Logic and Mechanized Reasoning
Satisfiability Modulo Theories

Marijn J.H. Heule

Carnegie
Mellon
University

Based on tutorials by Barrett, Griggio, Jovanovi¢,
de Moura, Oliveras, and Tinelli

Logic and Mechanized Reasoning 1/32

SMT Overview

SMT Solving

SMT Theories

Logic and Mechanized Reasoning 2/32

SMT Overview

Logic and Mechanized Reasoning 3/32

Overview: Satisfiability Modulo Theories

Problem
Check if a quantifier-free first-order formula can be satisfied

with respect to some background theories.

Example (QF_UFLRA)
(z=1Vz=0)A(x—y+z=1)A(f(x)>f(y))

Logic and Mechanized Reasoning 4/32

Overview: Satisfiability Modulo Theories

Problem
Check if a quantifier-free first-order formula can be satisfied

with respect to some background theories.

Example (QF_UFLRA)
(z=1Vz=0)A(x—y+z=1A(f(x) >f(y))

1. Linear real arithmetic (LRA).

Logic and Mechanized Reasoning 4/32

Overview: Satisfiability Modulo Theories

Problem
Check if a quantifier-free first-order formula can be satisfied

with respect to some background theories.

Example (QF_UFLRA)
(z=1Vz=0)A(x—y+z=1)A((x) >f(y))

1. Linear real arithmetic (LRA).
2. Uninterpreted functions (UF).

Logic and Mechanized Reasoning 4/32

Overview: Satisfiability Modulo Theories

Problem
Check if a quantifier-free first-order formula can be satisfied

with respect to some background theories.

Example (QF_UFLRA)
(E=1Vz=0)A(x—y+z =1 A(F(x) > ()
1. Linear real arithmetic (LRA).

2. Uninterpreted functions (UF).
3. Satisfiable with z +— 0,x — 1,y — 0,f(1) — 1,f(0) — 0

Logic and Mechanized Reasoning 4/32

Overview: Many SMT Applications |

Schedule n jobs, each composed of m consecutive tasks, on m

machines using at most t timeslots.

Schedule in 8 time slots.

di ‘ Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3

Logic and Mechanized Reasoning

5/ 32

Overview: Many SMT Applications |

Schedule n jobs, each composed of m consecutive tasks, on m
machines using at most t timeslots.

(1 > 0)A(tig > 1 +2) N (tp+1<8)
(t2,1 > 0) /\ (tz/z >ty + 3) A (tz/z +1< 8)

Schedule in 8 time slots. (ts1 = 0)A(tzp > t31 +2) A(tsp +3 < 8)

(11 > o1 +3) V(b1 > 11 +2))

d; ‘ Machine 1 Machine 2 (i1 251 +2) V(51 2 1 +2))
Joll)J I 5 T ((t21 > t31 +2)V (t31 > t21 +3))
Job 2 3 1 ((h2 2 tp+1)V (o 2 h2 +1))
Job 3 2 3 (ha 2 t320+3)V (tz2 > tp +1))
(ko > t32+3)V (t3p > tap +1))

Example from [DMB11]

Logic and Mechanized Reasoning 5/32

Overview: Many SMT Applications |

Schedule n jobs, each composed of m consecutive tasks, on m
machines using at most t timeslots.

(1 > 0)A(tig > 1 +2) N (tp+1<8)
(t2,1 > 0) /\ (tz/z >ty + 3) A (tz/z +1< 8)

Schedule in 8 time slots. (ts1 = 0)A(tzp > t31 +2) A(tsp +3 < 8)

(11 > o1 +3) V(b1 > 11 +2))

di ‘ Machine 1 Machine 2 (1 2 t51 +2)V(ta1 2 11 +2))
Job’ I 5 T ((tog 2 t31 +2)V (t31 > tp1 +3))
Job 2 3 1 ((h2 2 tp+1)V (o 2 h2 +1))
Job 3 2 3 ((t2 > t32+3)V(tsp > t1p+1))
((taa > t3p+3)V (t32 > bp + 1))

