Logic and Mechanized Reasoning Unification

Marijn J.H. Heule

Carnegie
Mellon **University**

[Introduction](#page-2-0)

[Generality of Unifiers](#page-20-0)

[Unification Function](#page-30-0)

[Termination](#page-55-0)

[Introduction](#page-2-0)

[Generality of Unifiers](#page-20-0)

[Unification Function](#page-30-0)

[Termination](#page-55-0)

Letters early in the alphabet refer to constants, e.g. *a*, *b*, *c* \triangleright Constants can be seen as 0-arity functions

Small letters starting with *f* refer to functions, e.g. *f*, *g*, *h*

Letters late in the alphabet refer to variables, e.g. *x*, *y*, *z*

Capital letters refer to relations, e.g. *P*, *Q*, *R*

Motivation

Given a language with the following proven sentence:

$$
\forall x, y, z. \ x < y \rightarrow x + z < y + z
$$

and we try to prove

$$
ab+7
$$

How to proceed? How can be combine them?

Motivation

Given a language with the following proven sentence:

$$
\forall x, y, z. \ x < y \rightarrow x + z < y + z
$$

and we try to prove

$$
ab+7
$$

How to proceed? How can be combine them?

Substitute *ab* for *x*, *c* for *y*, and 7 for *z*

Motivation

Given a language with the following proven sentence:

$$
\forall x, y, z. \ x < y \rightarrow x + z < y + z
$$

and we try to prove

$$
ab+7
$$

How to proceed? How can be combine them?

Substitute *ab* for *x*, *c* for *y*, and 7 for *z*

Note that Lean has to do this anytime you use rw or apply

Matching: Given *n* pairs of terms (s_1, t_1) , (s_2, t_2) , ..., (s_n, t_n) , find a substitution σ such that for every *i*: $\sigma s_i = t_i$

Matching: Given *n* pairs of terms (s_1, t_1) , (s_2, t_2) , ..., (s_n, t_n) , find a substitution σ such that for every *i*: $\sigma s_i = t_i$

Unification: Given *n* pairs of terms (s_1, t_1) , (s_2, t_2) , ..., (s_n, t_n) , find a substitution σ such that for every *i*: $\sigma s_i = \sigma t_i$

Matching: Given *n* pairs of terms (s_1, t_1) , (s_2, t_2) , ..., (s_n, t_n) , find a substitution σ such that for every *i*: $\sigma s_i = t_i$

Unification: Given *n* pairs of terms (s_1, t_1) , (s_2, t_2) , ..., (s_n, t_n) , find a substitution σ such that for every *i*: $\sigma s_i = \sigma t_i$

Example

Consider the following two expressions

$$
f(x, f(x, a)) < z \quad f(b, y) < c
$$

How to unify them?

Matching: Given *n* pairs of terms (s_1, t_1) , (s_2, t_2) , ..., (s_n, t_n) , find a substitution σ such that for every *i*: $\sigma s_i = t_i$

Unification: Given *n* pairs of terms (s_1, t_1) , (s_2, t_2) , ..., (s_n, t_n) , find a substitution σ such that for every *i*: $\sigma s_i = \sigma t_i$

Example

Consider the following two expressions

$$
f(x, f(x, a)) < z \quad f(b, y) < c
$$

How to unify them? $x \mapsto b$, $y \mapsto f(b, a)$ and $z \mapsto c$

Matching: Given *n* pairs of terms (s_1, t_1) , (s_2, t_2) , ..., (s_n, t_n) , find a substitution σ such that for every *i*: $\sigma s_i = t_i$

Unification: Given *n* pairs of terms (s_1, t_1) , (s_2, t_2) , ..., (s_n, t_n) , find a substitution σ such that for every *i*: $\sigma s_i = \sigma t_i$

Example

Consider the following two expressions

$$
f(x, f(x, a)) < z \quad f(b, y) < c
$$

How to unify them? $x \mapsto b$, $y \mapsto f(b, a)$ and $z \mapsto c$

$$
f(b,f(b,a)) < c
$$

Prove Contradiction

Example

Consider the following formula

∀*x*, *z*. *R*(*f*(*x*, *f*(*x*, *a*)), *z*) ∧ ∀*y*. ¬*R*(*f*(*b*, *y*), *c*)

Is this sentence satisfiable?

