
Logic and Mechanized Reasoning
Satisfiability Modulo Theories

Marijn J.H. Heule

Based on tutorials by Barrett, Griggio, Jovanović,
de Moura, Oliveras, and Tinelli

Logic and Mechanized Reasoning 1 / 32

SMT Overview

SMT Solving

SMT Theories

Logic and Mechanized Reasoning 2 / 32

SMT Overview

SMT Solving

SMT Theories

Logic and Mechanized Reasoning 3 / 32

Overview: Satisfiability Modulo Theories

Problem
Check if a quantifier-free first-order formula can be satisfied
with respect to some background theories.

Example (QF UFLRA)

(z = 1 ∨ z = 0)∧ (x − y + z = 1)∧ (f (x) > f (y))

1. Linear real arithmetic (LRA).

2. Uninterpreted functions (UF).

3. Satisfiable with z 7→ 0, x 7→ 1, y 7→ 0, f (1) 7→ 1, f (0) 7→ 0

Logic and Mechanized Reasoning 4 / 32

Overview: Satisfiability Modulo Theories

Problem
Check if a quantifier-free first-order formula can be satisfied
with respect to some background theories.

Example (QF UFLRA)

(z = 1 ∨ z = 0)∧ (x − y + z = 1)∧ (f (x) > f (y))

1. Linear real arithmetic (LRA).

2. Uninterpreted functions (UF).

3. Satisfiable with z 7→ 0, x 7→ 1, y 7→ 0, f (1) 7→ 1, f (0) 7→ 0

Logic and Mechanized Reasoning 4 / 32

Overview: Satisfiability Modulo Theories

Problem
Check if a quantifier-free first-order formula can be satisfied
with respect to some background theories.

Example (QF UFLRA)

(z = 1 ∨ z = 0)∧ (x − y + z = 1)∧ (f (x) > f (y))

1. Linear real arithmetic (LRA).

2. Uninterpreted functions (UF).

3. Satisfiable with z 7→ 0, x 7→ 1, y 7→ 0, f (1) 7→ 1, f (0) 7→ 0

Logic and Mechanized Reasoning 4 / 32

Overview: Satisfiability Modulo Theories

Problem
Check if a quantifier-free first-order formula can be satisfied
with respect to some background theories.

Example (QF UFLRA)

(z = 1 ∨ z = 0)∧ (x − y + z = 1)∧ (f (x) > f (y))

1. Linear real arithmetic (LRA).

2. Uninterpreted functions (UF).

3. Satisfiable with z 7→ 0, x 7→ 1, y 7→ 0, f (1) 7→ 1, f (0) 7→ 0

Logic and Mechanized Reasoning 4 / 32

Overview: Many SMT Applications I

Schedule n jobs, each composed of m consecutive tasks, on m
machines using at most t timeslots.

Schedule in 8 time slots.

di,j Machine 1 Machine 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

(t1,1 ≥ 0)∧ (t1,2 ≥ t1,1 + 2)∧ (t1,2 + 1 ≤ 8)

(t2,1 ≥ 0)∧ (t2,2 ≥ t2,1 + 3)∧ (t2,2 + 1 ≤ 8)

(t3,1 ≥ 0)∧ (t3,2 ≥ t3,1 + 2)∧ (t3,2 + 3 ≤ 8)

((t1,1 ≥ t2,1 + 3)∨ (t2,1 ≥ t1,1 + 2))

((t1,1 ≥ t3,1 + 2)∨ (t3,1 ≥ t1,1 + 2))

((t2,1 ≥ t3,1 + 2)∨ (t3,1 ≥ t2,1 + 3))

((t1,2 ≥ t2,2 + 1)∨ (t2,2 ≥ t1,2 + 1))

((t1,2 ≥ t3,2 + 3)∨ (t3,2 ≥ t1,2 + 1))

((t2,2 ≥ t3,2 + 3)∨ (t3,2 ≥ t2,2 + 1))

Example from [DMB11]

Run SMT solver (QF IDL)

t1,1 7→ 5, t1,2 7→ 7, t2,1 7→ 2, t2,2 7→ 6, t3,1 7→ 0, t3,2 7→ 3

Logic and Mechanized Reasoning 5 / 32

Overview: Many SMT Applications I

Schedule n jobs, each composed of m consecutive tasks, on m
machines using at most t timeslots.

