Resolution Completeness

Logic and Mechanized Reasoning 3 / 24



Normal Forms

In propositional logic, we’ve seen various normal forms:

▶ Negation normal form

▶ Disjunctive normal form

▶ Conjunctive normal form

Analogs to these normal forms exist in first-order logic, and
there are additional normal forms we can describe to impose
constraints on quantifiers

Logic and Mechanized Reasoning 4 / 24



Normal Forms

First-Order Normal Forms:

▶ Prenex normal form: All quantifiers must appear at the
beginning of the formula and range over the whole formula

▶ Skolem normal form: Prenex normal form with only
universal quantifiers

▶ Clause normal form: Skolem normal form where the
formula is a conjunction of disjunctions of literals

In propositional logic, a literal is a variable or negated variable.
In first-order logic, a literal is a relation or negated relation.

Logic and Mechanized Reasoning 5 / 24



Normal Forms

First-Order Normal Forms:

▶ Prenex normal form: All quantifiers must appear at the
beginning of the formula and range over the whole formula

▶ Skolem normal form: Prenex normal form with only
universal quantifiers

▶ Clause normal form: Skolem normal form where the
formula is a conjunction of disjunctions of literals

In propositional logic, a literal is a variable or negated variable.
In first-order logic, a literal is a relation or negated relation.

Logic and Mechanized Reasoning 5 / 24



Normal Forms

First-Order Normal Forms:

▶ Prenex normal form: All quantifiers must appear at the
beginning of the formula and range over the whole formula

▶ Skolem normal form: Prenex normal form with only
universal quantifiers

▶ Clause normal form: Skolem normal form where the
formula is a conjunction of disjunctions of literals

In propositional logic, a literal is a variable or negated variable.
In first-order logic, a literal is a relation or negated relation.

Logic and Mechanized Reasoning 5 / 24



Normal Forms Application

For propositional logic, we saw that the resolution rule requires
that formulas first be transformed to conjunctive normal form.

For first-order logic, we will see that the resolution rule requires
that formulas first be transformed to clause normal form.

In classical logic, any first-order formula f can be transformed
to an equisatisfiable formula f ′ in clause normal form.

▶ So if our goal is to determine the validity or satisfiability of
arbitrary first-order formulas, converting to clause normal
form does not restrict us

Logic and Mechanized Reasoning 6 / 24



Normal Forms

First-Order Resolution

Decision Procedures and Completeness

First-Order Resolution Completeness

Logic and Mechanized Reasoning 7 / 24



First-Order Resolution Example 1

In propositional logic, if we have the clauses p and ¬p ∨ q, we
can resolve them to obtain the clause q.

Since resolution is an effective technique for SAT solving in
propositional logic, we want to generalize it to first-order logic.

Suppose we have two first-order clauses:

▶ ∀x.∀y.P(f (x), y)
▶ ∀w.∀z.¬P(w, g(z))∨ Q(w, z)

What might it look like to resolve these clauses?

Logic and Mechanized Reasoning 8 / 24



First-Order Resolution Example 1

In propositional logic, if we have the clauses p and ¬p ∨ q, we
can resolve them to obtain the clause q.

Since resolution is an effective technique for SAT solving in
propositional logic, we want to generalize it to first-order logic.

Suppose we have two first-order clauses:

▶ ∀x.∀y.P(f (x), y)
▶ ∀w.∀z.¬P(w, g(z))∨ Q(w, z)

What might it look like to resolve these clauses?

Logic and Mechanized Reasoning 8 / 24



First-Order Resolution Example

Clauses: (∀x.∀y.P(f (x), y)), (∀w.∀z.¬P(w, g(z))∨ Q(w, z))

First, we unify P(f (x), y) and P(w, g(z))

▶ The most general unifier (mgu) is
σ = {x 7→ u, y 7→ g(v), w 7→ f (u), z 7→ v}

▶ Applying σ the either term yields P(f (u), g(v))

Second, we instantiate according to the mgu to obtain:

▶ P(f (u), g(v))
▶ ¬P(f (u), g(v))∨ Q(f (u), v)

Third, we resolve to obtain Q(f (u), v)

Finally, we generalize to obtain the result: ∀u.∀v.Q(f (u), v)

