
Logic and Mechanized Reasoning
Unification

Marijn J.H. Heule

Logic and Mechanized Reasoning 1 / 23



Introduction

Generality of Unifiers

Unification Function

Termination

Logic and Mechanized Reasoning 2 / 23



Introduction

Generality of Unifiers

Unification Function

Termination

Logic and Mechanized Reasoning 3 / 23



Variables and Constants

Letters early in the alphabet refer to constants, e.g. a, b, c
▶ Constants can be seen as 0-arity functions

Small letters starting with f refer to functions, e.g. f , g, h

Letters late in the alphabet refer to variables, e.g. x, y, z

Capital letters refer to relations, e.g. P, Q, R

Logic and Mechanized Reasoning 4 / 23



Motivation

Given a language with the following proven sentence:

∀x, y, z. x < y → x + z < y + z

and we try to prove

ab + 7 < c + 7

How to proceed? How can be combine them?

Substitute ab for x, c for y, and 7 for z

Note that Lean has to do this anytime you use rw or apply

Logic and Mechanized Reasoning 5 / 23



Motivation

Given a language with the following proven sentence:

∀x, y, z. x < y → x + z < y + z

and we try to prove

ab + 7 < c + 7

How to proceed? How can be combine them?

Substitute ab for x, c for y, and 7 for z

Note that Lean has to do this anytime you use rw or apply

Logic and Mechanized Reasoning 5 / 23



Motivation

Given a language with the following proven sentence:

∀x, y, z. x < y → x + z < y + z

and we try to prove

ab + 7 < c + 7

How to proceed? How can be combine them?

Substitute ab for x, c for y, and 7 for z

Note that Lean has to do this anytime you use rw or apply

Logic and Mechanized Reasoning 5 / 23



Matching and Unification

Matching: Given n pairs of terms (s1, t1), (s2, t2), . . . , (sn, tn),
find a substitution σ such that for every i: σsi = ti

Unification: Given n pairs of terms (s1, t1), (s2, t2), . . . , (sn, tn),
find a substitution σ such that for every i: σsi = σti

Example

Consider the following two expressions

f (x, f (x, a)) < z f (b, y) < c

How to unify them? x 7→ b, y 7→ f (b, a) and z 7→ c

f (b, f (b, a)) < c

Logic and Mechanized Reasoning 6 / 23



Matching and Unification

Matching: Given n pairs of terms (s1, t1), (s2, t2), . . . , (sn, tn),
find a substitution σ such that for every i: σsi = ti

Unification: Given n pairs of terms (s1, t1), (s2, t2), . . . , (sn, tn),
find a substitution σ such that for every i: σsi = σti

Example

Consider the following two expressions

f (x, f (x, a)) < z f (b, y) < c

How to unify them? x 7→ b, y 7→ f (b, a) and z 7→ c

f (b, f (b, a)) < c

Logic and Mechanized Reasoning 6 / 23



Matching and Unification

Matching: Given n pairs of terms (s1, t1), (s2, t2), . . . , (sn, tn),
find a substitution σ such that for every i: σsi = ti

Unification: Given n pairs of terms (s1, t1), (s2, t2), . . . , (sn, tn),
find a substitution σ such that for every i: σsi = σti

Example

Consider the following two expressions

f (x, f (x, a)) < z f (b, y) < c

How to unify them?

x 7→ b, y 7→ f (b, a) and z 7→ c

f (b, f (b, a)) < c

Logic and Mechanized Reasoning 6 / 23



Matching and Unification

Matching: Given n pairs of terms (s1, t1), (s2, t2), . . . , (sn, tn),
find a substitution σ such that for every i: σsi = ti

Unification: Given n pairs of terms (s1, t1), (s2, t2), . . . , (sn, tn),
find a substitution σ such that for every i: σsi = σti

Example

Consider the following two expressions

f (x, f (x, a)) < z f (b, y) < c

How to unify them? x 7→ b, y 7→ f (b, a) and z 7→ c

f (b, f (b, a)) < c

Logic and Mechanized Reasoning 6 / 23



Matching and Unification

Matching: Given n pairs of terms (s1, t1), (s2, t2), . . . , (sn, tn),
find a substitution σ such that for every i: σsi = ti

Unification: Given n pairs of terms (s1, t1), (s2, t2), . . . , (sn, tn),
find a substitution σ such that for every i: σsi = σti

Example

Consider the following two expressions

f (x, f (x, a)) < z f (b, y) < c

How to unify them? x 7→ b, y 7→ f (b, a) and z 7→ c

f (b, f (b, a)) < c

Logic and Mechanized Reasoning 6 / 23



Prove Contradiction

Example

Consider the following formula

∀x, z. R(f (x, f (x, a)), z)∧ ∀y. ¬R(f (b, y), c)

Is this sentence satisfiable?