Prove Contradiction

Example

Consider the following formula

∀*x*, *z*. *R*(*f*(*x*, *f*(*x*, *a*)), *z*) ∧ ∀*y*. ¬*R*(*f*(*b*, *y*), *c*)

Is this sentence satisfiable?

Apply substitution $x \mapsto b$, $y \mapsto f(b, a)$ and $z \mapsto c$

 $R(f(b, f(b, a)), c) \wedge \neg R(f(b, f(b, a)), c)$

The above is a contradiction

Hints:

- ▶ *a* and *b* can't be unified
- \triangleright *x* and $f(x)$ can't be unified

Unify the following terms (if possible): \blacktriangleright $f(x, a)$ and $f(b, y)$

Hints:

- ▶ *a* and *b* can't be unified
- \triangleright *x* and $f(x)$ can't be unified

Unify the following terms (if possible): ▶ $f(x, a)$ and $f(b, y)$ $x \mapsto b$ and $y \mapsto a$ \blacktriangleright $f(x, y)$ and $f(y, x)$

Hints:

- ▶ *a* and *b* can't be unified
- ▶ x and $f(x)$ can't be unified

Unify the following terms (if possible):

\n
$$
\begin{array}{ll}\n\blacktriangleright & f(x, a) \text{ and } f(b, y) & x \mapsto b \text{ and } y \mapsto a \\
\blacktriangleright & f(x, y) \text{ and } f(y, x) & y \mapsto x \\
\blacktriangleright & f(x, x) \text{ and } f(y, g(y))\n\end{array}
$$

Hints:

- ▶ *a* and *b* can't be unified
- ▶ x and $f(x)$ can't be unified

Unify the following terms (if possible):

\n
$$
\blacktriangleright f(x, a) \text{ and } f(b, y) \qquad x \mapsto b \text{ and } y \mapsto a
$$
\n
$$
\blacktriangleright f(x, y) \text{ and } f(y, x) \qquad y \mapsto x
$$
\n
$$
\blacktriangleright f(x, x) \text{ and } f(y, g(y)) \qquad y \text{ and } g(y) \text{ can't be unified}
$$
\n
$$
\blacktriangleright f(a, x) \text{ and } f(y, g(y))
$$

Hints:

- ▶ *a* and *b* can't be unified
- ▶ x and $f(x)$ can't be unified

Unify the following terms (if possible):

\n
$$
\blacktriangleright f(x, a)
$$
 and $f(b, y)$ $x \mapsto b$ and $y \mapsto a$

\n $\blacktriangleright f(x, y)$ and $f(y, x)$ $y \mapsto x$

\n $\blacktriangleright f(x, x)$ and $f(y, g(y))$ y and $g(y)$ can't be unified

\n $\blacktriangleright f(a, x)$ and $f(y, g(y))$ $x \mapsto g(a)$ and $y \mapsto a$

\n $\blacktriangleright f(a, x)$ and $f(x, b)$

Hints:

- ▶ *a* and *b* can't be unified
- \triangleright *x* and $f(x)$ can't be unified

Unify the following terms (if possible): ▶ $f(x, a)$ and $f(b, y)$ $x \mapsto b$ and $y \mapsto a$
▶ $f(x, y)$ and $f(y, x)$ $y \mapsto x$ ▶ $f(x, y)$ and $f(y, x)$
▶ $f(x, x)$ and $f(y, g(y))$ \mathbf{y} and $\mathbf{g}(\mathbf{y})$ can't be unified ▶ $f(a, x)$ and $f(y, g(y))$ $x \mapsto g(a)$ and $y \mapsto a$
▶ $f(a, x)$ and $f(x, b)$ *x* cannot map to *a* and *b* \blacktriangleright *f*(*a*, *x*) and *f*(*x*, *b*)

[Introduction](#page-2-0)

[Generality of Unifiers](#page-20-0)

[Unification Function](#page-30-0)

[Termination](#page-55-0)

Many Unifiers

Example Can $f(x, y)$ and $f(a, z)$ be unified?