Logic and Mechanized Reasoning 9 / 24



First-Order Resolution Example

Clauses: (∀x.∀y.P(f (x), y)), (∀w.∀z.¬P(w, g(z))∨ Q(w, z))

First, we unify P(f (x), y) and P(w, g(z))
▶ The most general unifier (mgu) is

σ = {x 7→ u, y 7→ g(v), w 7→ f (u), z 7→ v}
▶ Applying σ the either term yields P(f (u), g(v))

Second, we instantiate according to the mgu to obtain:

▶ P(f (u), g(v))
▶ ¬P(f (u), g(v))∨ Q(f (u), v)

Third, we resolve to obtain Q(f (u), v)

Finally, we generalize to obtain the result: ∀u.∀v.Q(f (u), v)

Logic and Mechanized Reasoning 9 / 24



First-Order Resolution Example

Clauses: (∀x.∀y.P(f (x), y)), (∀w.∀z.¬P(w, g(z))∨ Q(w, z))

First, we unify P(f (x), y) and P(w, g(z))
▶ The most general unifier (mgu) is

σ = {x 7→ u, y 7→ g(v), w 7→ f (u), z 7→ v}
▶ Applying σ the either term yields P(f (u), g(v))

Second, we instantiate according to the mgu to obtain:

▶ P(f (u), g(v))
▶ ¬P(f (u), g(v))∨ Q(f (u), v)

Third, we resolve to obtain Q(f (u), v)

Finally, we generalize to obtain the result: ∀u.∀v.Q(f (u), v)

Logic and Mechanized Reasoning 9 / 24



First-Order Resolution Example

Clauses: (∀x.∀y.P(f (x), y)), (∀w.∀z.¬P(w, g(z))∨ Q(w, z))

First, we unify P(f (x), y) and P(w, g(z))
▶ The most general unifier (mgu) is

σ = {x 7→ u, y 7→ g(v), w 7→ f (u), z 7→ v}
▶ Applying σ the either term yields P(f (u), g(v))

Second, we instantiate according to the mgu to obtain:

▶ P(f (u), g(v))
▶ ¬P(f (u), g(v))∨ Q(f (u), v)

Third, we resolve to obtain Q(f (u), v)

Finally, we generalize to obtain the result: ∀u.∀v.Q(f (u), v)

Logic and Mechanized Reasoning 9 / 24



First-Order Resolution Example

Clauses: (∀x.∀y.P(f (x), y)), (∀w.∀z.¬P(w, g(z))∨ Q(w, z))

First, we unify P(f (x), y) and P(w, g(z))
▶ The most general unifier (mgu) is

σ = {x 7→ u, y 7→ g(v), w 7→ f (u), z 7→ v}
▶ Applying σ the either term yields P(f (u), g(v))

Second, we instantiate according to the mgu to obtain:

▶ P(f (u), g(v))
▶ ¬P(f (u), g(v))∨ Q(f (u), v)

Third, we resolve to obtain Q(f (u), v)

Finally, we generalize to obtain the result: ∀u.∀v.Q(f (u), v)

Logic and Mechanized Reasoning 9 / 24



First-Order Resolution Definition

Definition (First-Order Resolution)

Let C1 and C2 be two first-order clauses such that:

▶ C1 = ∀x1 . . . ∀xi.l ∨ l1 ∨ . . . ∨ lm
▶ C2 = ∀y1 . . . ∀yj.l ′ ∨ l ′1 ∨ . . . ∨ l ′n
▶ l is a positive literal and l ′ is a negative literal

▶ There exists an mgu σ for the relations in l and l ′

▶ σ maps all variables in C1 and C2 to terms containing only
the variables z1 through zk

Then resolving C1 and C2 on literals l and l ′ yields
∀z1 . . . ∀zk.σ(l1 ∨ . . . lm ∨ l ′1 ∨ . . . ∨ l ′n)

Logic and Mechanized Reasoning 10 / 24



First-Order Resolution Definition

Definition (First-Order Resolution)

Let C1 and C2 be two first-order clauses such that:

▶ C1 = ∀x1 . . . ∀xi.l ∨ l1 ∨ . . . ∨ lm
▶ C2 = ∀y1 . . . ∀yj.l ′ ∨ l ′1 ∨ . . . ∨ l ′n
▶ l is a positive literal and l ′ is a negative literal

