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Overview: Satisfiability Modulo Theories

Problem
Check if a quantifier-free first-order formula can be satisfied
with respect to some background theories.

Example (QF UFLRA)

(z = 1 ∨ z = 0)∧ (x − y + z = 1)∧ (f (x) > f (y))

1. Linear real arithmetic (LRA).

2. Uninterpreted functions (UF).

3. Satisfiable with z 7→ 0, x 7→ 1, y 7→ 0, f (1) 7→ 1, f (0) 7→ 0
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Overview: Many SMT Applications I

Schedule n jobs, each composed of m consecutive tasks, on m
machines using at most t timeslots.

Schedule in 8 time slots.

di,j Machine 1 Machine 2

Job 1 2 1
Job 2 3 1
Job 3 2 3

(t1,1 ≥ 0)∧ (t1,2 ≥ t1,1 + 2)∧ (t1,2 + 1 ≤ 8)

(t2,1 ≥ 0)∧ (t2,2 ≥ t2,1 + 3)∧ (t2,2 + 1 ≤ 8)

(t3,1 ≥ 0)∧ (t3,2 ≥ t3,1 + 2)∧ (t3,2 + 3 ≤ 8)

((t1,1 ≥ t2,1 + 3)∨ (t2,1 ≥ t1,1 + 2))

((t1,1 ≥ t3,1 + 2)∨ (t3,1 ≥ t1,1 + 2))

((t2,1 ≥ t3,1 + 2)∨ (t3,1 ≥ t2,1 + 3))

((t1,2 ≥ t2,2 + 1)∨ (t2,2 ≥ t1,2 + 1))

((t1,2 ≥ t3,2 + 3)∨ (t3,2 ≥ t1,2 + 1))

((t2,2 ≥ t3,2 + 3)∨ (t3,2 ≥ t2,2 + 1))

Example from [DMB11]

Run SMT solver (QF IDL)

t1,1 7→ 5, t1,2 7→ 7, t2,1 7→ 2, t2,2 7→ 6, t3,1 7→ 0, t3,2 7→ 3
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Overview: Many SMT Applications II

0
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- 20

0

20

39 000

39 500

40 000

Tx
1(t) = −3.2484 + 270.7t + 433.12t2 − 324.83999t3

Ty
1(t) = 15.1592 + 108.28t + 121.2736t2 − 649.67999t3

Tz
1(t) = 38980.8 + 5414t − 21656t2 + 32484t3

Tx
2(t) = 1.0828 − 135.35t + 234.9676t22 + 3248.4t3

Ty
2(t) = 18.40759 − 230.6364t − 121.2736t2 − 649.67999t3

Tz
2(t) = 40280.15999 − 10828t + 24061.9816t2 − 32484t3

D = 5 H = 1000 0 ≤ t ≤ 1
20

|Tz
1(t)− Tz

2(t)| ≤ H (Tx
1(t)− Tx

2(t))
2 + (Ty

1(t)− Ty
2(t))

2 ≤ D2

Example from [NM12]

Run SMT solver (QF NRA)

t 7→ 319
16384 ≈ 0.019470215
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Overview: Modeling and Solving

Modeling

▶ Depending on the problem domain, select a fitting theory.

▶ Consider expressivity vs solving complexity.

Solving

▶ Get an SMT solver that supports the theory.

▶ Hope for the best.
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Overview: Uninterpreted Functions

Uninterpreted Functions (QF UF)

Simplest first-order theory, with equality, applications of
uninterpreted functions, and variables of uninterpreted types.

Reflexivity: x = x
Symmetry: x = y ⇒ y = x
Transitivity: x = y ∧ y = z ⇒ x = z
Congruence: x = y ⇒ f (x) = f (y)

Example

f (f (f (x))) = x ∧ f (f (f (f (f (x))))) = x ∧ f (x) ̸= x
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Overview: Arrays

Theory of Arrays [McC93]

Operates over types array, index, element and function symbols

[ ] : array× index 7→ element

store : array× index× element 7→ array .

Read-Over-Write-1: store(a, i, e)[i] = e
Read-Over-Write-2: i ̸= j ⇒ store(a, i, e)[j] = a[j]
Extensionality: a ̸= b ⇒ ∃i : a[i] ̸= b[i]

Example

store(store(a, i, a[j]), j, a[i]) = store(store(a, j, a[i]), i, a[j])
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Overview: Arithmetic

Arithmetic
Arithmetic constraints (inequalities, equalities) over arithmetic
(real or integer) variables.