Example from [DMB11]
Run SMT solver (QF_IDL)
tl,l — 5, t1,2 — 7, t2,1 — 2, i’2/2 — 6, t3,1 — 0, t3,2 — 3

Logic and Mechanized Reasoning 5/32

Overview: Many SMT Applications Il

Logic and Mechanized Reasoning

Tj(t) = —3.2484 + 270.7t + 433.121> — 324.83999¢>
TJ(t) = 15.1592 + 108.28t + 121.27361> — 649.67999+>
T3(t) = 38980.8 -+ 5414t — 216561 + 324841>

T3 (t) = 1.0828 — 135.35¢ 4 234.96761>2 + 32484+
T3 (t) = 18.40759 — 230.6364t — 121.2736t* — 649.67999t>
T5(t) = 40280.15999 — 10828t + 24061.9816¢> — 324841>

8|~

D=5 H = 1000 0<t<

ITi() — T3(OI <H - (T5() — T5(0) + (T} (1) — T3(1))* < D*

Example from [NM12]

6/ 32

Overview: Many SMT Applications Il

Tj(t) = —3.2484 + 270.7t + 433.121> — 324.83999¢>
TJ(t) = 15.1592 + 108.28t + 121.27361> — 649.67999+>
T3(t) = 38980.8 -+ 5414t — 216561 + 324841>

T3 (t) = 1.0828 — 135.35¢ 4 234.96761>2 + 32484+
T3 (t) = 18.40759 — 230.6364t — 121.2736t* — 649.67999t>
T5(t) = 40280.15999 — 10828t + 24061.9816¢> — 324841>

D=5 H = 1000 0<t<

8|~

ITi() — T3t <H (T(t) = T5()* + (TY(t) = T5(1))* < D?

Example from [NM12]

Run SMT solver (QF_NRA)
319
t — 1z3e1 ~ 0.019470215

Logic and Mechanized Reasoning

6/ 32

Overview: Modeling and Solving

Modeling

» Depending on the problem domain, select a fitting theory.
» Consider expressivity vs solving complexity.

Solving

» Get an SMT solver that supports the theory.
» Hope for the best.

Logic and Mechanized Reasoning 7/32

Overview: Uninterpreted Functions

Uninterpreted Functions (QF_UF)

Simplest first-order theory, with equality, applications of
uninterpreted functions, and variables of uninterpreted types.

Reflexivity: x = x

Symmetry: x =y =y =x
Transitivity: x =yAy=z=x=12
Congruence: x =y = f(x) = f(y)

Example

FEE@))) =x A FEFFFE))))) =x A flx) #x

Logic and Mechanized Reasoning 8 /32

Overview: Arrays
Theory of Arrays [McC93]

Operates over types array, index, element and function symbols

_[] : array x index — element
store : array X index X element +— array .

Read-Over-Write-1: store(a, i, e)[i] = e
Read-Over-Write-2: i # j = store(a, i,e)[j] = alj]
Extensionality: a # b = Ji : ali] # bi]

Example

store(store(a, i,alj]), j,ali]) = store(store(a, j,ali]),i,a[j])

Logic and Mechanized Reasoning 9/32

Overview: Arithmetic

Arithmetic
Arithmetic constraints (inequalities, equalities) over arithmetic
(real or integer) variables.

» Difference logic (QF_RDL, QF_IDL):
x—y<1, x—y>10

» Linear arithmetic (QF_LRA, QF_LIA):
2x—3y+4z <5

» Non-linear arithmetic (QF_NRA, QF_NIA):

x4+ 3xy+y* >0

Logic and Mechanized Reasoning 10 / 32

Overview: Bitvectors

Bitvectors (QF_BV)
Operates over fixed-size bit-vectors, with bit-vector operations:

> concatenation a o b, extraction a[i : j]

» bit-wise operators ~a, alb, a&b, ...