Schedule in 8 time slots.

di,j Machine 1 Machine 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

(t1,1 ≥ 0)∧ (t1,2 ≥ t1,1 + 2)∧ (t1,2 + 1 ≤ 8)

(t2,1 ≥ 0)∧ (t2,2 ≥ t2,1 + 3)∧ (t2,2 + 1 ≤ 8)

(t3,1 ≥ 0)∧ (t3,2 ≥ t3,1 + 2)∧ (t3,2 + 3 ≤ 8)

((t1,1 ≥ t2,1 + 3)∨ (t2,1 ≥ t1,1 + 2))

((t1,1 ≥ t3,1 + 2)∨ (t3,1 ≥ t1,1 + 2))

((t2,1 ≥ t3,1 + 2)∨ (t3,1 ≥ t2,1 + 3))

((t1,2 ≥ t2,2 + 1)∨ (t2,2 ≥ t1,2 + 1))

((t1,2 ≥ t3,2 + 3)∨ (t3,2 ≥ t1,2 + 1))

((t2,2 ≥ t3,2 + 3)∨ (t3,2 ≥ t2,2 + 1))

Example from [DMB11]

Run SMT solver (QF IDL)

t1,1 7→ 5, t1,2 7→ 7, t2,1 7→ 2, t2,2 7→ 6, t3,1 7→ 0, t3,2 7→ 3

Logic and Mechanized Reasoning 5 / 32

Overview: Many SMT Applications I

Schedule n jobs, each composed of m consecutive tasks, on m
machines using at most t timeslots.

Schedule in 8 time slots.

di,j Machine 1 Machine 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

(t1,1 ≥ 0)∧ (t1,2 ≥ t1,1 + 2)∧ (t1,2 + 1 ≤ 8)

(t2,1 ≥ 0)∧ (t2,2 ≥ t2,1 + 3)∧ (t2,2 + 1 ≤ 8)

(t3,1 ≥ 0)∧ (t3,2 ≥ t3,1 + 2)∧ (t3,2 + 3 ≤ 8)

((t1,1 ≥ t2,1 + 3)∨ (t2,1 ≥ t1,1 + 2))

((t1,1 ≥ t3,1 + 2)∨ (t3,1 ≥ t1,1 + 2))

((t2,1 ≥ t3,1 + 2)∨ (t3,1 ≥ t2,1 + 3))

((t1,2 ≥ t2,2 + 1)∨ (t2,2 ≥ t1,2 + 1))

((t1,2 ≥ t3,2 + 3)∨ (t3,2 ≥ t1,2 + 1))

((t2,2 ≥ t3,2 + 3)∨ (t3,2 ≥ t2,2 + 1))

Example from [DMB11]

Run SMT solver (QF IDL)

t1,1 7→ 5, t1,2 7→ 7, t2,1 7→ 2, t2,2 7→ 6, t3,1 7→ 0, t3,2 7→ 3

Logic and Mechanized Reasoning 5 / 32

Overview: Many SMT Applications II

0

20

40

60

- 20

0

20

39 000

39 500

40 000

Tx
1(t) = −3.2484 + 270.7t + 433.12t2 − 324.83999t3

Ty
1(t) = 15.1592 + 108.28t + 121.2736t2 − 649.67999t3

Tz
1(t) = 38980.8 + 5414t − 21656t2 + 32484t3

Tx
2(t) = 1.0828 − 135.35t + 234.9676t22 + 3248.4t3

Ty
2(t) = 18.40759 − 230.6364t − 121.2736t2 − 649.67999t3

Tz
2(t) = 40280.15999 − 10828t + 24061.9816t2 − 32484t3

D = 5 H = 1000 0 ≤ t ≤ 1
20

|Tz
1(t)− Tz

2(t)| ≤ H (Tx
1(t)− Tx

2(t))
2 + (Ty

1(t)− Ty
2(t))

2 ≤ D2

Example from [NM12]

Run SMT solver (QF NRA)

t 7→ 319
16384 ≈ 0.019470215

Logic and Mechanized Reasoning 6 / 32

Overview: Many SMT Applications II

0

20

40

60

- 20

0

20

39 000

39 500

40 000

Tx
1(t) = −3.2484 + 270.7t + 433.12t2 − 324.83999t3

Ty
1(t) = 15.1592 + 108.28t + 121.2736t2 − 649.67999t3

Tz
1(t) = 38980.8 + 5414t − 21656t2 + 32484t3

Tx
2(t) = 1.0828 − 135.35t + 234.9676t22 + 3248.4t3

Ty
2(t) = 18.40759 − 230.6364t − 121.2736t2 − 649.67999t3

Tz
2(t) = 40280.15999 − 10828t + 24061.9816t2 − 32484t3

D = 5 H = 1000 0 ≤ t ≤ 1
20

|Tz
1(t)− Tz

2(t)| ≤ H (Tx
1(t)− Tx

2(t))
2 + (Ty

1(t)− Ty
2(t))

2 ≤ D2

Example from [NM12]
Run SMT solver (QF NRA)

t 7→ 319
16384 ≈ 0.019470215

Logic and Mechanized Reasoning 6 / 32

Overview: Modeling and Solving

Modeling

▶ Depending on the problem domain, select a fitting theory.