▶ There exists an mgu σ for the relations in l and l ′

▶ σ maps all variables in C1 and C2 to terms containing only
the variables z1 through zk

Then resolving C1 and C2 on literals l and l ′ yields
∀z1 . . . ∀zk.σ(l1 ∨ . . . lm ∨ l ′1 ∨ . . . ∨ l ′n)

Logic and Mechanized Reasoning 10 / 24



First-Order Resolution Definition

A minor addendum to the previous definition:

It is possible that resolving C1 and C2 on literals l and l ′ yields
a result in which there is some i ∈ [1, m] such that σ(li) = l
(meaning after σ is applied to C1, l appears multiple times)

If this happens, in addition to removing l and l ′ from the
result, li should also be removed (likewise, any literals in C2
that become l ′ after applying σ should also be removed)

Some presentations of first-order resolution separate this rule
from resolution itself and call it factoring, other presentations
include this elimination as part of the resolution rule itself

In section 14.1 of the textbook, there is an example (the
barber paradox) that showcases why this is necessary

Logic and Mechanized Reasoning 11 / 24



Resolving on Different Literals

In propositional logic, if it is ever possible to resolve a pair of
clauses in two ways, the result will always be a tautology:

▶ Let C1 = p ∨ q ∨ . . .
▶ Let C2 = p̄ ∨ q̄ ∨ . . .
▶ Resolving C1 and C2 on p yields q ∨ q̄ ∨ . . .
▶ Resolving C1 and C2 on q yields p ∨ p̄ ∨ . . .
▶ Either way, the result of the resolution is a tautology and

therefore useless

Logic and Mechanized Reasoning 12 / 24



Resolving on Different Literals

In first-order logic, it may be possible to resolve a pair of
clauses in multiple ways without the results being tautologies

▶ Let C1 = ∀x.∀y.P(f (x), y)∨ Q(x, f (y))
▶ Let C2 = ∀w.∀z.¬P(w, g(z))∨¬Q(g(w), z)
▶ If we resolve on the first literal, we get mgu

σ = {x 7→ u, y 7→ g(v), w 7→ f (u), z 7→ v} yielding the
result ∀u.∀v.Q(u, f (g(v)))∨¬Q(g(f (u)), v)

▶ If we resolve on the second literal, we get mgu
σ = {x 7→ g(u), y 7→ v, w 7→ u, z 7→ f (v)} yielding the
result ∀u.∀v.P(f (g(u)), v)∨¬P(u, g(f (v)))

Neither of these results are tautologies

Logic and Mechanized Reasoning 13 / 24



Resolving on Different Literals

In first-order logic, it may be possible to resolve a pair of
clauses in multiple ways without the results being tautologies

▶ Let C1 = ∀x.∀y.P(f (x), y)∨ Q(x, f (y))
▶ Let C2 = ∀w.∀z.¬P(w, g(z))∨¬Q(g(w), z)

▶ If we resolve on the first literal, we get mgu
σ = {x 7→ u, y 7→ g(v), w 7→ f (u), z 7→ v} yielding the
result ∀u.∀v.Q(u, f (g(v)))∨¬Q(g(f (u)), v)

▶ If we resolve on the second literal, we get mgu
σ = {x 7→ g(u), y 7→ v, w 7→ u, z 7→ f (v)} yielding the
result ∀u.∀v.P(f (g(u)), v)∨¬P(u, g(f (v)))

Neither of these results are tautologies

Logic and Mechanized Reasoning 13 / 24



Resolving on Different Literals

In first-order logic, it may be possible to resolve a pair of
clauses in multiple ways without the results being tautologies

▶ Let C1 = ∀x.∀y.P(f (x), y)∨ Q(x, f (y))
▶ Let C2 = ∀w.∀z.¬P(w, g(z))∨¬Q(g(w), z)
▶ If we resolve on the first literal, we get mgu

σ = {x 7→ u, y 7→ g(v), w 7→ f (u), z 7→ v} yielding the
result ∀u.∀v.Q(u, f (g(v)))∨¬Q(g(f (u)), v)

▶ If we resolve on the second literal, we get mgu
σ = {x 7→ g(u), y 7→ v, w 7→ u, z 7→ f (v)} yielding the
result ∀u.∀v.P(f (g(u)), v)∨¬P(u, g(f (v)))