» shifts a < k, b > k (logical, arithmetic)

» arithmetica+b,a—b,axb, a/b, ...

» predicates =, <, <, ... (signed and unsigned)
Semantics similar to programming languages.

Example (a is 32-bits)

(~a&(a+1))>y,a

Logic and Mechanized Reasoning 11 /32

Overview: Strings

Strings (QF_S)
Operates over strings on a finite alphabet:
» string variables x, y, z

P string constants "abc”, "AAAA", "http"
P string concatenation: x-abc, x -y -z

» string length: |x|

Constraints:
» Equalities and disequalities between string terms
» Linear arithmetic constraints: [x| +4 > |y|

Example

x-"a'=y ANy#"D-z Nyl > |x[+2

Logic and Mechanized Reasoning

12 /32

Overview: Other Interesting Theories

Some other theories
» Floating point [BDG114, ZWR14]
» Inductive data-types [BSTO7]
» Strings and regular expressions [LRT 114, KGGT09]
» Quantifiers [DMB07, RTG™13]
» Differential Equations [GKC13]
> ..

Logic and Mechanized Reasoning 13 /32

SMT Solving

Logic and Mechanized Reasoning 14 /32

Solving: Introduction

Check T-satisfiability of a T-formula T’

Logic and Mechanized Reasoning 15 /32

Solving: Introduction

Check T-satisfiability of a T-formula T’
1. Convert to DNF

D
Ie \/(LIALLA---ALL)
i=1

Logic and Mechanized Reasoning 15 /32

Solving: Introduction

Check T-satisfiability of a T-formula T’
1. Convert to DNF

D
Ie \/(LIALLA---ALL)
i=1

2. If any of cubes is T-satisfiable, return SAT, else UNSAT.

Logic and Mechanized Reasoning 15 /32

Solving: Introduction

Check T-satisfiability of a T-formula T’
1. Convert to DNF

D
Ie \/(LIALLA---ALL)
i=1

2. If any of cubes is T-satisfiable, return SAT, else UNSAT.

Theory solver/Decision procedure for T
Procedure to decide satisfiability of a conjunction of T-literals.

Logic and Mechanized Reasoning 15 /32

Solving: Apply a SAT Solver

Use a SAT solver
» Instead of DNF: Apply a SAT solver.

» Check the literals selected by the SAT solver.

» If not T-satisfiable, add a blocking clause.

Logic and Mechanized Reasoning

16 / 32

Solving: Very Lazy SMT Example

View
—a==5b Theory
(x=aVx=0b)
(y=aVy=D0)
(z=aVz=0b)

Logic and Mechanized Reasoning 17 /32

Solving: Very Lazy SMT Example

View
—p1 Boolean

Logic and Mechanized Reasoning 17 /32

Solving: Very Lazy SMT Example

View
—p1 Boolean

Check with SAT solver

Logic and Mechanized Reasoning 17 /32

Solving: Very Lazy SMT Example

View
—p1 Boolean
(p2 V p3)
(P+ V p5)
(ps V p7)
—pg

Check with SAT solver
I =pr, —Ps, P33, P2, “P5 , P+, “P7, P |

Logic and Mechanized Reasoning 17 /32

Solving: Very Lazy SMT Example

View
—a="5> Theory
(x=aVx=D0)
(y=aVy=D0)
(z=aVz=0b)

Check with SAT solver
[—a=b—x=y~x=bx=a-y=by=a-z=">bz=4d]

Logic and Mechanized Reasoning 17 /32

Solving: Very Lazy SMT Example

—a="0

View
(x=aVx=0b) Theory
(y=aVy=D0)
(z=aVz=0)
—|x:y

Check with SAT solver
[ra=b—x=y ~x=bx=a-y=by=a-z=Dbz=d]
Check with T-solver

x=alN\y=a=x=Yy

Logic and Mechanized Reasoning 17 /32

Solving: Very Lazy SMT Example

—a=2"0

View
(x=aVx=bh) Theory
(y=aVy=D)
(z=aVz=0b)
X =1y

(x=yV—-x=aV—-y=a)