▶ Consider expressivity vs solving complexity.

Solving

▶ Get an SMT solver that supports the theory.

▶ Hope for the best.

Logic and Mechanized Reasoning 7 / 32

Overview: Uninterpreted Functions

Uninterpreted Functions (QF UF)

Simplest first-order theory, with equality, applications of
uninterpreted functions, and variables of uninterpreted types.

Reflexivity: x = x
Symmetry: x = y ⇒ y = x
Transitivity: x = y ∧ y = z ⇒ x = z
Congruence: x = y ⇒ f (x) = f (y)

Example

f (f (f (x))) = x ∧ f (f (f (f (f (x))))) = x ∧ f (x) ̸= x

Logic and Mechanized Reasoning 8 / 32

Overview: Arrays

Theory of Arrays [McC93]

Operates over types array, index, element and function symbols

[] : array× index 7→ element

store : array× index× element 7→ array .

Read-Over-Write-1: store(a, i, e)[i] = e
Read-Over-Write-2: i ̸= j ⇒ store(a, i, e)[j] = a[j]
Extensionality: a ̸= b ⇒ ∃i : a[i] ̸= b[i]

Example

store(store(a, i, a[j]), j, a[i]) = store(store(a, j, a[i]), i, a[j])

Logic and Mechanized Reasoning 9 / 32

Overview: Arithmetic

Arithmetic
Arithmetic constraints (inequalities, equalities) over arithmetic
(real or integer) variables.

▶ Difference logic (QF RDL, QF IDL):

x − y ≤ 1 , x − y > 10

▶ Linear arithmetic (QF LRA, QF LIA):

2x − 3y + 4z ≤ 5

▶ Non-linear arithmetic (QF NRA, QF NIA):

x2 + 3xy + y2 > 0

Logic and Mechanized Reasoning 10 / 32

Overview: Bitvectors

Bitvectors (QF BV)

Operates over fixed-size bit-vectors, with bit-vector operations:

▶ concatenation a ◦ b, extraction a[i : j]
▶ bit-wise operators ∼a, a|b, a&b, . . .
▶ shifts a ≪ k, b ≫ k (logical, arithmetic)

▶ arithmetic a + b, a − b, a ∗ b, a/b, . . .
▶ predicates =, <, ≤, . . . (signed and unsigned)

Semantics similar to programming languages.

Example (a is 32-bits)

(∼a & (a + 1)) >u a

Logic and Mechanized Reasoning 11 / 32

Overview: Strings

Strings (QF S)

Operates over strings on a finite alphabet:

▶ string variables x, y, z
▶ string constants ”abc”, ”AAAA”, ”http”

▶ string concatenation: x · abc, x · y · z
▶ string length: |x|

Constraints:

▶ Equalities and disequalities between string terms

▶ Linear arithmetic constraints: |x|+ 4 > |y|

Example

x · "a" = y ∧ y ̸= "b" · z ∧ |y| > |x|+ 2

Logic and Mechanized Reasoning 12 / 32

Overview: Other Interesting Theories

Some other theories

▶ Floating point [BDG+14, ZWR14]

▶ Inductive data-types [BST07]

▶ Strings and regular expressions [LRT+14, KGG+09]

▶ Quantifiers [DMB07, RTG+13]

▶ Differential Equations [GKC13]

▶ ...

Logic and Mechanized Reasoning 13 / 32

SMT Overview

SMT Solving

SMT Theories

Logic and Mechanized Reasoning 14 / 32

Solving: Introduction

Check T-satisfiability of a T-formula Γ

1. Convert to DNF

Γ ⇔ D∨
i=1

(Li
1 ∧ Li

2 ∧ · · ·∧ Li
ni
) .

2. If any of cubes is T-satisfiable, return SAT, else UNSAT.

Theory solver/Decision procedure for T
Procedure to decide satisfiability of a conjunction of T-literals.