Many Unifiers

Example Can $f(x, y)$ and $f(a, z)$ be unified? ▶ $x \mapsto a$, $y \mapsto a$, and $z \mapsto a$ \blacktriangleright *x* \mapsto *a* and *y* \mapsto *z* ▶ $x \mapsto a$, $y \mapsto g(a)$, and $z \mapsto g(a)$

Many Unifiers

Example

\nCan
$$
f(x, y)
$$
 and $f(a, z)$ be unified?

\nFor $x \mapsto a$, $y \mapsto a$, and $z \mapsto a$.

\nFor $x \mapsto a$ and $y \mapsto z$.

\nFor $x \mapsto a$, $y \mapsto g(a)$, and $z \mapsto g(a)$.

Some unifiers are more useful that others \blacktriangleright $f(a, z)$ is more general than $f(a, a)$

Composing Substitutions

To explain what it means for one unifier to be better than another, we analyze the composition of substitutions

Composition of two substitutions *σ* and *δ* is written *σδ*

Example

To unify $f(x, z)$ and $f(g(y), z)$, consider the substitutions $\triangleright \sigma = \{x \mapsto g(y)\}\$ \triangleright $\delta = {\mathfrak y} \mapsto a, z \mapsto b$ $\triangleright \sigma\delta = \{x \mapsto g(a), z \mapsto b\}$ \blacktriangleright σ and $\sigma\delta$ are unifiers

Generality of Unifiers

- \triangleright We prefer unifiers that are as general as possible.
- \blacktriangleright A unifier σ is at least as general as unifier τ if there exists another substitution δ such that $\sigma \delta = \tau$
- ▶ *^σ* is more general than *^τ* if *^σ* is at least as general as *^τ* but not the other way around
- ▶ Intuition: *^σ* more general than *^τ* if *^τ* can be obtained from through another substitution

Generality of Unifiers

- \triangleright We prefer unifiers that are as general as possible.
- \blacktriangleright A unifier σ is at least as general as unifier τ if there exists another substitution δ such that $\sigma \delta = \tau$
- ▶ *^σ* is more general than *^τ* if *^σ* is at least as general as *^τ* but not the other way around
- ▶ Intuition: *^σ* more general than *^τ* if *^τ* can be obtained from through another substitution

Example

Recall that $f(x, y)$ and $f(a, z)$ have (infinitely) many unifiers.

$$
\blacktriangleright \sigma = \{x \mapsto a, y \mapsto z\}
$$

$$
\blacktriangleright \tau = \{x \mapsto a, y \mapsto a, z \mapsto a\}
$$

 \triangleright Which is more general?

Generality of Unifiers

- \triangleright We prefer unifiers that are as general as possible.
- \blacktriangleright A unifier σ is at least as general as unifier τ if there exists another substitution δ such that $\sigma \delta = \tau$
- ▶ *^σ* is more general than *^τ* if *^σ* is at least as general as *^τ* but not the other way around
- ▶ Intuition: *^σ* more general than *^τ* if *^τ* can be obtained from through another substitution

Example

Recall that $f(x, y)$ and $f(a, z)$ have (infinitely) many unifiers.

$$
\triangleright \sigma = \{x \mapsto a, y \mapsto z\}
$$

$$
\blacktriangleright \tau = \{x \mapsto a, y \mapsto a, z \mapsto a\}
$$

 \triangleright Which is more general?

Let
$$
\delta = \{y \mapsto a, z \mapsto a\}
$$
, then $\sigma \delta = \tau$

Introduction: Most General Unifier

For every unification problem, there exists either

- ▶ a unique most general unifier (modulo renaming)
- \blacktriangleright no unifier

The most general unifier can be computed in linear time

Introduction: Most General Unifier

For every unification problem, there exists either

- ▶ a unique most general unifier (modulo renaming)
- \blacktriangleright no unifier

The most general unifier can be computed in linear time

We present an algorithm with a Lean implementation from the Handbook of Practical Logic and Automated Reasoning

- \blacktriangleright env is the (partial) substitution
- \triangleright eqs is a set of pairs to unify
- ▶ unify? env eqs with env initially emtpy

[Introduction](#page-2-0)

[Generality of Unifiers](#page-20-0)

[Unification Function](#page-30-0)

[Termination](#page-55-0)

Extending a Cycle-Free Association List

Given a cycle-free association list env mapping variables to terms can we add the $(x \mapsto t)$ without creating a cycle?