Apply substitution x 7→ b, y 7→ f (b, a) and z 7→ c

R(f (b, f (b, a)), c)∧¬R(f (b, f (b, a)), c)

The above is a contradiction

Logic and Mechanized Reasoning 7 / 23



Prove Contradiction

Example

Consider the following formula

∀x, z. R(f (x, f (x, a)), z)∧ ∀y. ¬R(f (b, y), c)

Is this sentence satisfiable?

Apply substitution x 7→ b, y 7→ f (b, a) and z 7→ c

R(f (b, f (b, a)), c)∧¬R(f (b, f (b, a)), c)

The above is a contradiction

Logic and Mechanized Reasoning 7 / 23



Introduction: Examples

Hints:

▶ a and b can’t be unified

▶ x and f (x) can’t be unified

Unify the following terms (if possible):

▶ f (x, a) and f (b, y)

x 7→ b and y 7→ a
▶ f (x, y) and f (y, x) y 7→ x
▶ f (x, x) and f (y, g(y)) y and g(y) can’t be unified

▶ f (a, x) and f (y, g(y)) x 7→ g(a) and y 7→ a
▶ f (a, x) and f (x, b) x cannot map to a and b

Logic and Mechanized Reasoning 8 / 23



Introduction: Examples

Hints:

▶ a and b can’t be unified

▶ x and f (x) can’t be unified

Unify the following terms (if possible):

▶ f (x, a) and f (b, y) x 7→ b and y 7→ a
▶ f (x, y) and f (y, x)

y 7→ x
▶ f (x, x) and f (y, g(y)) y and g(y) can’t be unified

▶ f (a, x) and f (y, g(y)) x 7→ g(a) and y 7→ a
▶ f (a, x) and f (x, b) x cannot map to a and b

Logic and Mechanized Reasoning 8 / 23



Introduction: Examples

Hints:

▶ a and b can’t be unified

▶ x and f (x) can’t be unified

Unify the following terms (if possible):

▶ f (x, a) and f (b, y) x 7→ b and y 7→ a
▶ f (x, y) and f (y, x) y 7→ x
▶ f (x, x) and f (y, g(y))

y and g(y) can’t be unified

▶ f (a, x) and f (y, g(y)) x 7→ g(a) and y 7→ a
▶ f (a, x) and f (x, b) x cannot map to a and b

Logic and Mechanized Reasoning 8 / 23



Introduction: Examples

Hints:

▶ a and b can’t be unified

▶ x and f (x) can’t be unified

Unify the following terms (if possible):

▶ f (x, a) and f (b, y) x 7→ b and y 7→ a
▶ f (x, y) and f (y, x) y 7→ x
▶ f (x, x) and f (y, g(y)) y and g(y) can’t be unified

▶ f (a, x) and f (y, g(y))

x 7→ g(a) and y 7→ a
▶ f (a, x) and f (x, b) x cannot map to a and b

Logic and Mechanized Reasoning 8 / 23



Introduction: Examples

Hints:

▶ a and b can’t be unified

▶ x and f (x) can’t be unified

Unify the following terms (if possible):

▶ f (x, a) and f (b, y) x 7→ b and y 7→ a
▶ f (x, y) and f (y, x) y 7→ x
▶ f (x, x) and f (y, g(y)) y and g(y) can’t be unified

▶ f (a, x) and f (y, g(y)) x 7→ g(a) and y 7→ a
▶ f (a, x) and f (x, b)

x cannot map to a and b

Logic and Mechanized Reasoning 8 / 23



Introduction: Examples

Hints:

▶ a and b can’t be unified

▶ x and f (x) can’t be unified

Unify the following terms (if possible):

▶ f (x, a) and f (b, y) x 7→ b and y 7→ a
▶ f (x, y) and f (y, x) y 7→ x
▶ f (x, x) and f (y, g(y)) y and g(y) can’t be unified

▶ f (a, x) and f (y, g(y)) x 7→ g(a) and y 7→ a
▶ f (a, x) and f (x, b) x cannot map to a and b

Logic and Mechanized Reasoning 8 / 23



Introduction

Generality of Unifiers

Unification Function

Termination

Logic and Mechanized Reasoning 9 / 23



Many Unifiers

Example

Can f (x, y) and f (a, z) be unified?