▶ Difference logic (QF RDL, QF IDL):

x − y ≤ 1 , x − y > 10

▶ Linear arithmetic (QF LRA, QF LIA):

2x − 3y + 4z ≤ 5

▶ Non-linear arithmetic (QF NRA, QF NIA):

x2 + 3xy + y2 > 0

Logic and Mechanized Reasoning 10 / 32



Overview: Bitvectors

Bitvectors (QF BV)

Operates over fixed-size bit-vectors, with bit-vector operations:

▶ concatenation a ◦ b, extraction a[i : j]
▶ bit-wise operators ∼a, a|b, a&b, . . .
▶ shifts a ≪ k, b ≫ k (logical, arithmetic)

▶ arithmetic a + b, a − b, a ∗ b, a/b, . . .
▶ predicates =, <, ≤, . . . (signed and unsigned)

Semantics similar to programming languages.

Example (a is 32-bits)

(∼a & (a + 1)) >u a
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Overview: Strings

Strings (QF S)

Operates over strings on a finite alphabet:

▶ string variables x, y, z
▶ string constants ”abc”, ”AAAA”, ”http”

▶ string concatenation: x · abc, x · y · z
▶ string length: |x|

Constraints:

▶ Equalities and disequalities between string terms

▶ Linear arithmetic constraints: |x|+ 4 > |y|

Example

x · "a" = y ∧ y ̸= "b" · z ∧ |y| > |x|+ 2

Logic and Mechanized Reasoning 12 / 32



Overview: Other Interesting Theories

Some other theories

▶ Floating point [BDG+14, ZWR14]

▶ Inductive data-types [BST07]

▶ Strings and regular expressions [LRT+14, KGG+09]

▶ Quantifiers [DMB07, RTG+13]

▶ Differential Equations [GKC13]

▶ ...

Logic and Mechanized Reasoning 13 / 32



SMT Overview

SMT Solving

SMT Theories
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Solving: Introduction

Check T-satisfiability of a T-formula Γ

1. Convert to DNF

Γ ⇔ D∨
i=1

(Li
1 ∧ Li

2 ∧ · · ·∧ Li
ni
) .

2. If any of cubes is T-satisfiable, return SAT, else UNSAT.

Theory solver/Decision procedure for T
Procedure to decide satisfiability of a conjunction of T-literals.
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Solving: Apply a SAT Solver

Use a SAT solver

▶ Instead of DNF: Apply a SAT solver.

▶ Check the literals selected by the SAT solver.

▶ If not T-satisfiable, add a blocking clause.
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Solving: Very Lazy SMT Example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)
¬x = y

(x = y ∨¬x = a ∨¬y = a)

Check with SAT solver
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Solving: Very Lazy SMT Example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)
¬x = y
(x = y ∨¬x = a ∨¬y = a)

Check with SAT solver
J ¬a = b,¬x = y,¬x = b, x = a,¬y = a, y = b,¬z = b, z = aK

Check with T-solver
Satisfiable: a, x, z 7→ c1, b, y 7→ c2
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Solving: Very Lazy SMT

Properties

▶ SAT and T-solver only communicate via existing literals

▶ Number of possible conflicts finite ⇒ termination

▶ Reuse the improvements in SAT solving

▶ SAT solver is “blind” and can get lost :(

Integrate closely with SAT solver: DPLL(T) [DMR02, NOT05]

Incremental: Check T-satisfiability along the SAT solver

Backtrack: Backtrack with SAT solver and keep context

Propagation: If existing literals are implied tell SAT solver

Conflict: Small conflict explanations
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Solving: Typical Architecture

SAT Solver

CDCL

Arithmetic

Bit-Vectors

Uninterpreted
Functions

Core

Theory Literals Explanations
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SAT Solver
▶ Standard “off-the shelf”

SAT solver

▶ Build Boolean model
and notify theories



Solving: Typical Architecture

SAT Solver

CDCL

Arithmetic

Bit-Vectors

Uninterpreted
Functions

Core

Theory Literals Explanations
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Theory Decision Procedures

▶ Check conjunctions of literals

▶ Incremental

▶ Backtrackable

▶ Producing explanations



Solving: Typical Architecture

SAT Solver

CDCL

Arithmetic

Bit-Vectors

Uninterpreted
Functions

Core

Theory Literals Explanations
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Combination Framework
Ensure modular reasoning
is correct