A cycle is:

$$
x_0 \longrightarrow x_1 \longrightarrow \cdots \longrightarrow x_p \longrightarrow x_0
$$

It is sufficient to ensure the following:

- 1. There is no assignment $x \mapsto s$ in env
- 2. There is no $y \in var(t)$ such that $y \longrightarrow^* x$

Extending a Cycle-Free Association List

Given a cycle-free association list env mapping variables to terms can we add the $(x \mapsto t)$ without creating a cycle?

A cycle is:

$$
x_0 \longrightarrow x_1 \longrightarrow \cdots \longrightarrow x_p \longrightarrow x_0
$$

It is sufficient to ensure the following:

- 1. There is no assignment $x \mapsto s$ in env
- 2. There is no $y \in var(t)$ such that $y \longrightarrow^* x$

Proof sketch: Assume $(x \mapsto t)$ creates the cycle $z \longrightarrow x_1 \longrightarrow x \longrightarrow' y \longrightarrow \cdots \longrightarrow x_p \longrightarrow z$, then there existed a path $y \longrightarrow \cdots \longrightarrow x_p \longrightarrow z \longrightarrow x_1 \longrightarrow x$, which contradicts 2.

Trivial Check

We can add the $(x \mapsto t)$ without creating a cycle by ensuring:

- 1. There is no assignment $x \mapsto s$ in env
- 2. There is no $y \in var(t)$ such that $y \longrightarrow^* x$

Helper procedure to determine whether to add $(x \mapsto t)$

- \blacktriangleright Return true: $t = x$ in env (trivial)
- ▶ Return false: no cycle will be created
- ▶ Return none: unification not possible

Trivial Check

We can add the $(x \mapsto t)$ without creating a cycle by ensuring:

- 1. There is no assignment $x \mapsto s$ in env
- 2. There is no $y \in var(t)$ such that $y \longrightarrow^* x$

Helper procedure to determine whether to add $(x \mapsto t)$

- \blacktriangleright Return true: $t = x$ in env (trivial)
- ▶ Return false: no cycle will be created
- ▶ Return none: unification not possible

Lean: isTriv?

Given eqs, a list of pairs to unify, determine if unification succeeds and produce an association list env if possible

- ▶ Tail-recursive algorithm
- \blacktriangleright Front pair (x, t)
	- ▶ If $x \mapsto s$ in env replace (x, t) by (s, t)
	- \blacktriangleright If (x, t) is trivial, skip it and continue
	- \blacktriangleright If (x, t) creates a cycle, return failed
	- ▶ Otherwise add $(x \mapsto t)$

Given eqs, a list of pairs to unify, determine if unification succeeds and produce an association list env if possible

- ▶ Tail-recursive algorithm
- \blacktriangleright Front pair (x, t)
	- ▶ If $x \mapsto s$ in env replace (x, t) by (s, t)
	- \blacktriangleright If (x, t) is trivial, skip it and continue
	- \blacktriangleright If (x, t) creates a cycle, return failed
	- ▶ Otherwise add $(x \mapsto t)$

 \blacktriangleright Front pair (t, x) , replace by (x, t)

Given eqs, a list of pairs to unify, determine if unification succeeds and produce an association list env if possible

- \blacktriangleright Tail-recursive algorithm
- \blacktriangleright Front pair (x, t)
	- ▶ If $x \mapsto s$ in env replace (x, t) by (s, t)
	- \blacktriangleright If (x, t) is trivial, skip it and continue
	- \blacktriangleright If (x, t) creates a cycle, return failed
	- ▶ Otherwise add $(x \mapsto t)$
- \blacktriangleright Front pair (t, x) , replace by (x, t)
- \blacktriangleright Front pair (s, t) , if both s and t are the same functions with the same number of arguments, add for each argument a pairs (*sⁱ* , *ti*) to eqs

Given eqs, a list of pairs to unify, determine if unification succeeds and produce an association list env if possible

