
Automated Reasoning and Satisfiability

Assignment 1

Marijn Heule and Ruben Martins

The homework is due at 6pm on Tuesday, September 22, 2020. Please email
your answers to mheule@cs and rubenm@cs with subject “Homework Assign-
ment 1”. The questions below are mostly encoding questions. No external tools
are not allowed to help answering question 1.

We prefer answers that consist of a generator that produces the requested
DIMCAS file in a common programming language, such as Python or C(++).
Encoding tools, such as PySAT, are allowed for questions 2 and 3. Alternatively,
you can submit the encoding answers as a LATEXdocument. However, questions
1(d), 2 (b), 2(c), 3(b), and 3(c) can only be solved using a generated DIMACS
file.

The maximum number of regular points for this assignment is 50: the 30
points of question 1 + either 20 points of question 2 or 20 points of question 3
(a) and (b). Additionally, 10 bonus points can be earned in question 3 (c).

Question 1 (no encoding tools allowed)

(a) [10 points] Given the Boolean variables x1, . . . , x5, construct two different
encodings in conjunctive normal form (CNF) that express that at most two of
them can be true: x1+. . .+x5 ≤ 2. The first encoding can only use the variables
x1, . . . , x5, while the second encoding must also use auxiliary variables.

(b) [10 points] Let us refer to the above encodings as AtMostTwoA (w/o
auxiliary variables) and AtMostTwoB (with auxiliary variables). Encode into
CNF y1 ↔ AtMostTwoA(x1, . . . , x5) and y2 ↔ AtMostTwoB(x1, . . . , x5)
using the Tseitin transformation.

(c) [5 points] Encode whether there exists an assignment to x1, . . . , x5 that
falsifies y1 and satisfies y2 by combining y1 ↔ AtMostTwoA(x1, . . . , x5) and
y2 ↔ AtMostTwoB(x1, . . . , x5).

(d) [5 points] Solve the resulting formula using a SAT solver and show the
output of the solver. (Hint: the formula should be unsatisfiable, so no local
search solver can be used.)

1



Question 2 (answer this question or question 3)

(a) [10 points] Consider a n×m grid of squares and all possible rectangles
within the grid whose length and width are at least 2. Encode whether there
exists a coloring of the grid using three colors so that no such rectangle has
the same color for its four corners. (Hint: The encoding requires two types of
constraints. First, each square needs to have at least one color. Second, if four
squares form the corners of a rectangle, then they cannot have the same color.)

0 0 1 1 2 2 0 1 2

2 0 0 1 1 2 2 0 1

1 2 0 0 1 1 2 2 0

0 1 2 0 0 1 1 2 2

2 0 1 2 0 0 1 1 2

2 2 0 1 2 0 0 1 1

1 2 2 0 1 2 0 0 1

1 1 2 2 0 1 2 0 0

0 1 1 2 2 0 1 2 0

(b) [5 points] Solve the encoding for a 10× 10 grid using a SAT solver and
decode the solution into a valid coloring. Show the output of the SAT solver
and a valid 3-coloring similar to the one above of the 9× 9 grid.

(c) [5 points] Solve the encoding for a 9 × 12 grid using a SAT solver and
decode the solution into a valid coloring. Show the output of the SAT solver
and a valid 3-coloring similar to the one above of the 9× 9 grid.

Question 3 (answer this question or question 2)

An almost square is a n × (n + 1) rectangle. One can cover the almost square
4×5 using the smallest three almost squares: 1×2, 2×3, and 3×4. A solution
is shown below.

1 1 3 3 3

2 2 3 3 3

2 2 3 3 3

2 2 3 3 3

(a) [10 points] Encode whether the smallest k almost squares can cover an
almost square. A satisfying assignment of the encoding should represent a
covering. In case the smallest k almost squares don’t add up to an almost
square, the encoding should simply print a formula with only the empty clause.

2



(b) [10 points] Solve the encoding for the smallest 8 almost squares, which
can cover the almost square 15× 16, and decode the solution into a valid cover.
Show the output of the SAT solver and valid cover similar to the one above of
the 4× 5 grid.

(c) [Bonus: 10 points] Construct a compact encoding for the smallest 20
almost squares, which can cover the almost square 55× 56. Auxiliary variables
are useful to reduce the size of the encoded formula. Bonus points are awarded
for reasonably small encodings: 2 points for less than 3 million clauses; 4 points
for less than 2 million clauses; 6 points for less than a million clauses; and
8 points for less than half a million clauses. All 10 points are awarded for
any encoding for which you can show that a SAT solver can find a satisfying
assignment. Warning: this problem is challenging.

3


