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Abstract

The effectiveness of satisfiability solvers strongly depends on
the quality of the encoding of a given problem into conjunc-
tive normal form. Cardinality constraints are prevalent in nu-
merous problems, prompting the development and study of
various types of encoding. We present a novel approach to
optimizing cardinality constraint encodings by exploring the
impact of literal orderings within the constraints. By strategi-
cally placing related literals nearby each other, the encoding
generates auxiliary variables in a hierarchical structure, en-
abling the solver to reason more abstractly about groups of
related literals. Unlike conventional metrics such as formula
size or propagation strength, our method leverages structural
properties of the formula to redefine the roles of auxiliary
variables to enhance the solver’s learning capabilities. The
experimental evaluation on benchmarks from the maximum
satisfiability competition demonstrates that literal orderings
can be more influential than the choice of the encoding type.
Our literal ordering technique improves solver performance
across various encoding techniques, underscoring the robust-
ness of our approach.

Code — https://github.com/jreeves3/LiteralSorting

Introduction
Over the past two decades, Boolean satisfiability (SAT)
solving, in particular conflict-driven clause learning
(CDCL) (Marques-Silva, Lynce, and Malik 2021), has
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been applied to problems across many domains including
planning (Rintanen, Heljanko, and Niemelä 2006), quantum
circuit synthesis (Yang et al. 2024), cryptography (Soos,
Nohl, and Castelluccia 2009), hardware (Biere et al. 1999)
and software verification (Kroening and Tautschnig 2014),
and combinatorial mathematics (Heule 2018). The effec-
tiveness of CDCL solvers on such a wide-ranging set of
problems is surprising, especially given that these problems
must all be reduced to the same simple input format,
conjunctive normal form (CNF), erasing all high-level,
problem-specific information.

Encoding a problem into CNF requires the introduction of
auxiliary variables, that is, new variables introduced into the
formula that abstract information, to prevent an exponential
blow-up in size. Auxiliary variables do much more than keep
the formula small: They represent abstractions over the orig-
inal problem variables that can be leveraged during clause
learning to help a solver find short proofs.

Thus, good encodings, with the right abstractions, are cru-
cial to the performance of modern CDCL solvers. Previ-
ous work on developing new types of encodings for vari-
ous high-level constraints, such as all-different (Gent and
Nightingale 2004), cardinality (Marques-Silva and Lynce
2007), and XOR constraints (Bard, Courtois, and Jefferson.
2007), has focused on optimizing structural features, includ-
ing the size of the encoding, i.e., the number of clauses and
auxiliary variables introduced, and their propagation power.

In this paper, we shift the focus from optimizing structural
features of a specific encoding towards finding the right lit-
eral ordering for any encoding. We sort together related lit-
erals within cardinality constraints so that the auxiliary vari-
ables in the encoding summarize the related groups. We find
that improving the meaning of auxiliary variables is often
more important than choosing the best encoding type.

Cardinality constraints are one of the most important
high-level constraints in SAT, appearing frequently (Reeves,
Heule, and Bryant 2024), often as resource bounds for op-
timization problems. For example, the cardinality constraint
x1+x2+ · · ·+xn ≤ k is satisfied if at most k of the literals



are satisfied, where x1, x2 . . . , xn are called the data literals.
Due to their prevalence, cardinality constraints have been the
subject of encoding research for decades. The most common
types of encodings, totalizer (Bailleux and Boufkhad 2003;
Ogawa et al. 2013; Morgado, Ignatiev, and Marques-Silva
2015), sorting network (Batcher 1968; Eén and Sörensson
2006), cardinality network (Ası́n et al. 2009; Ası́n et al.
2011; Abı́o et al. 2013; Karpinski and Piotrów 2019), and
sequential counter (Sinz 2005) present various forms of ab-
straction, breaking the cardinality constraint into subprob-
lems via trees, networks, or grids, and are often compared
by the encoding size and performance (Nguyen et al. 2021;
Martins, Manquinho, and Lynce 2011; Karpinski and Pi-
otrów 2019). For each of the listed types of encodings, the
order of data literals will impact the meaning of auxiliary
variables within the encoding.