- \blacktriangleright Tail-recursive algorithm
- \blacktriangleright Front pair (x, t)
	- ▶ If $x \mapsto s$ in env replace (x, t) by (s, t)
	- \blacktriangleright If (x, t) is trivial, skip it and continue
	- \blacktriangleright If (x, t) creates a cycle, return failed
	- ▶ Otherwise add $(x \mapsto t)$
- \blacktriangleright Front pair (t, x) , replace by (x, t)
- \blacktriangleright Front pair (s, t) , if both s and t are the same functions with the same number of arguments, add for each argument a pairs (*sⁱ* , *ti*) to eqs

```
Lean: unify?
```
Example Unify $f(g(x), g(x))$ and $f(y, g(a))$ ▶ env = {}, eqs = { $(f(g(x), g(x)), f(y, g(a)))$ }

Example Unify $f(g(x), g(x))$ and $f(y, g(a))$ ▶ env = {}, eqs = { $(f(g(x), g(x)), f(y, g(a)))$ } ▶ env = {}, eqs = { $(g(x), y)$, $(g(x), g(a))$ }

Example Unify $f(g(x), g(x))$ and $f(y, g(a))$ ▶ env = {}, eqs = { $(f(g(x), g(x)), f(y, g(a)))$ } ▶ env = {}, eqs = { $(g(x), y)$, $(g(x), g(a))$ } • env = {}, eqs = { $(y, g(x))$, $(g(x), g(a))$ }

Example Unify $f(g(x), g(x))$ and $f(y, g(a))$ ▶ env = {}, eqs = { $(f(g(x), g(x)), f(y, g(a)))$ } \triangleright env = {}, eqs = { $(g(x), y)$, $(g(x), g(a))$ } • env = {}, eqs = { $(y, g(x))$, $(g(x), g(a))$ } ▶ env = { $y \mapsto g(x)$ }, eqs = { $(g(x), g(a))$ }

Example Unify $f(g(x), g(x))$ and $f(y, g(a))$ ▶ env = {}, eqs = { $(f(g(x), g(x)), f(y, g(a)))$ } \triangleright env = {}, eqs = { $(g(x), y)$, $(g(x), g(a))$ } • env = {}, eqs = { $(y, g(x))$, $(g(x), g(a))$ } ▶ env = { $y \mapsto g(x)$ }, eqs = { $(g(x), g(a))$ } ▶ env = { $y \mapsto g(x)$ }, eqs = { (x, a) }

Example Unify $f(g(x), g(x))$ and $f(y, g(a))$ ▶ env = {}, eqs = { $(f(g(x), g(x)), f(y, g(a)))$ } \triangleright env = {}, eqs = { $(g(x), y)$, $(g(x), g(a))$ } \triangleright env = {}, eqs = { $(y, g(x))$, $(g(x), g(a))$ } ▶ env = { $y \mapsto g(x)$ }, eqs = { $(g(x), g(a))$ } ▶ env = { $\nu \mapsto g(x)$ }, eqs = { (x, a) } \bullet env = { $y \mapsto g(x)$, $x \mapsto a$ }, eqs = {}

Example Unify $f(x, x)$ and $f(y, g(y))$ ▶ env = {}, eqs = { $(f(x, x), f(y, g(y)))$ }

Example Unify $f(x, x)$ and $f(y, g(y))$ ▶ env = {}, eqs = { $(f(x, x), f(y, g(y)))$ } \triangleright env = {}, eqs = { (x, y) , $(x, g(y))$ }

Example

\nUnify
$$
f(x, x)
$$
 and $f(y, g(y))$

\n• env = {}, eqs = { $f(x, x), f(y, g(y))$

\n• env = {}, eqs = { $(x, y), (x, g(y))$

\n• env = { $x \mapsto y$ }, eqs = { $(x, g(y))$

Example

\nUnify
$$
f(x, x)
$$
 and $f(y, g(y))$

\n• env = {}, eqs = { $(f(x, x), f(y, g(y))$

\n• env = {}, eqs = { $(x, y), (x, g(y))$

\n• env = { $x \mapsto y$, eqs = { $(x, g(y))$

\n• env = { $x \mapsto y$, eqs = { $(y, g(y))$

Example

\nUnify
$$
f(x, x)
$$
 and $f(y, g(y))$

\n• env = $\{$, eqs = $\{(f(x, x), f(y, g(y))\}$

\n• env = $\{$, eqs = $\{(x, y), (x, g(y))\}$

\n• env = $\{x \mapsto y\}$, eqs = $\{(x, g(y))\}$

\n• env = $\{x \mapsto y\}$, eqs = $\{(y, g(y))\}$

\n• is Triv? or use returns none, indicating for the following expression.