Check with SAT solver
[ra=b-—x=y~x=bx=a-y=by=a-z=Db,z=d]
Check with T-solver

x=alN\y=a=x=1Yy
Add blocking clause: x=yV—-x=aV—y=a

Logic and Mechanized Reasoning 17 /32

Solving: Very Lazy SMT Example

View
—p1 Boolean
2

R

(
(
(

s
< <<
3

6
—|p8
(ps V P2V TPs)

Check with SAT solver

Logic and Mechanized Reasoning

17 /32

Solving: Very Lazy SMT Example

View
—p1 Boolean
2

RS

(
(
(

s
< <<
3

6
—|p8
(ps V P2V TPs)

Check with SAT solver
I =pr, —Ps, P33, P2, P&, P5, 7P7, Ps |

Logic and Mechanized Reasoning 17 /32

Solving: Very Lazy SMT Example

View
—a="5> Theory
(x=aVx=D0)
(y=aVy=0b)
(z=aVz=0b)
—|x:y

(x=yV—x=aV—-y=a)

Check with SAT solver
[—a=b—x=y~x=bx=a-y=ay=>b-z=>bz=4d]

Logic and Mechanized Reasoning 17 /32

Solving: Very Lazy SMT Example

—a=2">

View
(x=aVx=bh) Theory
(y=aVy=D)
(z=aVz=0b)

(x=yV—x=aV—-y=a)

Check with SAT solver
[—a=b—x=y~x=bx=a-y=ay=>b-z=>0,z=4d]
Check with T-solver

Satisfiable: a,x,z+— ¢, by

Logic and Mechanized Reasoning 17 /32

Solving: Very Lazy SMT

Properties

» SAT and T-solver only communicate via existing literals
» Number of possible conflicts finite = termination

» Reuse the improvements in SAT solving

» SAT solver is “blind” and can get lost :(

Logic and Mechanized Reasoning 18 /32

Solving: Very Lazy SMT

Properties

» SAT and T-solver only communicate via existing literals
» Number of possible conflicts finite = termination

» Reuse the improvements in SAT solving

» SAT solver is “blind” and can get lost :(

Integrate closely with SAT solver: DPLL(T) [DMR02, NOTO05]

Incremental: Check T-satisfiability along the SAT solver

Backtrack: Backtrack with SAT solver and keep context

Propagation: If existing literals are implied tell SAT solver
Conflict: Small conflict explanations

Logic and Mechanized Reasoning 18 /32

Solving: Typical Architecture

»~"" Theory Literalsi l Explanations

Logic and Mechanized Reasoning

19 /32

Solving: Typical Architecture

-~ Theory Literals
SAT Solver
» Standard “off-the shelf”
SAT solver

» Build Boolean model
and notify theories

Logic and Mechanized Reasoning

19 /32

Solving: Typical Architecture

Theory Decision Procedures

» Check conjunctions of literals
» Incremental

» Backtrackable -
» Producing explanations

Logic and Mechanized Reasoning

19 /32

Solving: Typical Architecture

Combination Framework
Ensure modular reasoning
is correct

Logic and Mechanized Reasoning 19 / 32

Solving: Great but not Perfect

Example (Diamonds)

n—1
ap > an N\)\ ((a < b Abp < agpq) V(g < e A < ayq))
k=0

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

Example (Diamonds)

n—1
ag > an N N\ ((a < b Abx < agi1) V (ax < cg Nex < agi1))
k=0

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

Example (Diamonds)

n—1
ag > an N N\ ((a < b Abx < agi1) V (ax < cg Nex < agi1))
k=0

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

Example (Diamonds)

n—1
ag > an N N\ ((a < b Abx < agi1) V (ax < cg Nex < agi1))
k=0

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

Example (Diamonds)
n—1

ag > an N N\ ((a < b Abg < agi1) V (ax < cg Nex < agi1))
k=0

And so on... Exponential enumeration of paths.