Neither of these results are tautologies

Logic and Mechanized Reasoning 13 / 24



Resolving on Different Literals

In first-order logic, it may be possible to resolve a pair of
clauses in multiple ways without the results being tautologies

▶ Let C1 = ∀x.∀y.P(f (x), y)∨ Q(x, f (y))
▶ Let C2 = ∀w.∀z.¬P(w, g(z))∨¬Q(g(w), z)
▶ If we resolve on the first literal, we get mgu

σ = {x 7→ u, y 7→ g(v), w 7→ f (u), z 7→ v} yielding the
result ∀u.∀v.Q(u, f (g(v)))∨¬Q(g(f (u)), v)

▶ If we resolve on the second literal, we get mgu
σ = {x 7→ g(u), y 7→ v, w 7→ u, z 7→ f (v)} yielding the
result ∀u.∀v.P(f (g(u)), v)∨¬P(u, g(f (v)))

Neither of these results are tautologies

Logic and Mechanized Reasoning 13 / 24



Resolving on Different Literals

In first-order logic, it may be possible to resolve a pair of
clauses in multiple ways without the results being tautologies

▶ Let C1 = ∀x.∀y.P(f (x), y)∨ Q(x, f (y))
▶ Let C2 = ∀w.∀z.¬P(w, g(z))∨¬Q(g(w), z)
▶ If we resolve on the first literal, we get mgu

σ = {x 7→ u, y 7→ g(v), w 7→ f (u), z 7→ v} yielding the
result ∀u.∀v.Q(u, f (g(v)))∨¬Q(g(f (u)), v)

▶ If we resolve on the second literal, we get mgu
σ = {x 7→ g(u), y 7→ v, w 7→ u, z 7→ f (v)} yielding the
result ∀u.∀v.P(f (g(u)), v)∨¬P(u, g(f (v)))

Neither of these results are tautologies

Logic and Mechanized Reasoning 13 / 24



Normal Forms

First-Order Resolution

Decision Procedures and Completeness

First-Order Resolution Completeness

Logic and Mechanized Reasoning 14 / 24



Decision Procedures

Definition (Decision Procedure)

A decision procedure is an algorithm that takes in problems
from some class of yes/no questions and determines the
answer in finitely many steps

Since propositional logic is decidable, the following
(equivalent) questions all have decision procedures:

▶ Is P valid? (⊨ P)
▶ Is P provable? (⊢ P)
▶ Is ¬P unsatisfiable?

▶ Is ¬P refutable? (¬P ⊢ ⊥) ← You made this in HW 5

Logic and Mechanized Reasoning 15 / 24



Decision Procedures

Definition (Decision Procedure)

A decision procedure is an algorithm that takes in problems
from some class of yes/no questions and determines the
answer in finitely many steps

Since propositional logic is decidable, the following
(equivalent) questions all have decision procedures:

▶ Is P valid? (⊨ P)
▶ Is P provable? (⊢ P)
▶ Is ¬P unsatisfiable?

▶ Is ¬P refutable? (¬P ⊢ ⊥)

← You made this in HW 5

Logic and Mechanized Reasoning 15 / 24



Decision Procedures

Definition (Decision Procedure)

A decision procedure is an algorithm that takes in problems
from some class of yes/no questions and determines the
answer in finitely many steps

Since propositional logic is decidable, the following
(equivalent) questions all have decision procedures:

▶ Is P valid? (⊨ P)
▶ Is P provable? (⊢ P)
▶ Is ¬P unsatisfiable?

▶ Is ¬P refutable? (¬P ⊢ ⊥) ← You made this in HW 5

Logic and Mechanized Reasoning 15 / 24



First-Order Logic is Undecidable

Since first-order logic is, in general, undecidable, none of the
following (equivalent) questions have decision procedures:

▶ Is ∃−→x .A(−→x ) valid? (⊨ ∃−→x .A(−→x ))

▶ Is ∃−→x .A(−→x ) provable? (⊢ ∃−→x .A(−→x ))

▶ Is ∀−→x .¬A(−→x ) unsatisfiable?