▶ x 7→ a, y 7→ a, and z 7→ a
▶ x 7→ a and y 7→ z
▶ x 7→ a, y 7→ g(a), and z 7→ g(a)

Some unifiers are more useful that others

▶ f (a, z) is more general than f (a, a)

Logic and Mechanized Reasoning 10 / 23



Many Unifiers

Example

Can f (x, y) and f (a, z) be unified?

▶ x 7→ a, y 7→ a, and z 7→ a
▶ x 7→ a and y 7→ z
▶ x 7→ a, y 7→ g(a), and z 7→ g(a)

Some unifiers are more useful that others

▶ f (a, z) is more general than f (a, a)

Logic and Mechanized Reasoning 10 / 23



Many Unifiers

Example

Can f (x, y) and f (a, z) be unified?

▶ x 7→ a, y 7→ a, and z 7→ a
▶ x 7→ a and y 7→ z
▶ x 7→ a, y 7→ g(a), and z 7→ g(a)

Some unifiers are more useful that others

▶ f (a, z) is more general than f (a, a)

Logic and Mechanized Reasoning 10 / 23



Composing Substitutions

To explain what it means for one unifier to be better than
another, we analyze the composition of substitutions

Composition of two substitutions σ and δ is written σδ

Example

To unify f (x, z) and f (g(y), z), consider the substitutions

▶ σ = {x 7→ g(y)}
▶ δ = {y 7→ a, z 7→ b}
▶ σδ = {x 7→ g(a), z 7→ b}
▶ σ and σδ are unifiers

Logic and Mechanized Reasoning 11 / 23



Generality of Unifiers

▶ We prefer unifiers that are as general as possible.

▶ A unifier σ is at least as general as unifier τ if there exists
another substitution δ such that σδ = τ

▶ σ is more general than τ if σ is at least as general as τ
but not the other way around

▶ Intuition: σ more general than τ if τ can be obtained
from through another substitution

Example

Recall that f (x, y) and f (a, z) have (infinitely) many unifiers.

▶ σ = {x 7→ a, y 7→ z}
▶ τ = {x 7→ a, y 7→ a, z 7→ a}
▶ Which is more general?

▶ Let δ = {y 7→ a, z 7→ a}, then σδ = τ

Logic and Mechanized Reasoning 12 / 23



Generality of Unifiers

▶ We prefer unifiers that are as general as possible.

▶ A unifier σ is at least as general as unifier τ if there exists
another substitution δ such that σδ = τ

▶ σ is more general than τ if σ is at least as general as τ
but not the other way around

▶ Intuition: σ more general than τ if τ can be obtained
from through another substitution

Example

Recall that f (x, y) and f (a, z) have (infinitely) many unifiers.

▶ σ = {x 7→ a, y 7→ z}
▶ τ = {x 7→ a, y 7→ a, z 7→ a}
▶ Which is more general?

▶ Let δ = {y 7→ a, z 7→ a}, then σδ = τ

Logic and Mechanized Reasoning 12 / 23



Generality of Unifiers

▶ We prefer unifiers that are as general as possible.

▶ A unifier σ is at least as general as unifier τ if there exists
another substitution δ such that σδ = τ

▶ σ is more general than τ if σ is at least as general as τ
but not the other way around

▶ Intuition: σ more general than τ if τ can be obtained
from through another substitution

Example

Recall that f (x, y) and f (a, z) have (infinitely) many unifiers.

▶ σ = {x 7→ a, y 7→ z}
▶ τ = {x 7→ a, y 7→ a, z 7→ a}
▶ Which is more general?