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

Example (Diamonds)

n—1
ap > ap N\)\ ((a < b Abp < agpq) V (ag < e A < ayq))
k=0

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

Example (Diamonds)
n—1

ag > a, N\ /\ ((ak < b N\b < (Zk+1) V (ak <N < ak+1))
k=0

Feature/Flaw: Can only use existing literals!

Logic and Mechanized Reasoning 20 / 32

SMT Theories

Logic and Mechanized Reasoning 21 /32

Theories: Uninterpreted Functions

> Literals are of the foom x =y, x #y, x = f(x,f(y, 2)).

» Can be decided in O(nlog(n)) based on congruence
closure.

» Efficient theory propagation for equalities.

» Can generate:

» small explanations [DNS05],
» minimal explanations [NOOQ7],
» smallest explanations NP-hard [FFHP].

» Typically the core of the SMT solver and used in other
theories.

Logic and Mechanized Reasoning 22 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,¥),y) =z g(x) #g(z)]

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,¥),y) =z g(x) #g(z)]

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,¥),y) =z g(x) #g(z)]

P4

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,¥),y) =z g(x) #g(z)]

P4

-------- (@)

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) = x, h(x) = g(x), f(f(xy),y) = 2 g(x) # g(2)]

P4

-------- @)

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x hx) =g(x), f(f(x,y),y) =2z g(x) #8(z)]
-------- g

(E h(x g(x g(z

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,y),y) =z g(x) # g(z)]
-------- ~ @D

(E h(x g(x g(z

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,y),y) =z g(x) # g(z)]

P4

--------)

Fd

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,y),y) =z g(x) # g(z)]

P4

--------)

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,¥),y) =z g(x) #g(2)]

P4

--------)

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,¥),y) =z g(x) #g(2)]

P4

Conflict:

1. g(x) #8(2)

--------)

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,¥),y) =z g(x) #g(2)]

P4

Conflict:

1. g(x) #8(2)

--------)

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,¥),y) =z g(x) #g(2)]

P4

Conflict:

1. g(x) #8(2)

--------)

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,¥),y) =z g(x) #g(2)]

P4

Conflict:

1. g(x) #8(2)

--------)

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,¥),y) =z g(x) #g(2)]

Conflict:
L g(x) # g(z)
2. f(f(x,y)y) =z

Logic and Mechanized Reasoning 23 /32

Theories: Uninterpreted Functions and Congruence Closure

Example

[f(xy) =x h(x) =g(x), f(f(x,¥),y) =z g(x) #g(2)]

-------- @y
Conflict: l

1 g(x) # g(2) LT

2. f(f(xy)y) =z) |

3. flxy) =x

Logic and Mechanized Reasoning 23 /32

Theories: Difference Logic

» Literals are of the form x —y pak, where
> e {<, <= 7>, 2
» x and y are arithmetic variables (integer or real),
> k is a constant (integer or real)

» We can rewrite x —y =k to (x—y < k) A\ (x—y > k)
» In integers, we can rewritex —y < ktox—y <k—1
» In reals, we can rewrite x —y < ktox—y <k—¢

» Can assume: all literals of the form x —y < k

Logic and Mechanized Reasoning 24 / 32

Theories: Difference Logic Theory

Any solution to a set of literals can be shifted:
> if T is a satisfying assignment, so is T/(x) = T(x) + k.

We can use this to also process simple bounds x < k:
» introduce fresh variable z (for zero),
» rewrite each x < ktox —z <k,
» given a solution T, shift it so that 7(z) = 0.