Definition (Refutation-Completeness)

A set of inference rules is refutation-complete if every
unsatisfiable formula can be refuted using just those
inferences. In other words, for every unsatisfiable formula A,
refutation-completeness requires that A ⊢ ⊥

Logic and Mechanized Reasoning 16 / 24



First-Order Logic is Undecidable

Since first-order logic is, in general, undecidable, none of the
following (equivalent) questions have decision procedures:

▶ Is ∃−→x .A(−→x ) valid? (⊨ ∃−→x .A(−→x ))

▶ Is ∃−→x .A(−→x ) provable? (⊢ ∃−→x .A(−→x ))

▶ Is ∀−→x .¬A(−→x ) unsatisfiable?

Definition (Refutation-Completeness)

A set of inference rules is refutation-complete if every
unsatisfiable formula can be refuted using just those
inferences. In other words, for every unsatisfiable formula A,
refutation-completeness requires that A ⊢ ⊥

Logic and Mechanized Reasoning 16 / 24



Consequence of Refutation-Completeness

Resolution is sound, meaning A ⊢ ⊥ entails that A is
unsatisfiable. So if resolution is refutation-complete, then
“Is A refutable?” is equivalent to “Is A unsatisfiable?”

Note that this does NOT mean that there is a decision
procedure for determining whether A is refutable

Logic and Mechanized Reasoning 17 / 24



Consequence of Refutation-Completeness

Resolution is sound, meaning A ⊢ ⊥ entails that A is
unsatisfiable. So if resolution is refutation-complete, then
“Is A refutable?” is equivalent to “Is A unsatisfiable?”

Note that this does NOT mean that there is a decision
procedure for determining whether A is refutable

Logic and Mechanized Reasoning 17 / 24



Search Nontermination

Example

▶ Consider the clause ∀x.¬P(x)∨ P(f (x)).

If we resolve
this clause with itself, we obtain ∀y.¬P(y)∨ P(f (f (y))).
If we resolve this new clause with itself, we obtain
∀z.¬P(z)∨ P(f (f (f (f (z)))))

▶ You can prove by induction that there are infinitely many
clauses that you can generate via resolution in this manner

▶ But the clause ∀x.¬P(x)∨ P(f (x)) is satisfiable (just
consider a model where no elements satisfy P)

So first-order resolution is not a decision procedure. If a
formula is satisfiable, proof search can either terminate or go
on forever

Logic and Mechanized Reasoning 18 / 24



Search Nontermination

Example

▶ Consider the clause ∀x.¬P(x)∨ P(f (x)). If we resolve
this clause with itself, we obtain ∀y.¬P(y)∨ P(f (f (y))).
If we resolve this new clause with itself, we obtain
∀z.¬P(z)∨ P(f (f (f (f (z)))))

▶ You can prove by induction that there are infinitely many
clauses that you can generate via resolution in this manner

▶ But the clause ∀x.¬P(x)∨ P(f (x)) is satisfiable (just
consider a model where no elements satisfy P)

So first-order resolution is not a decision procedure. If a
formula is satisfiable, proof search can either terminate or go
on forever

Logic and Mechanized Reasoning 18 / 24



Search Nontermination

Example

▶ Consider the clause ∀x.¬P(x)∨ P(f (x)). If we resolve
this clause with itself, we obtain ∀y.¬P(y)∨ P(f (f (y))).
If we resolve this new clause with itself, we obtain
∀z.¬P(z)∨ P(f (f (f (f (z)))))

▶ You can prove by induction that there are infinitely many
clauses that you can generate via resolution in this manner

▶ But the clause ∀x.¬P(x)∨ P(f (x)) is satisfiable (just
consider a model where no elements satisfy P)

So first-order resolution is not a decision procedure. If a
formula is satisfiable, proof search can either terminate or go
on forever

Logic and Mechanized Reasoning 18 / 24



Search Nontermination

Example

▶ Consider the clause ∀x.¬P(x)∨ P(f (x)). If we resolve
this clause with itself, we obtain ∀y.¬P(y)∨ P(f (f (y))).
If we resolve this new clause with itself, we obtain
∀z.¬P(z)∨ P(f (f (f (f (z)))))

▶ You can prove by induction that there are infinitely many
clauses that you can generate via resolution in this manner

▶ But the clause ∀x.¬P(x)∨ P(f (x)) is satisfiable (just
consider a model where no elements satisfy P)

So first-order resolution is not a decision procedure. If a
formula is satisfiable, proof search can either terminate or go
on forever