Logic and Mechanized Reasoning 15 / 32

Solving: Introduction

Check T-satisfiability of a T-formula Γ

1. Convert to DNF

Γ ⇔ D∨
i=1

(Li
1 ∧ Li

2 ∧ · · ·∧ Li
ni
) .

2. If any of cubes is T-satisfiable, return SAT, else UNSAT.

Theory solver/Decision procedure for T
Procedure to decide satisfiability of a conjunction of T-literals.

Logic and Mechanized Reasoning 15 / 32

Solving: Introduction

Check T-satisfiability of a T-formula Γ

1. Convert to DNF

Γ ⇔ D∨
i=1

(Li
1 ∧ Li

2 ∧ · · ·∧ Li
ni
) .

2. If any of cubes is T-satisfiable, return SAT, else UNSAT.

Theory solver/Decision procedure for T
Procedure to decide satisfiability of a conjunction of T-literals.

Logic and Mechanized Reasoning 15 / 32

Solving: Introduction

Check T-satisfiability of a T-formula Γ

1. Convert to DNF

Γ ⇔ D∨
i=1

(Li
1 ∧ Li

2 ∧ · · ·∧ Li
ni
) .

2. If any of cubes is T-satisfiable, return SAT, else UNSAT.

Theory solver/Decision procedure for T
Procedure to decide satisfiability of a conjunction of T-literals.

Logic and Mechanized Reasoning 15 / 32

Solving: Apply a SAT Solver

Use a SAT solver

▶ Instead of DNF: Apply a SAT solver.

▶ Check the literals selected by the SAT solver.

▶ If not T-satisfiable, add a blocking clause.

Logic and Mechanized Reasoning 16 / 32

Solving: Very Lazy SMT Example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)
¬x = y

(x = y ∨¬x = a ∨¬y = a)

Check with SAT solver

Logic and Mechanized Reasoning 17 / 32

View
Theory

Solving: Very Lazy SMT Example

¬p1

(p2 ∨ p3)

(p4 ∨ p5)

(p6 ∨ p7)
¬p8

(p8 ∨ ¬p2 ∨ ¬p4)

Check with SAT solver

Logic and Mechanized Reasoning 17 / 32

View
Boolean

Solving: Very Lazy SMT Example

¬p1

(p2 ∨ p3)

(p4 ∨ p5)

(p6 ∨ p7)
¬p8

(p8 ∨ ¬p2 ∨ ¬p4)

Check with SAT solver

Logic and Mechanized Reasoning 17 / 32

View
Boolean

Solving: Very Lazy SMT Example

¬p1

(p2 ∨ p3)

(p4 ∨ p5)

(p6 ∨ p7)
¬p8

(p8 ∨ ¬p2 ∨ ¬p4)

Check with SAT solver
J ¬p1 , ¬p8 , ¬p3 , p2 , ¬p5 , p4 , ¬p7 , p6 K

Logic and Mechanized Reasoning 17 / 32

View
Boolean

Solving: Very Lazy SMT Example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)
¬x = y

(x = y ∨¬x = a ∨¬y = a)

Check with SAT solver
J ¬a = b,¬x = y,¬x = b, x = a,¬y = b, y = a,¬z = b, z = aK

Logic and Mechanized Reasoning 17 / 32

View
Theory

Solving: Very Lazy SMT Example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)
¬x = y

(x = y ∨¬x = a ∨¬y = a)

Check with SAT solver
J ¬a = b,¬x = y,¬x = b, x = a,¬y = b, y = a,¬z = b, z = aK

Check with T-solver
x = a ∧ y = a ⇒ x = y

Logic and Mechanized Reasoning 17 / 32

View
Theory

Solving: Very Lazy SMT Example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)
¬x = y
(x = y ∨¬x = a ∨¬y = a)

Check with SAT solver
J ¬a = b,¬x = y,¬x = b, x = a,¬y = b, y = a,¬z = b, z = aK

Check with T-solver
x = a ∧ y = a ⇒ x = y

Add blocking clause: x = y ∨¬x = a ∨¬y = a

Logic and Mechanized Reasoning 17 / 32

View
Theory

Solving: Very Lazy SMT Example

¬p1

(p2 ∨ p3)

(p4 ∨ p5)

(p6 ∨ p7)
¬p8

(p8 ∨ ¬p2 ∨ ¬p4)