Example 1 Consider the following formula with one cardi-
nality constraint that has not been encoded yet:

(x1 + x2 + · · ·+ x100 ≤ 2) ∧
(x1 ∨ x3 ∨ · · · ∨ x99) ∧ (x2 ∨ x4 ∨ · · · ∨ x100) ∧ F

(a)

o1, o2, o3=0

l1, l2, l3=0 r1, r2, r3=0

x1, x2, ..., x50 x51, x52, ..., x100

(b)

o1=o2=1, o3=0

l1=1, l2= l3=0 r1=1, r2=r3=0

x1, x3, ..., x99 x2, x4, ..., x100

Figure 1: Two ktotalizer encodings for the cardinality con-
straint in Example 1 with two literal orderings: x1 + x2 +
· · ·+ x100 ≤ 2 (left) and x1 + x3 + · · ·+ x99 + x2 + x4 +
· · · + x100 ≤ 2 (right). The auxiliary variables li, ri, oi are
counters for true input data literals, so l3, r3, o3 are set to
false to enforce the bound of at most two. Additional truth
values in (b) can be derived by probing.

In Figure 1 (b), a solver can learn the units l1 and r1
through failed literal probing (Freeman 1995): Assigning l1
to false would propagate all the input literals for the left sub-
tree to false, causing a conflict with the odd-literal clause.
Similarly, r1 can be learned. This propagates o1 and o2 to
true and then l2 and r2 to false, since the sum of the children
cannot exceed 2. In short, the auxiliary variables l1 and r1
allow the solver to reason about the entire set of data literals
in either subtree and cheaply derive units. In Figure 1 (a),
l1 and r1 summarize different sets of data literals preventing
reasoning about the clauses. Leaving the solver to reason
over the entire ktotalizer encoding with no units learned.

This example sheds light on the importance of a good
literal ordering, and more importantly, that such an order-
ing may be nonintuitive, for example, the ordering of even
integers then odd integers. We propose several automated
techniques that use the structure of a formula to sort liter-
als within a cardinality constraint, modifying the meaning

of auxiliary variables without changing the size of the en-
coding. In an experimental evaluation of benchmarks from
the maximum satisfiability evaluation (MaxSAT) (Järvisalo
et al. 2023), we find that literal sorting significantly im-
proves solver performance for all common encoding types
for cardinality constraints. Furthermore, we find that select-
ing the best ordering is often more important than selecting
the best encoding type to improve performance.

Background
Boolean Satisfiability We consider propositional formu-
las in conjunctive normal form (CNF). A CNF formula F is
a conjunction of clauses where each clause is a disjunction
of literals. A literal is either a variable x (positive literal) or
a negated variable x (negative literal). An assignment α is a
mapping from variables to truth values 1 (true) and 0 (false).
Assignment α satisfies a positive (negative) literal if α maps
var(x) to true (α maps var(x) to false, respectively), and
falsifies it if α maps var(x) to false (α maps var(x) to true,
respectively). An assignment satisfies a clause if the clause
contains a literal satisfied by the assignment, and satisfies a
formula if every clause in the formula is satisfied by the as-
signment. A formula is satisfiable if there exists a satisfying
assignment, and unsatisfiable otherwise.

A unit is a clause containing a single literal. Unit propaga-
tion applies the following operation to fixpoint: take all units
α in a formula F and remove from F clauses containing a
literal in α and remove from clauses all literals negated in α.
In cases where unit propagation yields the empty clause (⊥)
we say it derived a conflict.

Cardinality Constraints A cardinality constraint con-
sists of a set of data literals, a comparison operator (>,≥
, <,≤), and a bound k, e.g., the at-most-k (AMK) cardinal-
ity constraint x1 + x2 + · · ·+ xn ≤ k is satisfied if at most
k of the literals are satisfied. Literal sorting is the process
of selecting the order in which data literals appear in a car-
dinality constraint, independent of the variable naming, i.e.,
the explicit integer naming of variables.