Logic and Mechanized Reasoning 18 / 24



Search Nontermination

Example

▶ Consider the clause ∀x.¬P(x)∨ P(f (x)). If we resolve
this clause with itself, we obtain ∀y.¬P(y)∨ P(f (f (y))).
If we resolve this new clause with itself, we obtain
∀z.¬P(z)∨ P(f (f (f (f (z)))))

▶ You can prove by induction that there are infinitely many
clauses that you can generate via resolution in this manner

▶ But the clause ∀x.¬P(x)∨ P(f (x)) is satisfiable (just
consider a model where no elements satisfy P)

So first-order resolution is not a decision procedure. If a
formula is satisfiable, proof search can either terminate or go
on forever

Logic and Mechanized Reasoning 18 / 24



Normal Forms

First-Order Resolution

Decision Procedures and Completeness

First-Order Resolution Completeness

Logic and Mechanized Reasoning 19 / 24



First-Order Resolution Completeness

Theorem
Resolution is a refutation-complete calculus for first-order
clause normal form formulas. So if C is an unsatisfiable
first-order clause normal form formula, then C ⊢ ⊥

Last week, we saw that any first-order formula can be
transformed into an equisatisfiable Skolem normal form
formula. And any Skolem normal form formula can be
transformed into an equivalent clause normal form formula

Corollary

Resolution + skolemization + clausification is a
refutation-complete calculus for first-order logic

Logic and Mechanized Reasoning 20 / 24



First-Order Resolution Completeness

Theorem
Resolution is a refutation-complete calculus for first-order
clause normal form formulas. So if C is an unsatisfiable
first-order clause normal form formula, then C ⊢ ⊥

Last week, we saw that any first-order formula can be
transformed into an equisatisfiable Skolem normal form
formula. And any Skolem normal form formula can be
transformed into an equivalent clause normal form formula

Corollary

Resolution + skolemization + clausification is a
refutation-complete calculus for first-order logic

Logic and Mechanized Reasoning 20 / 24



First-Order Resolution Completeness

Theorem
Resolution is a refutation-complete calculus for first-order
clause normal form formulas. So if C is an unsatisfiable
first-order clause normal form formula, then C ⊢ ⊥

Last week, we saw that any first-order formula can be
transformed into an equisatisfiable Skolem normal form
formula. And any Skolem normal form formula can be
transformed into an equivalent clause normal form formula

Corollary

Resolution + skolemization + clausification is a
refutation-complete calculus for first-order logic

Logic and Mechanized Reasoning 20 / 24



Herbrand’s Theorem

Before the actual proof of first-order resolution’s refutational
completeness, we need to establish two important helper facts.
The first is called Herbrand’s Theorem

Theorem (Herbrand’s Theorem)

Let C = ∀x1 . . . ∀xn.C1 ∧ . . . ∧ Cm be a clause normal form
formula with constant and function symbols from Σ. Let Σ ′ be
the set of closed terms that can be made from symbols in Σ.

C is unsatisfiable if and only if there is a finite set Γ where:

▶ Each element in Γ is a clause Ci[t1/x1, . . . tn/xn] where
1 ≤ i ≤ m and t1 . . . tn ∈ Σ ′

▶ If each distinct literal in Γ is interpreted as a unique
propositional variable, then Γ is unsatisfiable in
propositional logic

Logic and Mechanized Reasoning 21 / 24



Herbrand’s Theorem

Before the actual proof of first-order resolution’s refutational
completeness, we need to establish two important helper facts.
The first is called Herbrand’s Theorem

Theorem (Herbrand’s Theorem)

Let C = ∀x1 . . . ∀xn.C1 ∧ . . . ∧ Cm be a clause normal form
formula with constant and function symbols from Σ. Let Σ ′ be
the set of closed terms that can be made from symbols in Σ.

C is unsatisfiable if and only if there is a finite set Γ where:

▶ Each element in Γ is a clause Ci[t1/x1, . . . tn/xn] where
1 ≤ i ≤ m and t1 . . . tn ∈ Σ ′

▶ If each distinct literal in Γ is interpreted as a unique
propositional variable, then Γ is unsatisfiable in
propositional logic

Logic and Mechanized Reasoning 21 / 24



Lifting Lemma

The second helper fact we need is called the Lifting Lemma

Lemma (Lifting Lemma)

Let C = ∀x1 . . . ∀xn.C1 ∧ . . . ∧ Cm be a clause normal form
formula with constant and function symbols from Σ. Let Σ ′ be
the set of closed terms that can be made from symbols in Σ.