▶ Let δ = {y 7→ a, z 7→ a}, then σδ = τ

Logic and Mechanized Reasoning 12 / 23



Introduction: Most General Unifier

For every unification problem, there exists either

▶ a unique most general unifier (modulo renaming)

▶ no unifier

The most general unifier can be computed in linear time

We present an algorithm with a Lean implementation from
the Handbook of Practical Logic and Automated Reasoning

▶ env is the (partial) substitution

▶ eqs is a set of pairs to unify

▶ unify? env eqs with env initially emtpy

Logic and Mechanized Reasoning 13 / 23



Introduction: Most General Unifier

For every unification problem, there exists either

▶ a unique most general unifier (modulo renaming)

▶ no unifier

The most general unifier can be computed in linear time

We present an algorithm with a Lean implementation from
the Handbook of Practical Logic and Automated Reasoning

▶ env is the (partial) substitution

▶ eqs is a set of pairs to unify

▶ unify? env eqs with env initially emtpy

Logic and Mechanized Reasoning 13 / 23



Introduction

Generality of Unifiers

Unification Function

Termination

Logic and Mechanized Reasoning 14 / 23



Extending a Cycle-Free Association List

Given a cycle-free association list env mapping variables to
terms can we add the (x 7→ t) without creating a cycle?

A cycle is:

x0 −→ x1 −→ · · · −→ xp −→ x0

It is sufficient to ensure the following:

1. There is no assignment x 7→ s in env

2. There is no y ∈ var(t) such that y −→∗ x

Proof sketch: Assume (x 7→ t) creates the cycle

z −→ x1 −→ x −→ ′
y −→ · · · −→ xp −→ z, then there

existed a path y −→ · · · −→ xp −→ z −→ x1 −→ x, which
contradicts 2.

Logic and Mechanized Reasoning 15 / 23



Extending a Cycle-Free Association List

Given a cycle-free association list env mapping variables to
terms can we add the (x 7→ t) without creating a cycle?

A cycle is:

x0 −→ x1 −→ · · · −→ xp −→ x0

It is sufficient to ensure the following:

1. There is no assignment x 7→ s in env

2. There is no y ∈ var(t) such that y −→∗ x

Proof sketch: Assume (x 7→ t) creates the cycle

z −→ x1 −→ x −→ ′
y −→ · · · −→ xp −→ z, then there

existed a path y −→ · · · −→ xp −→ z −→ x1 −→ x, which
contradicts 2.

Logic and Mechanized Reasoning 15 / 23



Trivial Check

We can add the (x 7→ t) without creating a cycle by ensuring:

1. There is no assignment x 7→ s in env

2. There is no y ∈ var(t) such that y −→∗ x

Helper procedure to determine whether to add (x 7→ t)
▶ Return true: t = x in env (trivial)

▶ Return false: no cycle will be created

▶ Return none: unification not possible

Lean: isTriv?

Logic and Mechanized Reasoning 16 / 23



Trivial Check

We can add the (x 7→ t) without creating a cycle by ensuring:

1. There is no assignment x 7→ s in env

2. There is no y ∈ var(t) such that y −→∗ x

Helper procedure to determine whether to add (x 7→ t)
▶ Return true: t = x in env (trivial)

▶ Return false: no cycle will be created

▶ Return none: unification not possible

Lean: isTriv?

Logic and Mechanized Reasoning 16 / 23



Main Unification Function

Given eqs, a list of pairs to unify, determine if unification
succeeds and produce an association list env if possible

▶ Tail-recursive algorithm
▶ Front pair (x, t)

▶ If x 7→ s in env replace (x, t) by (s, t)
▶ If (x, t) is trivial, skip it and continue
▶ If (x, t) creates a cycle, return failed
▶ Otherwise add (x 7→ t)

▶ Front pair (t, x), replace by (x, t)
▶ Front pair (s, t), if both s and t are the same functions

with the same number of arguments, add for each
argument a pairs (si, ti) to eqs

Lean: unify?

Logic and Mechanized Reasoning 17 / 23



Main Unification Function

Given eqs, a list of pairs to unify, determine if unification
succeeds and produce an association list env if possible

▶ Tail-recursive algorithm
▶ Front pair (x, t)

▶ If x 7→ s in env replace (x, t) by (s, t)
▶ If (x, t) is trivial, skip it and continue
▶ If (x, t) creates a cycle, return failed
▶ Otherwise add (x 7→ t)

▶ Front pair (t, x), replace by (x, t)

▶ Front pair (s, t), if both s and t are the same functions
with the same number of arguments, add for each
argument a pairs (si, ti) to eqs

Lean: unify?