To keep the formula size small, cardinality constraints
are not encoded directly into CNF. Instead, an encoding
abstracts the cardinality constraint into layers of subprob-
lems, introducing auxiliary variables to summarize the in-
formation output from each layer. Encoding types are differ-
entiated by their size (clauses and auxiliary variables), the
structure of the abstractions, and their propagation power. A
clausal encoding of x1+x2+· · ·+xs ≤ k is consistent if as-
signing any k+1 literals to true always results in a conflict by
unit propagation, and arc-consistent (Gent 2002) if addition-
ally unit propagation assigns all unassigned literals to false if
exactly k literals are assigned to true. The most common car-
dinality constraint encodings are the totalizer (Bailleux and
Boufkhad 2003), sorting network (Batcher 1968), cardinal-
ity network (Ası́n et al. 2009), and sequential counter (Sinz
2005) and each is arc-consistent. We refer the reader to the
citations for specific properties.

Example 2 Consider the following cardinality constraint:

(x1 + x2 + x3 + x4 ≤ 2)



x1 x2 x3 x4

y1,1 y2,1 y3,1 y4,1 = o1

y2,2 y3,2 y4,2 = o2

y3,3 y4,3 = o3

y4,4 = o4

Figure 2: Sequential counter of Example 2.

The sequential counter, e.g., Figure 2, uses auxiliary vari-
ables yi,j(1 ≤ i ≤ n, 1 ≤ j ≤ n) in a grid to count the
true data literals, where yi,j is true if at least j of the first i
data literals are true. Literals in the last column, yn,j , cor-
respond to output literals oj stating that j data literals are
true. The bound k is enforced with the unit ok+1. The en-
coding is simplified by only using the first k + 1 rows, in
Figure 2 removing y4,4. Auxiliary variables interact locally
in the grid, e.g., yi,j → yi+1,j and (yi−1,j ∧ xi) → yi,j+1.
The sequential counter is asymmetrical, with auxiliary vari-
ables on the left-hand side summarizing information from
fewer data literals. For example, in Figure 2, a solver can
reason about the pair x1, x2 via the auxiliary variables y2,1
(at least one of the pair is true) and y2,2 (both are true), but
no two auxiliary variables allow similar reasoning about the
pair x3, x4.

o1, o2, o3, o4

l1, l2 r1, r2

x1 x2 x3 x4

Figure 3: Totalizer of Example 2.

The totalizer, e.g., Figure 3, uses a binary tree to incre-
mentally count the number of true data literals at each level.
Data literals form the leaves, and each node has auxiliary
variables representing the unary count from the sum of its
children counters. For example, in Figure 3, variable o3 is
true if either pairs l1, r2 or l2, r1 are true. The bound k is en-
forced by adding the unit ok+1. The modulo totalizer (mto-
talizer) (Ogawa et al. 2013) uses a quotient and remainder
at each node to reduce the number of auxiliary variables re-
quired to count the sum. The encoding can be simplified by
only encoding the count up to k + 1 at each node (kmtotal-
izer) (Morgado, Ignatiev, and Marques-Silva 2015). Unlike
the sequential counter, the totalizer splits the subproblems
symmetrically, so a solver can reason about x3 and x4 via
the auxiliary variables r1 (at least one of the pair is true) and
r2 (both are true). The further apart literals are in the order-
ing, the more levels of abstraction are present in their shared

counters. For example, x1 and x4 do not share a counter
until the root, two levels of abstraction away from the data
literals. Furthermore, a node’s counters can only be used to
reason about all of the data literals below it together, e.g., o1
means at least one of the four data literals is true. With the
right ordering, reasoning over a large set of data literals at
once can be advantageous, as seen in Example 1.

x4

x3

x2

x1

o4 = z3

o3 = z5

o2 = y5

o1 = y4y1

z1

y2

z2

y3

z3

y4

z4 y5

z5

Figure 4: Sorting network of Example 2.