Let Γ be a set where each element is a clause
Ci[t1/x1, . . . tn/xn] where 1 ≤ i ≤ m and t1 . . . tn ∈ Σ ′

If each distinct literal in Γ is interpreted as a unique
propositional variable, then any propositional resolution
refutation of Γ can be transformed into a first-order resolution
refutation of C

Logic and Mechanized Reasoning 22 / 24



Lifting Lemma

The second helper fact we need is called the Lifting Lemma

Lemma (Lifting Lemma)

Let C = ∀x1 . . . ∀xn.C1 ∧ . . . ∧ Cm be a clause normal form
formula with constant and function symbols from Σ. Let Σ ′ be
the set of closed terms that can be made from symbols in Σ.

Let Γ be a set where each element is a clause
Ci[t1/x1, . . . tn/xn] where 1 ≤ i ≤ m and t1 . . . tn ∈ Σ ′

If each distinct literal in Γ is interpreted as a unique
propositional variable, then any propositional resolution
refutation of Γ can be transformed into a first-order resolution
refutation of C

Logic and Mechanized Reasoning 22 / 24



First-Order Resolution Completeness

Theorem
Resolution is a refutation-complete calculus for first-order
clause normal form formulas. So if C is an unsatisfiable
first-order clause normal form formula, then C ⊢ ⊥

Logic and Mechanized Reasoning 23 / 24



First-Order Resolution Completeness Proof

Proof.
Let C be an unsatisfiable clause normal form formula with
constant and function symbols from Σ. Since C is in clause
normal form, C can be written ∀x1 . . . ∀xn.C1 ∧ . . . ∧ Cm

Let Σ ′ be the set of closed terms that can be made from
symbols in Σ. By Herbrand’s Theorem, there is an
unsatisfiable conjunction of clauses Ci[t1/x1, . . . tn/xn] where
1 ≤ i ≤ m and t1 . . . tn ∈ Σ ′. Call this conjunction Γ

Since resolution is complete for propositional logic and Γ is
unsatisfiable, there exists a propositional resolution proof that
Γ ⊢ ⊥. By the lifting lemma, this propositional proof can be
transformed into a first-order resolution proof that C ⊢ ⊥

Logic and Mechanized Reasoning 24 / 24



First-Order Resolution Completeness Proof

Proof.
Let C be an unsatisfiable clause normal form formula with
constant and function symbols from Σ. Since C is in clause
normal form, C can be written ∀x1 . . . ∀xn.C1 ∧ . . . ∧ Cm

Let Σ ′ be the set of closed terms that can be made from
symbols in Σ. By Herbrand’s Theorem, there is an
unsatisfiable conjunction of clauses Ci[t1/x1, . . . tn/xn] where
1 ≤ i ≤ m and t1 . . . tn ∈ Σ ′. Call this conjunction Γ

Since resolution is complete for propositional logic and Γ is
unsatisfiable, there exists a propositional resolution proof that
Γ ⊢ ⊥. By the lifting lemma, this propositional proof can be
transformed into a first-order resolution proof that C ⊢ ⊥

Logic and Mechanized Reasoning 24 / 24



First-Order Resolution Completeness Proof

Proof.
Let C be an unsatisfiable clause normal form formula with
constant and function symbols from Σ. Since C is in clause
normal form, C can be written ∀x1 . . . ∀xn.C1 ∧ . . . ∧ Cm

Let Σ ′ be the set of closed terms that can be made from
symbols in Σ. By Herbrand’s Theorem, there is an
unsatisfiable conjunction of clauses Ci[t1/x1, . . . tn/xn] where
1 ≤ i ≤ m and t1 . . . tn ∈ Σ ′. Call this conjunction Γ

Since resolution is complete for propositional logic and Γ is
unsatisfiable, there exists a propositional resolution proof that
Γ ⊢ ⊥. By the lifting lemma, this propositional proof can be
transformed into a first-order resolution proof that C ⊢ ⊥

Logic and Mechanized Reasoning 24 / 24


	Normal Forms
	First-Order Resolution
	Decision Procedures and Completeness
	First-Order Resolution Completeness