Logic and Mechanized Reasoning 17 / 23



Main Unification Function

Given eqs, a list of pairs to unify, determine if unification
succeeds and produce an association list env if possible

▶ Tail-recursive algorithm
▶ Front pair (x, t)

▶ If x 7→ s in env replace (x, t) by (s, t)
▶ If (x, t) is trivial, skip it and continue
▶ If (x, t) creates a cycle, return failed
▶ Otherwise add (x 7→ t)

▶ Front pair (t, x), replace by (x, t)
▶ Front pair (s, t), if both s and t are the same functions

with the same number of arguments, add for each
argument a pairs (si, ti) to eqs

Lean: unify?

Logic and Mechanized Reasoning 17 / 23



Main Unification Function

Given eqs, a list of pairs to unify, determine if unification
succeeds and produce an association list env if possible

▶ Tail-recursive algorithm
▶ Front pair (x, t)

▶ If x 7→ s in env replace (x, t) by (s, t)
▶ If (x, t) is trivial, skip it and continue
▶ If (x, t) creates a cycle, return failed
▶ Otherwise add (x 7→ t)

▶ Front pair (t, x), replace by (x, t)
▶ Front pair (s, t), if both s and t are the same functions

with the same number of arguments, add for each
argument a pairs (si, ti) to eqs

Lean: unify?

Logic and Mechanized Reasoning 17 / 23



Example a Successful Run of the Algorithm

Example

Unify f (g(x), g(x)) and f (y, g(a))
▶ env = {}, eqs = {(f (g(x), g(x)), f (y, g(a)))}

▶ env = {}, eqs = {(g(x), y), (g(x), g(a))}
▶ env = {}, eqs = {(y, g(x)), (g(x), g(a))}
▶ env = {y 7→ g(x)}, eqs = {(g(x), g(a))}
▶ env = {y 7→ g(x)}, eqs = {(x, a)}
▶ env = {y 7→ g(x), x 7→ a}, eqs = {}

Logic and Mechanized Reasoning 18 / 23



Example a Successful Run of the Algorithm

Example

Unify f (g(x), g(x)) and f (y, g(a))
▶ env = {}, eqs = {(f (g(x), g(x)), f (y, g(a)))}
▶ env = {}, eqs = {(g(x), y), (g(x), g(a))}

▶ env = {}, eqs = {(y, g(x)), (g(x), g(a))}
▶ env = {y 7→ g(x)}, eqs = {(g(x), g(a))}
▶ env = {y 7→ g(x)}, eqs = {(x, a)}
▶ env = {y 7→ g(x), x 7→ a}, eqs = {}

Logic and Mechanized Reasoning 18 / 23



Example a Successful Run of the Algorithm

Example

Unify f (g(x), g(x)) and f (y, g(a))
▶ env = {}, eqs = {(f (g(x), g(x)), f (y, g(a)))}
▶ env = {}, eqs = {(g(x), y), (g(x), g(a))}
▶ env = {}, eqs = {(y, g(x)), (g(x), g(a))}

▶ env = {y 7→ g(x)}, eqs = {(g(x), g(a))}
▶ env = {y 7→ g(x)}, eqs = {(x, a)}
▶ env = {y 7→ g(x), x 7→ a}, eqs = {}

Logic and Mechanized Reasoning 18 / 23



Example a Successful Run of the Algorithm

Example

Unify f (g(x), g(x)) and f (y, g(a))
▶ env = {}, eqs = {(f (g(x), g(x)), f (y, g(a)))}
▶ env = {}, eqs = {(g(x), y), (g(x), g(a))}
▶ env = {}, eqs = {(y, g(x)), (g(x), g(a))}
▶ env = {y 7→ g(x)}, eqs = {(g(x), g(a))}

▶ env = {y 7→ g(x)}, eqs = {(x, a)}
▶ env = {y 7→ g(x), x 7→ a}, eqs = {}

Logic and Mechanized Reasoning 18 / 23



Example a Successful Run of the Algorithm

Example

Unify f (g(x), g(x)) and f (y, g(a))
▶ env = {}, eqs = {(f (g(x), g(x)), f (y, g(a)))}
▶ env = {}, eqs = {(g(x), y), (g(x), g(a))}
▶ env = {}, eqs = {(y, g(x)), (g(x), g(a))}
▶ env = {y 7→ g(x)}, eqs = {(g(x), g(a))}
▶ env = {y 7→ g(x)}, eqs = {(x, a)}