Check with SAT solver

Logic and Mechanized Reasoning 17 / 32

View
Boolean

Solving: Very Lazy SMT Example

¬p1

(p2 ∨ p3)

(p4 ∨ p5)

(p6 ∨ p7)
¬p8

(p8 ∨ ¬p2 ∨ ¬p4)

Check with SAT solver
J ¬p1 , ¬p8 , ¬p3 , p2 , ¬p4 , p5 , ¬p7 , p6 K

Logic and Mechanized Reasoning 17 / 32

View
Boolean

Solving: Very Lazy SMT Example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)
¬x = y
(x = y ∨¬x = a ∨¬y = a)

Check with SAT solver
J ¬a = b,¬x = y,¬x = b, x = a,¬y = a, y = b,¬z = b, z = aK

Logic and Mechanized Reasoning 17 / 32

View
Theory

Solving: Very Lazy SMT Example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)
¬x = y
(x = y ∨¬x = a ∨¬y = a)

Check with SAT solver
J ¬a = b,¬x = y,¬x = b, x = a,¬y = a, y = b,¬z = b, z = aK

Check with T-solver
Satisfiable: a, x, z 7→ c1, b, y 7→ c2

Logic and Mechanized Reasoning 17 / 32

View
Theory

Solving: Very Lazy SMT

Properties

▶ SAT and T-solver only communicate via existing literals

▶ Number of possible conflicts finite ⇒ termination

▶ Reuse the improvements in SAT solving

▶ SAT solver is “blind” and can get lost :(

Integrate closely with SAT solver: DPLL(T) [DMR02, NOT05]

Incremental: Check T-satisfiability along the SAT solver

Backtrack: Backtrack with SAT solver and keep context

Propagation: If existing literals are implied tell SAT solver

Conflict: Small conflict explanations

Logic and Mechanized Reasoning 18 / 32

Solving: Very Lazy SMT

Properties

▶ SAT and T-solver only communicate via existing literals

▶ Number of possible conflicts finite ⇒ termination

▶ Reuse the improvements in SAT solving

▶ SAT solver is “blind” and can get lost :(

Integrate closely with SAT solver: DPLL(T) [DMR02, NOT05]

Incremental: Check T-satisfiability along the SAT solver

Backtrack: Backtrack with SAT solver and keep context

Propagation: If existing literals are implied tell SAT solver

Conflict: Small conflict explanations

Logic and Mechanized Reasoning 18 / 32

Solving: Typical Architecture

SAT Solver

CDCL

Arithmetic

Bit-Vectors

Uninterpreted
Functions

Core

Theory Literals Explanations

Logic and Mechanized Reasoning 19 / 32

Solving: Typical Architecture

SAT Solver

CDCL

Arithmetic

Bit-Vectors

Uninterpreted
Functions

Core

Theory Literals Explanations

Logic and Mechanized Reasoning 19 / 32

SAT Solver
▶ Standard “off-the shelf”

SAT solver

▶ Build Boolean model
and notify theories

Solving: Typical Architecture

SAT Solver

CDCL

Arithmetic

Bit-Vectors

Uninterpreted
Functions

Core

Theory Literals Explanations

Logic and Mechanized Reasoning 19 / 32

Theory Decision Procedures

▶ Check conjunctions of literals

▶ Incremental

▶ Backtrackable

▶ Producing explanations

Solving: Typical Architecture

SAT Solver

CDCL

Arithmetic

Bit-Vectors

Uninterpreted
Functions

Core

Theory Literals Explanations

Logic and Mechanized Reasoning 19 / 32

Combination Framework
Ensure modular reasoning
is correct

Solving: Great but not Perfect

a 0
<b

0

a 1
<
b 1b

0 <
a
1

b
1<a

2

a
1<c

1

c 0
<a

1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <a
3

a
2 <
c
2

c 2
<a

3

a0>a3

Example (Diamonds)

a0 > an ∧

n−1∧
k=0

((ak < bk ∧ bk < ak+1)∨ (ak < ck ∧ ck < ak+1))

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

a 0
<b

0

a 1
<
b 1b

0 <
a
1

b
1<a

2

a
1<c

1

c 0
<a

1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <a
3

a
2 <
c
2

c 2
<a

3

a0>a3

Example (Diamonds)

a0 > an ∧

n−1∧
k=0

((ak < bk ∧ bk < ak+1)∨ (ak < ck ∧ ck < ak+1))