The sorting network, e.g., Figure 4, and cardinality net-
work share a similar design, using networks that take the
data literals as input and, through a series of swaps, out-
put the count in sorted order. For each swap, two auxiliary
variables are introduced to represent the high (yj) and low
(zj) outputs. The swaps proceed in layers until the output
layer oi(1 ≤ i ≤ n), where oi is true if at least i of the
data literals are true. The bound is enforced by making ok+1

unit. While the sorting network sorts all of the data literals,
the cardinality network takes advantage of the bound of the
cardinality constraint by implementing simplified merging
networks that output at most k + 1 bits. Both networks are
implemented hierarchically by dividing the sorting into sub-
problems over subsets of inputs: sorting inputs in groups of
two, merging groups then sorting groups of four, merging
groups then sorting groups of eight, etc. These networks are
symmetrical, with the grouping of literals in the subnetworks
determined by their order.

Shuffling data literals in the figures above will not change
their size, but will change the meaning of auxiliary variables.
The CARDENC module in PySAT (Ignatiev, Morgado, and
Marques-Silva 2018) provides an API to encode cardinality
constraints into CNF using the specified encodings.

Literal Sorting Methods
In this section, we present several methods for sorting lit-
erals within a cardinality constraint. In order of complexity,
the methods are Natural, Random, Occur, Proximity, PAMO,
and Graph. Given a SAT problem defined as a set of clauses
and cardinality constraints, each method produces a single
ordering on all variables occurring in cardinality constraints,
and this ordering is used to sort the literals (interpreted as
variables in the ordering) within the cardinality constraints.
However, the approach of sorting literals will modify the
meaning of auxiliary variables without affecting the number
of variables or clauses in the encoding and can be used with
off-the-shelf encoding APIs. We apply each sorting method
to the cardinality constraint in Example 3.



Example 3 Consider the following formula
(x1 + x2 + x3 + x4 ≤ 2)∧

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x4 ∨ x5)

The Natural ordering is the simplest method, given by in-
creasing variable names, which are integer values identify-
ing each variable in the formula: x1+x2+x3+x4 ≤ 2. This
method typically reflects the underlying problem’s structure,
as most formula generators enumerate variable names in a
logical way. For example, a list of variables for a problem
over a grid would naturally be enumerated either row-wise
or column-wise. Note that this may be different from the or-
der in which literals appear in constraints.

Another simple ordering is Random, acquired by ran-
domly permuting the list of variables. This method disasso-
ciates the cardinality constraint from any of the problem’s
underlying structure. It is sometimes useful to randomly
shuffle several copies of a formula to solve a satisfiable in-
stance in parallel, since a solution might be found quickly
for one copy if the solver gets lucky.

Occurrence and Proximity Orderings
Next, we consider orderings that are derived from the clausal
structure of the input problem. The Occur method orders all
variables in decreasing order based on the number of clauses
a variable occurs in (taking the sum of the occurrences of
both positive and negative polarities): x2+x1+x4+x3 ≤ 2.
Counting the number of occurrences is inexpensive and can
be done with a single pass over the formula. The resulting
ordering will be unbalanced with respect to the formula as
groups of the most occurring variables will summarize large
parts of the formula, and groups of sparsely occurring vari-
ables will summarize small parts of the formula. While most
types of encoding are symmetric, the sequential counter pro-
vides more reasoning capabilities for the data literals earlier
in the order, motivating the choice to count occurrence in
decreasing order, e.g., most important to least important.

The Proximity method orders variables both by occurrence
and proximity. It can be extended by detecting at-most-one
(AMO) constraints from the clauses in the problem. We de-
tect AMO constraints with more than 5 variables using the
BDD-based Guess&Verify tool (Reeves, Heule, and Bryant
2024), which works on all commonly used types of AMO
encoding. The Proximity method performs a BFS-like search
over the clauses, using variable scores, initialized to 0, to
select the next variable. We do not consider polarity, so lit-
erals inside a clause or AMO constraint are interpreted as
variables. The Proximity algorithm is presented below:
1. Select the unprocessed variable v (i.e., not part of the or-

dering yet) with the highest score. If the highest score is
0, select the most occurring unprocessed variable.