▶ env = {y 7→ g(x), x 7→ a}, eqs = {}

Logic and Mechanized Reasoning 18 / 23



Example a Successful Run of the Algorithm

Example

Unify f (g(x), g(x)) and f (y, g(a))
▶ env = {}, eqs = {(f (g(x), g(x)), f (y, g(a)))}
▶ env = {}, eqs = {(g(x), y), (g(x), g(a))}
▶ env = {}, eqs = {(y, g(x)), (g(x), g(a))}
▶ env = {y 7→ g(x)}, eqs = {(g(x), g(a))}
▶ env = {y 7→ g(x)}, eqs = {(x, a)}
▶ env = {y 7→ g(x), x 7→ a}, eqs = {}

Logic and Mechanized Reasoning 18 / 23



Example a Failed Run of the Algorithm

Example

Unify f (x, x) and f (y, g(y))
▶ env = {}, eqs = {(f (x, x), f (y, g(y))}

▶ env = {}, eqs = {(x, y), (x, g(y))}
▶ env = {x 7→ y}, eqs = {(x, g(y))}
▶ env = {x 7→ y}, eqs = {(y, g(y))}
▶ isTriv? env eqs returns none, indicating failure

Logic and Mechanized Reasoning 19 / 23



Example a Failed Run of the Algorithm

Example

Unify f (x, x) and f (y, g(y))
▶ env = {}, eqs = {(f (x, x), f (y, g(y))}
▶ env = {}, eqs = {(x, y), (x, g(y))}

▶ env = {x 7→ y}, eqs = {(x, g(y))}
▶ env = {x 7→ y}, eqs = {(y, g(y))}
▶ isTriv? env eqs returns none, indicating failure

Logic and Mechanized Reasoning 19 / 23



Example a Failed Run of the Algorithm

Example

Unify f (x, x) and f (y, g(y))
▶ env = {}, eqs = {(f (x, x), f (y, g(y))}
▶ env = {}, eqs = {(x, y), (x, g(y))}
▶ env = {x 7→ y}, eqs = {(x, g(y))}

▶ env = {x 7→ y}, eqs = {(y, g(y))}
▶ isTriv? env eqs returns none, indicating failure

Logic and Mechanized Reasoning 19 / 23



Example a Failed Run of the Algorithm

Example

Unify f (x, x) and f (y, g(y))
▶ env = {}, eqs = {(f (x, x), f (y, g(y))}
▶ env = {}, eqs = {(x, y), (x, g(y))}
▶ env = {x 7→ y}, eqs = {(x, g(y))}
▶ env = {x 7→ y}, eqs = {(y, g(y))}

▶ isTriv? env eqs returns none, indicating failure

Logic and Mechanized Reasoning 19 / 23



Example a Failed Run of the Algorithm

Example

Unify f (x, x) and f (y, g(y))
▶ env = {}, eqs = {(f (x, x), f (y, g(y))}
▶ env = {}, eqs = {(x, y), (x, g(y))}
▶ env = {x 7→ y}, eqs = {(x, g(y))}
▶ env = {x 7→ y}, eqs = {(y, g(y))}
▶ isTriv? env eqs returns none, indicating failure

Logic and Mechanized Reasoning 19 / 23



The Final Step

Successful termination shows that there exists a unifier

For example, the algorithm may return:

▶ env = {x 7→ y, y 7→ z, z 7→ w}

▶ How to turn this in the most general unifier?

▶ Apply the map until fixpoint

▶ env = {x 7→ w, y 7→ w, z 7→ w}

What is the complexity of computing the fixpoint?

▶ env = {x0 7→ f (x1, x1), x1 7→ f (x2, x2), x2 7→ f (x3, x3)}

▶ x0 7→ f (f (f (x3, x3), f (x3, x3)), f (f (x3, x3), f (x3, x3)))

▶ x1 7→ f (f (x3, x3), f (x3, x3))

▶ x2 7→ f (x3, x3)

Lean: usolve

Logic and Mechanized Reasoning 20 / 23



The Final Step

Successful termination shows that there exists a unifier

For example, the algorithm may return:

▶ env = {x 7→ y, y 7→ z, z 7→ w}

▶ How to turn this in the most general unifier?

▶ Apply the map until fixpoint

▶ env = {x 7→ w, y 7→ w, z 7→ w}

What is the complexity of computing the fixpoint?