Solving: Great but not Perfect

a 0
<b

0

a 1
<
b 1b

0 <
a
1

b
1<a

2

a
1<c

1

c 0
<a

1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <a
3

a
2 <
c
2

c 2
<a

3

a0>a3

Example (Diamonds)

a0 > an ∧

n−1∧
k=0

((ak < bk ∧ bk < ak+1)∨ (ak < ck ∧ ck < ak+1))
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Example (Diamonds)

a0 > an ∧

n−1∧
k=0

((ak < bk ∧ bk < ak+1)∨ (ak < ck ∧ ck < ak+1))

And so on... Exponential enumeration of paths.
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a0 > an ∧

n−1∧
k=0

((ak < bk ∧ bk < ak+1)∨ (ak < ck ∧ ck < ak+1))

Feature/Flaw: Can only use existing literals!
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SMT Overview

SMT Solving

SMT Theories
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Theories: Uninterpreted Functions

▶ Literals are of the form x = y, x ̸= y, x = f (x, f (y, z)).
▶ Can be decided in O(n log(n)) based on congruence

closure.

▶ Efficient theory propagation for equalities.
▶ Can generate:

▶ small explanations [DNS05],
▶ minimal explanations [NO07],
▶ smallest explanations NP-hard [FFHP].

▶ Typically the core of the SMT solver and used in other
theories.
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Theories: Uninterpreted Functions and Congruence Closure

Example

J f (x, y) = x, h(x) = g(x), f (f (x, y), y) = z, g(x) ̸= g(z) K

Conflict:

1. g(x) ̸= g(z)
2. f (f (x, y), y) = z
3. f (x, y) = x

f(f(x,y),y)

f(x,y)

x y z

h(x) g(x) g(z)
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Theories: Difference Logic

▶ Literals are of the form x − y ▷◁ k, where
▶ ▷◁∈ {≤,<,=, ̸=,>,≥},
▶ x and y are arithmetic variables (integer or real),
▶ k is a constant (integer or real)

▶ We can rewrite x − y = k to (x − y ≤ k)∧ (x − y ≥ k)
▶ In integers, we can rewrite x − y < k to x − y ≤ k − 1
▶ In reals, we can rewrite x − y < k to x − y ≤ k − δ

▶ Can assume: all literals of the form x − y ≤ k
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Theories: Difference Logic Theory

Any solution to a set of literals can be shifted:

▶ if τ is a satisfying assignment, so is τ ′(x) = τ(x) + k.

We can use this to also process simple bounds x ≤ k:
▶ introduce fresh variable z (for zero),

▶ rewrite each x ≤ k to x − z ≤ k,
▶ given a solution τ, shift it so that τ(z) = 0.

If we allow (dis)equalities as literals, then:

▶ in reals, satisfiability is polynomial;

▶ in integers, satisfiability is NP-hard;

▶ shown by a reduction to graph coloring.
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Theories: Difference Logic Example

Example

x ≤ 1 ∧ x − y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

▶ Construct a graph from literals;

▶ Check if there is a negative path;

▶ E.g. Using Bellman-Ford

Theorem
literals unsatisfiable ⇔ ∃ negative path.

▶ Conflict:
(x − y ≤ 2),
(y − z ≤ 3),
(z − x ≤ −6).

x y

z

0
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Theories: Arrays

∀a, i, e : store(a, i, e)[i] = e
∀a, i, j, e : i ̸= j ⇒ store(a, i, e)[j] = a[j]
∀a, b : a ̸= b ⇒ ∃i : a[i] ̸= b[i]

Common approach:

▶ UF + lemmas on demand [BB09, DMB09]

▶ Use UF as if store and [ ] were uninterpreted

▶ If UNSAT in UF, then UNSAT in arrays too

▶ If SAT and solution respects array axioms, then SAT (lucky)

▶ If not, then refine by instantiating violated axioms
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Theories: Bit-Vectors

Common approach:

1. Heavy preprocessing

2. Encode into SAT (bit-blasting)

3. Run a SAT solver

Alternatives [HBJ+14, ZWR16] not yet mature.

Logic and Mechanized Reasoning 28 / 32



Theories: Bit-Vectors and Bit-Blasting

xi

yi

ci

XOR

XOR si

AND

AND

OR ci+1

Translation to CNF

▶ Each node a new variable

▶ XOR introduces 4 clauses

▶ AND introduces 3 clauses

▶ OR introduces 3 clauses

▶ 17 new clauses

▶ 5 new variables

Bit-Blasting Addition/Multiplication

x[32] + y[32] 544 new clauses, 160 new variables

x[32] × y[32] 10016 new clauses, 3008 new variables
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