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

a 0
<b

0

a 1
<
b 1b

0 <
a
1

b
1<a

2

a
1<c

1

c 0
<a

1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <a
3

a
2 <
c
2

c 2
<a

3

a0>a3

Example (Diamonds)

a0 > an ∧

n−1∧
k=0

((ak < bk ∧ bk < ak+1)∨ (ak < ck ∧ ck < ak+1))

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

a 0
<b

0

a 1
<
b 1b

0 <
a
1

b
1<a

2

a
1<c

1

c 0
<a

1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <a
3

a
2 <
c
2

c 2
<a

3

a0>a3

Example (Diamonds)

a0 > an ∧

n−1∧
k=0

((ak < bk ∧ bk < ak+1)∨ (ak < ck ∧ ck < ak+1))

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

a 0
<b

0

a 1
<
b 1b

0 <
a
1

b
1<a

2

a
1<c

1

c 0
<a

1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <a
3

a
2 <
c
2

c 2
<a

3

a0>a3

Example (Diamonds)

a0 > an ∧

n−1∧
k=0

((ak < bk ∧ bk < ak+1)∨ (ak < ck ∧ ck < ak+1))

And so on... Exponential enumeration of paths.

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

a 0
<b

0

a 1
<
b 1b

0 <
a
1

b
1<a

2

a
1<c

1

c 0
<a

1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <a
3

a
2 <
c
2

c 2
<a

3

a0>a3

a0<a1 a1<a2 a2<a3

Example (Diamonds)

a0 > an ∧

n−1∧
k=0

((ak < bk ∧ bk < ak+1)∨ (ak < ck ∧ ck < ak+1))

Logic and Mechanized Reasoning 20 / 32

Solving: Great but not Perfect

a 0
<b

0

a 1
<
b 1b

0 <
a
1

b
1<a

2

a
1<c

1

c 0
<a

1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <a
3

a
2 <
c
2

c 2
<a

3

a0>a3

a0<a1 a1<a2 a2<a3

Example (Diamonds)

a0 > an ∧

n−1∧
k=0

((ak < bk ∧ bk < ak+1)∨ (ak < ck ∧ ck < ak+1))

Feature/Flaw: Can only use existing literals!

Logic and Mechanized Reasoning 20 / 32

SMT Overview

SMT Solving

SMT Theories

Logic and Mechanized Reasoning 21 / 32

Theories: Uninterpreted Functions

▶ Literals are of the form x = y, x ̸= y, x = f (x, f (y, z)).
▶ Can be decided in O(n log(n)) based on congruence

closure.

▶ Efficient theory propagation for equalities.
▶ Can generate:

▶ small explanations [DNS05],
▶ minimal explanations [NO07],
▶ smallest explanations NP-hard [FFHP].

▶ Typically the core of the SMT solver and used in other
theories.

Logic and Mechanized Reasoning 22 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)

2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)

2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)

2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)

2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z

3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)

Logic and Mechanized Reasoning 23 / 32

Theories: Difference Logic

▶ Literals are of the form x − y ▷◁ k, where
▶ ▷◁∈ {≤,<,=, ̸=,>,≥},
▶ x and y are arithmetic variables (integer or real),
▶ k is a constant (integer or real)

▶ We can rewrite x − y = k to (x − y ≤ k)∧ (x − y ≥ k)
▶ In integers, we can rewrite x − y < k to x − y ≤ k − 1
▶ In reals, we can rewrite x − y < k to x − y ≤ k − δ

▶ Can assume: all literals of the form x − y ≤ k

Logic and Mechanized Reasoning 24 / 32

Theories: Difference Logic Theory

Any solution to a set of literals can be shifted:

▶ if τ is a satisfying assignment, so is τ ′(x) = τ(x) + k.

We can use this to also process simple bounds x ≤ k:
▶ introduce fresh variable z (for zero),

▶ rewrite each x ≤ k to x − z ≤ k,
▶ given a solution τ, shift it so that τ(z) = 0.

If we allow (dis)equalities as literals, then:

▶ in reals, satisfiability is polynomial;

▶ in integers, satisfiability is NP-hard;

▶ shown by a reduction to graph coloring.

Logic and Mechanized Reasoning 25 / 32

Theories: Difference Logic Example

Example

x ≤ 1 ∧ x − y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

▶ Construct a graph from literals;

▶ Check if there is a negative path;

▶ E.g. Using Bellman-Ford

Theorem
literals unsatisfiable ⇔ ∃ negative path.