▶ env = {x0 7→ f (x1, x1), x1 7→ f (x2, x2), x2 7→ f (x3, x3)}

▶ x0 7→ f (f (f (x3, x3), f (x3, x3)), f (f (x3, x3), f (x3, x3)))

▶ x1 7→ f (f (x3, x3), f (x3, x3))

▶ x2 7→ f (x3, x3)

Lean: usolve

Logic and Mechanized Reasoning 20 / 23



The Final Step

Successful termination shows that there exists a unifier

For example, the algorithm may return:

▶ env = {x 7→ y, y 7→ z, z 7→ w}

▶ How to turn this in the most general unifier?

▶ Apply the map until fixpoint

▶ env = {x 7→ w, y 7→ w, z 7→ w}

What is the complexity of computing the fixpoint?

▶ env = {x0 7→ f (x1, x1), x1 7→ f (x2, x2), x2 7→ f (x3, x3)}

▶ x0 7→ f (f (f (x3, x3), f (x3, x3)), f (f (x3, x3), f (x3, x3)))

▶ x1 7→ f (f (x3, x3), f (x3, x3))

▶ x2 7→ f (x3, x3)

Lean: usolve

Logic and Mechanized Reasoning 20 / 23



The Final Step

Successful termination shows that there exists a unifier

For example, the algorithm may return:

▶ env = {x 7→ y, y 7→ z, z 7→ w}

▶ How to turn this in the most general unifier?

▶ Apply the map until fixpoint

▶ env = {x 7→ w, y 7→ w, z 7→ w}

What is the complexity of computing the fixpoint?

▶ env = {x0 7→ f (x1, x1), x1 7→ f (x2, x2), x2 7→ f (x3, x3)}

▶ x0 7→ f (f (f (x3, x3), f (x3, x3)), f (f (x3, x3), f (x3, x3)))

▶ x1 7→ f (f (x3, x3), f (x3, x3))

▶ x2 7→ f (x3, x3)

Lean: usolve

Logic and Mechanized Reasoning 20 / 23



The Final Step

Successful termination shows that there exists a unifier

For example, the algorithm may return:

▶ env = {x 7→ y, y 7→ z, z 7→ w}

▶ How to turn this in the most general unifier?

▶ Apply the map until fixpoint

▶ env = {x 7→ w, y 7→ w, z 7→ w}

What is the complexity of computing the fixpoint?

▶ env = {x0 7→ f (x1, x1), x1 7→ f (x2, x2), x2 7→ f (x3, x3)}

▶ x0 7→ f (f (f (x3, x3), f (x3, x3)), f (f (x3, x3), f (x3, x3)))

▶ x1 7→ f (f (x3, x3), f (x3, x3))

▶ x2 7→ f (x3, x3)

Lean: usolve
Logic and Mechanized Reasoning 20 / 23



Introduction

Generality of Unifiers

Unification Function

Termination

Logic and Mechanized Reasoning 21 / 23



Unification Termination (I)

Why does the unification algorithm terminate?

Key observation: The number of additions to env is at most
the number of variables in eqs that are not in env

Size of eqs:

▶ Total number of variables and functions in (σsi, σti) with
(si, ti) ∈ eqs with σ being the fixpoint of env

▶ Each step in the algorithm either decreases the size of eqs
or can be applied finitely many times

▶ The only exception is an addition step to env

Logic and Mechanized Reasoning 22 / 23



Unification Termination (I)

Why does the unification algorithm terminate?
Key observation: The number of additions to env is at most
the number of variables in eqs that are not in env

Size of eqs:

▶ Total number of variables and functions in (σsi, σti) with
(si, ti) ∈ eqs with σ being the fixpoint of env

▶ Each step in the algorithm either decreases the size of eqs
or can be applied finitely many times

▶ The only exception is an addition step to env

Logic and Mechanized Reasoning 22 / 23



Unification Termination (I)

Why does the unification algorithm terminate?
Key observation: The number of additions to env is at most
the number of variables in eqs that are not in env

Size of eqs:

▶ Total number of variables and functions in (σsi, σti) with
(si, ti) ∈ eqs with σ being the fixpoint of env

▶ Each step in the algorithm either decreases the size of eqs
or can be applied finitely many times

▶ The only exception is an addition step to env

Logic and Mechanized Reasoning 22 / 23



Unification Termination (I)

Why does the unification algorithm terminate?
Key observation: The number of additions to env is at most
the number of variables in eqs that are not in env

Size of eqs:

▶ Total number of variables and functions in (σsi, σti) with
(si, ti) ∈ eqs with σ being the fixpoint of env