▶ isTriv? env eqs returns none, indicating failure

Successful termination shows that there exists a unifier

For example, the algorithm may return:

$$
\bullet \text{ env} = \{x \mapsto y, y \mapsto z, z \mapsto w\}
$$

▶ How to turn this in the most general unifier?

Successful termination shows that there exists a unifier

For example, the algorithm may return:

$$
\bullet \text{ env} = \{x \mapsto y, y \mapsto z, z \mapsto w\}
$$

▶ How to turn this in the most general unifier?

 \blacktriangleright Apply the map until fixpoint

$$
\blacktriangleright \text{ env} = \{x \mapsto w, y \mapsto w, z \mapsto w\}
$$

What is the complexity of computing the fixpoint?

Successful termination shows that there exists a unifier

For example, the algorithm may return:

$$
\bullet \text{ env} = \{x \mapsto y, y \mapsto z, z \mapsto w\}
$$

▶ How to turn this in the most general unifier?

 \blacktriangleright Apply the map until fixpoint

$$
\blacktriangleright \text{ env} = \{x \mapsto w, y \mapsto w, z \mapsto w\}
$$

What is the complexity of computing the fixpoint?

$$
\bullet \text{ env} = \{x_0 \mapsto f(x_1, x_1), x_1 \mapsto f(x_2, x_2), x_2 \mapsto f(x_3, x_3)\}
$$

Successful termination shows that there exists a unifier

For example, the algorithm may return:

$$
\bullet \text{ env} = \{x \mapsto y, y \mapsto z, z \mapsto w\}
$$

▶ How to turn this in the most general unifier?

$$
\blacktriangleright
$$
 Apply the map until fixpoint

$$
\blacktriangleright \text{ env} = \{x \mapsto w, y \mapsto w, z \mapsto w\}
$$

What is the complexity of computing the fixpoint?

$$
\begin{aligned}\n&\bullet \text{ env} = \{x_0 \mapsto f(x_1, x_1), x_1 \mapsto f(x_2, x_2), x_2 \mapsto f(x_3, x_3)\} \\
&\bullet x_0 \mapsto f(f(f(x_3, x_3), f(x_3, x_3)), f(f(x_3, x_3), f(x_3, x_3))) \\
&\bullet x_1 \mapsto f(f(x_3, x_3), f(x_3, x_3)) \\
&\bullet x_2 \mapsto f(x_3, x_3)\n\end{aligned}
$$

Successful termination shows that there exists a unifier

For example, the algorithm may return:

$$
\bullet \text{ env} = \{x \mapsto y, y \mapsto z, z \mapsto w\}
$$

▶ How to turn this in the most general unifier?

$$
\blacktriangleright
$$
 Apply the map until fixpoint

$$
\blacktriangleright \text{ env} = \{x \mapsto w, y \mapsto w, z \mapsto w\}
$$

What is the complexity of computing the fixpoint?

$$
\begin{aligned}\n&\bullet \text{ env} = \{x_0 \mapsto f(x_1, x_1), x_1 \mapsto f(x_2, x_2), x_2 \mapsto f(x_3, x_3)\} \\
&\bullet x_0 \mapsto f(f(f(x_3, x_3), f(x_3, x_3)), f(f(x_3, x_3), f(x_3, x_3))) \\
&\bullet x_1 \mapsto f(f(x_3, x_3), f(x_3, x_3)) \\
&\bullet x_2 \mapsto f(x_3, x_3)\n\end{aligned}
$$

Lean: usolve

[Introduction](#page-2-0)

[Generality of Unifiers](#page-20-0)

[Unification Function](#page-30-0)

[Termination](#page-55-0)

Why does the unification algorithm terminate?