▶ Conflict:
(x − y ≤ 2),
(y − z ≤ 3),
(z − x ≤ −6).

x y

z

0

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example

Example

x ≤ 1 ∧ x − y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

▶ Construct a graph from literals;

▶ Check if there is a negative path;

▶ E.g. Using Bellman-Ford

Theorem
literals unsatisfiable ⇔ ∃ negative path.

▶ Conflict:
(x − y ≤ 2),
(y − z ≤ 3),
(z − x ≤ −6).

x y

z

0
1

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example

Example

x ≤ 1 ∧ x − y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

▶ Construct a graph from literals;

▶ Check if there is a negative path;

▶ E.g. Using Bellman-Ford

Theorem
literals unsatisfiable ⇔ ∃ negative path.

▶ Conflict:
(x − y ≤ 2),
(y − z ≤ 3),
(z − x ≤ −6).

x y

z

0
1

2

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example

Example

x ≤ 1 ∧ x − y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

▶ Construct a graph from literals;

▶ Check if there is a negative path;

▶ E.g. Using Bellman-Ford

Theorem
literals unsatisfiable ⇔ ∃ negative path.

▶ Conflict:
(x − y ≤ 2),
(y − z ≤ 3),
(z − x ≤ −6).

x y

z

0
1

2

3

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example

Example

x ≤ 1 ∧ x − y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

▶ Construct a graph from literals;

▶ Check if there is a negative path;

▶ E.g. Using Bellman-Ford

Theorem
literals unsatisfiable ⇔ ∃ negative path.

▶ Conflict:
(x − y ≤ 2),
(y − z ≤ 3),
(z − x ≤ −6).

x y

z

0
1

2

-6 3

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example

Example

x ≤ 1 ∧ x − y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

▶ Construct a graph from literals;

▶ Check if there is a negative path;

▶ E.g. Using Bellman-Ford

Theorem
literals unsatisfiable ⇔ ∃ negative path.

▶ Conflict:
(x − y ≤ 2),
(y − z ≤ 3),
(z − x ≤ −6).

x y

z

0
1

2

-6 3

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example

Example

x ≤ 1 ∧ x − y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

▶ Construct a graph from literals;

▶ Check if there is a negative path;

▶ E.g. Using Bellman-Ford

Theorem
literals unsatisfiable ⇔ ∃ negative path.

▶ Conflict:
(x − y ≤ 2),
(y − z ≤ 3),
(z − x ≤ −6).

x y

z

0
1

2

-6 3

Logic and Mechanized Reasoning 26 / 32

Theories: Difference Logic Example

Example

x ≤ 1 ∧ x − y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

▶ Construct a graph from literals;

▶ Check if there is a negative path;

▶ E.g. Using Bellman-Ford

Theorem
literals unsatisfiable ⇔ ∃ negative path.

▶ Conflict:
(x − y ≤ 2),
(y − z ≤ 3),
(z − x ≤ −6).

x y

z

0
1

2

-6 3

Logic and Mechanized Reasoning 26 / 32

Theories: Arrays

∀a, i, e : store(a, i, e)[i] = e
∀a, i, j, e : i ̸= j ⇒ store(a, i, e)[j] = a[j]
∀a, b : a ̸= b ⇒ ∃i : a[i] ̸= b[i]

Common approach:

▶ UF + lemmas on demand [BB09, DMB09]

▶ Use UF as if store and [] were uninterpreted

▶ If UNSAT in UF, then UNSAT in arrays too

▶ If SAT and solution respects array axioms, then SAT (lucky)

▶ If not, then refine by instantiating violated axioms

Logic and Mechanized Reasoning 27 / 32

Theories: Bit-Vectors

Common approach:

1. Heavy preprocessing

2. Encode into SAT (bit-blasting)

3. Run a SAT solver

Alternatives [HBJ+14, ZWR16] not yet mature.

Logic and Mechanized Reasoning 28 / 32

Theories: Bit-Vectors and Bit-Blasting

xi

yi

ci

XOR

XOR si

AND

AND

OR ci+1

Translation to CNF

▶ Each node a new variable

▶ XOR introduces 4 clauses

▶ AND introduces 3 clauses

▶ OR introduces 3 clauses

▶ 17 new clauses

▶ 5 new variables

Bit-Blasting Addition/Multiplication

x[32] + y[32] 544 new clauses, 160 new variables

x[32] × y[32] 10016 new clauses, 3008 new variables

Logic and Mechanized Reasoning 29 / 32

Theories: Bit-Vectors and Bit-Blasting

xi

yi

ci

XOR

XOR si

AND

AND

OR ci+1

Translation to CNF

▶ Each node a new variable

▶ XOR introduces 4 clauses

▶ AND introduces 3 clauses

▶ OR introduces 3 clauses

▶ 17 new clauses

▶ 5 new variables

Bit-Blasting Addition/Multiplication

x[32] + y[32] 544 new clauses, 160 new variables

x[32] × y[32] 10016 new clauses, 3008 new variables

Logic and Mechanized Reasoning 29 / 32

References I

Robert Brummayer and Armin Biere.