▶ Each step in the algorithm either decreases the size of eqs
or can be applied finitely many times

▶ The only exception is an addition step to env

Logic and Mechanized Reasoning 22 / 23



Unification Termination (II)

Size: Total number of variables and functions in (σsi, σti)
with (si, ti) ∈ eqs with σ being the fixpoint of env

Steps in the function:
▶ If x 7→ s in env replace (x, t) by (s, t)

▶ Same size, but limited as env is cycle-free
▶ If (x, t) is trivial, skip it and continue

▶ Reduces eqs
▶ Otherwise add (x 7→ t)

▶ Only increasing step, but limited
▶ Front pair (t, x), replace by (x, t)

▶ Cannot be repeated twice
▶ Front pair (s, t), add the pairs (si, ti) to eqs

▶ Reduce size (removes two functions)

Logic and Mechanized Reasoning 23 / 23



Unification Termination (II)

Size: Total number of variables and functions in (σsi, σti)
with (si, ti) ∈ eqs with σ being the fixpoint of env

Steps in the function:
▶ If x 7→ s in env replace (x, t) by (s, t)

▶ Same size, but limited as env is cycle-free
▶ If (x, t) is trivial, skip it and continue

▶ Reduces eqs
▶ Otherwise add (x 7→ t)

▶ Only increasing step, but limited
▶ Front pair (t, x), replace by (x, t)

▶ Cannot be repeated twice
▶ Front pair (s, t), add the pairs (si, ti) to eqs

▶ Reduce size (removes two functions)

Logic and Mechanized Reasoning 23 / 23



Unification Termination (II)

Size: Total number of variables and functions in (σsi, σti)
with (si, ti) ∈ eqs with σ being the fixpoint of env

Steps in the function:
▶ If x 7→ s in env replace (x, t) by (s, t)

▶ Same size, but limited as env is cycle-free
▶ If (x, t) is trivial, skip it and continue

▶ Reduces eqs
▶ Otherwise add (x 7→ t)

▶ Only increasing step, but limited
▶ Front pair (t, x), replace by (x, t)

▶ Cannot be repeated twice
▶ Front pair (s, t), add the pairs (si, ti) to eqs

▶ Reduce size (removes two functions)

Logic and Mechanized Reasoning 23 / 23



Unification Termination (II)

Size: Total number of variables and functions in (σsi, σti)
with (si, ti) ∈ eqs with σ being the fixpoint of env

Steps in the function:
▶ If x 7→ s in env replace (x, t) by (s, t)

▶ Same size, but limited as env is cycle-free
▶ If (x, t) is trivial, skip it and continue

▶ Reduces eqs
▶ Otherwise add (x 7→ t)

▶ Only increasing step, but limited
▶ Front pair (t, x), replace by (x, t)

▶ Cannot be repeated twice
▶ Front pair (s, t), add the pairs (si, ti) to eqs

▶ Reduce size (removes two functions)

Logic and Mechanized Reasoning 23 / 23



Unification Termination (II)

Size: Total number of variables and functions in (σsi, σti)
with (si, ti) ∈ eqs with σ being the fixpoint of env

Steps in the function:
▶ If x 7→ s in env replace (x, t) by (s, t)

▶ Same size, but limited as env is cycle-free
▶ If (x, t) is trivial, skip it and continue

▶ Reduces eqs
▶ Otherwise add (x 7→ t)

▶ Only increasing step, but limited
▶ Front pair (t, x), replace by (x, t)

▶ Cannot be repeated twice
▶ Front pair (s, t), add the pairs (si, ti) to eqs

▶ Reduce size (removes two functions)

Logic and Mechanized Reasoning 23 / 23



Unification Termination (II)

Size: Total number of variables and functions in (σsi, σti)
with (si, ti) ∈ eqs with σ being the fixpoint of env

Steps in the function:
▶ If x 7→ s in env replace (x, t) by (s, t)

▶ Same size, but limited as env is cycle-free
▶ If (x, t) is trivial, skip it and continue

▶ Reduces eqs
▶ Otherwise add (x 7→ t)

▶ Only increasing step, but limited
▶ Front pair (t, x), replace by (x, t)

▶ Cannot be repeated twice
▶ Front pair (s, t), add the pairs (si, ti) to eqs

▶ Reduce size (removes two functions)

Logic and Mechanized Reasoning 23 / 23


	Introduction
	Generality of Unifiers
	Unification Function
	Termination