Why does the unification algorithm terminate? Key observation: The number of additions to env is at most the number of variables in eqs that are not in env

Size of eqs:

▶ Total number of variables and functions in $(\sigma s_i, \sigma t_i)$ with $(s_i, t_i) \in$ eqs with σ being the fixpoint of env

Why does the unification algorithm terminate? Key observation: The number of additions to env is at most the number of variables in eqs that are not in env

Size of eqs:

- ▶ Total number of variables and functions in $(\sigma s_i, \sigma t_i)$ with $(s_i, t_i) \in$ eqs with σ being the fixpoint of env
- \triangleright Each step in the algorithm either decreases the size of eqs or can be applied finitely many times

Why does the unification algorithm terminate? Key observation: The number of additions to env is at most the number of variables in eqs that are not in env

Size of eqs:

- ▶ Total number of variables and functions in $(\sigma s_i, \sigma t_i)$ with $(s_i, t_i) \in$ eqs with σ being the fixpoint of env
- \blacktriangleright Each step in the algorithm either decreases the size of eqs or can be applied finitely many times
- \blacktriangleright The only exception is an addition step to env

Size: Total number of variables and functions in $(\sigma s_i, \sigma t_i)$ with $(s_i, t_i) \in$ eqs with σ being the fixpoint of env

Steps in the function:

▶ If $x \mapsto s$ in env replace (x, t) by (s, t)

Size: Total number of variables and functions in $(\sigma s_i, \sigma t_i)$ with $(s_i, t_i) \in$ eqs with σ being the fixpoint of env

Steps in the function:

▶ If $x \mapsto s$ in env replace (x, t) by (s, t)

▶ Same size, but limited as env is cycle-free \blacktriangleright If (x, t) is trivial, skip it and continue

Size: Total number of variables and functions in $(\sigma s_i, \sigma t_i)$ with $(s_i, t_i) \in$ eqs with σ being the fixpoint of env

Steps in the function:

▶ If $x \mapsto s$ in env replace (x, t) by (s, t)

▶ Same size, but limited as env is cycle-free \blacktriangleright If (x, t) is trivial, skip it and continue

▶ Reduces eqs

▶ Otherwise add $(x \mapsto t)$

Size: Total number of variables and functions in $(\sigma s_i, \sigma t_i)$ with $(s_i, t_i) \in$ eqs with σ being the fixpoint of env

Steps in the function:

▶ If $x \mapsto s$ in env replace (x, t) by (s, t)

▶ Same size, but limited as env is cycle-free

- \blacktriangleright If (x, t) is trivial, skip it and continue
	- ▶ Reduces eqs
- ▶ Otherwise add $(x \mapsto t)$
	- ▶ Only increasing step, but limited
- \blacktriangleright Front pair (t, x) , replace by (x, t)

Size: Total number of variables and functions in $(\sigma s_i, \sigma t_i)$ with $(s_i, t_i) \in$ eqs with σ being the fixpoint of env

Steps in the function:

▶ If $x \mapsto s$ in env replace (x, t) by (s, t)

▶ Same size, but limited as env is cycle-free

- \blacktriangleright If (x, t) is trivial, skip it and continue
	- ▶ Reduces eqs
- ▶ Otherwise add $(x \mapsto t)$
	- ▶ Only increasing step, but limited
- \blacktriangleright Front pair (t, x) , replace by (x, t)

▶ Cannot be repeated twice

 \blacktriangleright Front pair (s, t) , add the pairs (s_i, t_i) to eqs

Size: Total number of variables and functions in $(\sigma s_i, \sigma t_i)$ with $(s_i, t_i) \in$ eqs with σ being the fixpoint of env

Steps in the function:

▶ If $x \mapsto s$ in env replace (x, t) by (s, t)

▶ Same size, but limited as env is cycle-free

- \blacktriangleright If (x, t) is trivial, skip it and continue
	- ▶ Reduces eqs
- ▶ Otherwise add $(x \mapsto t)$
	- ▶ Only increasing step, but limited
- \blacktriangleright Front pair (t, x) , replace by (x, t)
	- ▶ Cannot be repeated twice
- \blacktriangleright Front pair (s, t) , add the pairs (s_i, t_i) to eqs
	- ▶ Reduce size (removes two functions)