Lemmas on demand for the extensional theory of arrays.
Journal on Satisfiability, Boolean Modeling and Computation, 6:165–201, 2009.

Martin Brain, Vijay D’Silva, Alberto Griggio, Leopold Haller, and Daniel Kroening.

Deciding floating-point logic with abstract conflict driven clause learning.
Formal Methods in System Design, 45(2):213–245, 2014.

Clark Barrett, Igor Shikanian, and Cesare Tinelli.

An abstract decision procedure for satisfiability in the theory of recursive data types.
Electronic Notes in Theoretical Computer Science, 174(8):23–37, 2007.

Leonardo De Moura and Nikolaj Bjørner.

Efficient e-matching for smt solvers.
In International Conference on Automated Deduction, pages 183–198. Springer, 2007.

Leonardo De Moura and Nikolaj Bjørner.

Generalized, efficient array decision procedures.
In Formal Methods in Computer-Aided Design, pages 45–52. IEEE, 2009.

Leonardo De Moura and Nikolaj Bjørner.

Satisfiability modulo theories: introduction and applications.
Communications of the ACM, 54(9):69–77, 2011.

Leonardo De Moura and Harald Rueß.

Lemmas on demand for satisfiability solvers.
2002.

Logic and Mechanized Reasoning 30 / 32

References II

David Detlefs, Greg Nelson, and James B Saxe.

Simplify: a theorem prover for program checking.
Journal of the ACM (JACM), 52(3):365–473, 2005.

Andreas Fellner, Pascal Fontaine, Georg Hofferek, and Bruno Woltzenlogel Paleo.

Np-completeness of small conflict set generation for congruence closure.

Sicun Gao, Soonho Kong, and Edmund M Clarke.

Satisfiability modulo ODEs.
In Formal Methods in Computer-Aided Design (FMCAD), 2013, pages 105–112. IEEE, 2013.

Liana Hadarean, Kshitij Bansal, Dejan Jovanović, Clark Barrett, and Cesare Tinelli.

A tale of two solvers: Eager and lazy approaches to bit-vectors.
In International Conference on Computer Aided Verification, pages 680–695. Springer, 2014.

Adam Kiezun, Vijay Ganesh, Philip J Guo, Pieter Hooimeijer, and Michael D Ernst.

HAMPI: a solver for string constraints.
In Proceedings of the eighteenth international symposium on Software testing and analysis,
pages 105–116. ACM, 2009.

Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters.

A DPLL(T) theory solver for a theory of strings and regular expressions.
In International Conference on Computer Aided Verification, pages 646–662. Springer, 2014.

John McCarthy.

Towards a mathematical science of computation.
In Program Verification, pages 35–56. Springer, 1993.

Logic and Mechanized Reasoning 31 / 32

References III

Anthony Narkawicz and César A Munoz.

Formal verification of conflict detection algorithms for arbitrary trajectories.
Reliable Computing, 17(2):209–237, 2012.

Robert Nieuwenhuis and Albert Oliveras.

Fast congruence closure and extensions.
Information and Computation, 205(4):557–580, 2007.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

Abstract dpll and abstract dpll modulo theories.
In International Conference on Logic for Programming Artificial Intelligence and Reasoning,
pages 36–50. Springer, 2005.

Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and Clark Barrett.

Quantifier instantiation techniques for finite model finding in smt.
In International Conference on Automated Deduction, pages 377–391. Springer, 2013.

Aleksandar Zeljić, Christoph M Wintersteiger, and Philipp Rümmer.

Approximations for model construction.
In International Joint Conference on Automated Reasoning, pages 344–359. Springer, 2014.

Aleksandar Zeljić, Christoph M Wintersteiger, and Philipp Rümmer.

Deciding bit-vector formulas with mcsat.
In International Conference on Theory and Applications of Satisfiability Testing, pages
249–266. Springer, 2016.

Logic and Mechanized Reasoning 32 / 32

	SMT Overview
	SMT Solving
	SMT Theories