If we allow (dis)equalities as literals, then:
» in reals, satisfiability is polynomial;

P in integers, satisfiability is NP-hard;

» shown by a reduction to graph coloring.

Logic and Mechanized Reasoning 25 / 32

Theories: Difference Logic Example
Example

x<1IAx—y<2Ay—z<3 Nz—x<-6

» Construct a graph from literals;
» Check if there is a negative path;
» E.g. Using Bellman-Ford @

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example

Example

x<1IANx—y<2ANy—z<3 Nz—x<-6

» Construct a graph from literals;
» Check if there is a negative path;

[0]

» E.g. Using Bellman-Ford

N
5

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example

Example

x<1Ax—y<2ANy—z<3 Nz—x<-6

» Construct a graph from literals;
» Check if there is a negative path;
» E.g. Using Bellman-Ford @

2
"]

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example
Example

x<1IAx—y<2Ay—z<3 Nz—x<-6

» Construct a graph from literals;
» Check if there is a negative path;
» E.g. Using Bellman-Ford @

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example
Example

x<1IAx—y<2Ay—z<3 Nz—x<-6

» Construct a graph from literals;
» Check if there is a negative path;
» E.g. Using Bellman-Ford @

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example
Example

x<1IAx—y<2Ay—z<3 Nz—x<-6

» Construct a graph from literals;
» Check if there is a negative path;
» E.g. Using Bellman-Ford @

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example
Example

x<1IAx—y<2Ay—z<3 Nz—x<-6

» Construct a graph from literals;
» Check if there is a negative path;

» E.g. Using Bellman-Ford . @
Theorem 2
literals unsatisfiable & 3 negative path.

_/

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example

Example

x<1IAx—y<2ANy—z<3 Nz—x<-6

» Construct a graph from literals;
» Check if there is a negative path;

» E.g. Using Bellman-Ford . @

Theorem 2
literals unsatisfiable & 3 negative path.

> Conflict: -x %
x—y < 2),
Ey—g < 3)),
(z—x < —6).

Logic and Mechanized Reasoning 26 / 32

Theories: Arrays

Va,i,e : store(a,ie)[i] =e
Va,i,j,e : i# j= store(a,i,e)[j] = alj]
Va,b : a # b= 3i:ali] # b[i]
Common approach:
» UF + lemmas on demand [BB09, DMBOQ9]
» Use UF as if store and _[_] were uninterpreted
» If UNSAT in UF, then UNSAT in arrays too
» If SAT and solution respects array axioms, then SAT (lucky)
» If not, then refine by instantiating violated axioms

Logic and Mechanized Reasoning 27 / 32

Theories: Bit-Vectors

Common approach:
1. Heavy preprocessing
2. Encode into SAT (bit-blasting)
3. Run a SAT solver

Alternatives [HBJ' 14, ZWR16] not yet mature.

Logic and Mechanized Reasoning

28 / 32

Theories: Bit-Vectors and Bit-Blasting

| Translation to CNF
» Each node a new variable
v g » XOR introduces 4 clauses
» AND introduces 3 clauses
) » OR introduces 3 clauses
e @ » 17 new clauses
> 5 new variables

oJofe
(®

Logic and Mechanized Reasoning 29 / 32

Theories: Bit-Vectors and Bit-Blasting

» AND introduces 3 clauses
) » OR introduces 3 clauses
e @ » 17 new clauses
> 5 new variables

oJofe

| Translation to CNF
» Each node a new variable
@ g » XOR introduces 4 clauses

Bit-Blasting Addition/Multiplication
X[32] + Y[32] 544 new clauses, 160 new variables
X[32] X Y[32] 10016 new clauses, 3008 new variables

Logic and Mechanized Reasoning 29 / 32

References |

@ Robert Brummayer and Armin Biere.

Lemmas on demand for the extensional theory of arrays.
Journal on Satisfiability, Boolean Modeling and Computation, 6:165-201, 2009.

@ Martin Brain, Vijay D’Silva, Alberto Griggio, Leopold Haller, and Daniel Kroening.
Deciding floating-point logic with abstract conflict driven clause learning.
Formal Methods in System Design, 45(2):213-245, 2014.

Clark Barrett, Igor Shikanian, and Cesare Tinelli.

An abstract decision procedure for satisfiability in the theory of recursive data types.
Electronic Notes in Theoretical Computer Science, 174(8):23-37, 2007.

Leonardo De Moura and Nikolaj Bjgrner.

Efficient e-matching for smt solvers.
In International Conference on Automated Deduction, pages 183-198. Springer, 2007.

Leonardo De Moura and Nikolaj Bjgrner.

Generalized, efficient array decision procedures.
In Formal Methods in Computer-Aided Design, pages 45-52. IEEE, 2009.

Leonardo De Moura and Nikolaj Bjgrner.

Satisfiability modulo theories: introduction and applications.
Communications of the ACM, 54(9):69-77, 2011.

Leonardo De Moura and Harald RueB.

Lemmas on demand for satisfiability solvers.
2002.

) & B B W

Logic and Mechanized Reasoning 30 /32

References |l

@ David Detlefs, Greg Nelson, and James B Saxe.

Simplify: a theorem prover for program checking.
Journal of the ACM (JACM), 52(3):365-473, 2005.

@ Andreas Fellner, Pascal Fontaine, Georg Hofferek, and Bruno Woltzenlogel Paleo.
Np-completeness of small conflict set generation for congruence closure.

Sicun Gao, Soonho Kong, and Edmund M Clarke.

Satisfiability modulo ODEs.
In Formal Methods in Computer-Aided Design (FMCAD), 2013, pages 105-112. IEEE, 2013.

A tale of two solvers: Eager and lazy approaches to bit-vectors.

@ Liana Hadarean, Kshitij Bansal, Dejan Jovanovi¢, Clark Barrett, and Cesare Tinelli.
In International Conference on Computer Aided Verification, pages 680—-695. Springer, 2014.

Adam Kiezun, Vijay Ganesh, Philip J Guo, Pieter Hooimeijer, and Michael D Ernst.
HAMPI: a solver for string constraints.

In Proceedings of the eighteenth international symposium on Software testing and analysis,
pages 105-116. ACM, 2009.

=)

Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters.
A DPLL(T) theory solver for a theory of strings and regular expressions.
In International Conference on Computer Aided Verification, pages 646—-662. Springer, 2014.

@ John McCarthy.

Towards a mathematical science of computation.
In Program Verification, pages 35-56. Springer, 1993.

Logic and Mechanized Reasoning 31 /32

References 1l

Anthony Narkawicz and César A Munoz.
Formal verification of conflict detection algorithms for arbitrary trajectories.
Reliable Computing, 17(2):209-237, 2012.

Robert Nieuwenhuis and Albert Oliveras.

Fast congruence closure and extensions.
Information and Computation, 205(4):557-580, 2007.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

Abstract dpll and abstract dpll modulo theories.
In International Conference on Logic for Programming Artificial Intelligence and Reasoning,
pages 36-50. Springer, 2005.

Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krsti¢, Morgan Deters, and Clark Barrett.

Quantifier instantiation techniques for finite model finding in smt.

In International Conference on Automated Deduction, pages 377-391. Springer, 2013.
Aleksandar Zelji¢, Christoph M Wintersteiger, and Philipp Rimmer.

Approximations for model construction.

In International Joint Conference on Automated Reasoning, pages 344—359. Springer, 2014.
Aleksandar Zelji¢, Christoph M Wintersteiger, and Philipp Rimmer.

Deciding bit-vector formulas with mcsat.
In International Conference on Theory and Applications of Satisfiability Testing, pages
249-266. Springer, 2016.

Logic and Mechanized Reasoning 32 /32

	SMT Overview
	SMT Solving
	SMT Theories