2. Append v to the ordering.
3. If AMO detection is enabled, for each AMO constraint

K that contains v, increment the scores of unprocessed
variables occurring in K by len(K)2, where the length of
an AMO constraint is the number of variables it contains.

4. For each clause C that contains v, increment the scores
of unprocessed variables occurring in C by 1/len(C) if
len(C) ≥ 3 or len(C)2 = 4 for a binary clause.

5. If all variables in cardinality constraints are processed,
return the ordering; otherwise, return to step 1.

As long as the formula is fully connected, only the first
variable selected in step 1 will be picked based on the oc-
currence count and the rest will be selected based on score.
At a high level, variables occurring in short clauses together
will be ordered close together, with an even stronger bias
towards variables that occur in large AMO constraints to-
gether. So, the score function differentiates variables with
the small 1/len(C) increments, and orders variables with
the large len(C)2/len(K)2 increments. To make the selec-
tion deterministic in case two variables have the same score,
we prefer the variable that was seen earliest in the search.
The main idea behind this method is that grouping literals
that occur close together in the formula will localize the
meaning of auxiliary variables in the cardinality constraint
encoding, giving a solver the ability to reason about indepen-
dent sections of the formula. Further, if variables occur to-
gether in an AMO constraint grouping them together makes
it possible to reason about the entire AMO constraint, e.g.,
by learning unit auxiliary variables in the encoding stating
at-most-one of the grouped data literals is true, and the same
applies for binary clauses (an AMO constraint on the two
literals negated). Computing the Proximity can be costly due
to score updates. Given n variables, in the worst case, each
clause is traversed n times (once each iteration) and each
clause contains n literals, giving O(n3) complexity. The al-
gorithm exits once all variables in cardinality constraints
have been added to the ordering, saving time if the formula
has a large number of variables but only a small subset oc-
curring in cardinality constraints.

Example 4 Applying the Proximity algorithm without AMO
detection to the clauses in Example 3, the first variable se-
lected is x2 since it occurs the most. The clauses x2 occurs in
are then processed. For (x1 ∨ x2), x1’s score is incremented
by 4. For (x1∨x2), x1’s score is again incremented by 4. For
(x2 ∨x3 ∨x4), both x3 and x4 are incremented by 1/3. The
second variable selected is x1 with a score of 8. x1 only oc-
curs in clauses with the already processed variable x2. The
third variable selected is x3 (seen before x4) with a score of
1/3 and finally x4, which yields: x2 + x1 + x3 + x4 ≤ 2.

Graph-based Ordering
Finally, we consider orderings extracted from graphs
constructed from the literals and clauses of the prob-
lem (Ansótegui, Giráldez-Cru, and Levy 2012). The Vari-
able Incidence Graph is an undirected, unweighted graph
G = (V,E), where V denotes the set of nodes representing
each variable of the problem, and E denotes the set of edges.
Each edge (i, j) connects two nodes if the corresponding
variables, regardless of their polarity, share a clause.

We use the Louvain Community Detection algorithm
(Traag, Waltman, and Van Eck 2019). Each node is placed
in its own set, and then nodes are moved to other sets if the
move increases the modularity. Next, sets are lifted to nodes
and the algorithm is repeated until some threshold is met.
The order nodes are processed affects the resulting commu-
nities, so they are shuffled using a random seed at the start of



each execution. To identify the most promising community
structures we use up to 50 executions, with a 300 second
timeout enforced after the first run.

From these multiple runs, we select the sets of commu-
nities that contain the highest number of communities. A
higher number of communities typically indicates a more
fine-grained partitioning of the graph, which might help cap-
ture intricate relationships between literals or clauses. We
believe that this detailed partitioning could potentially lead
to more effective variable orderings, as it allows for a more
targeted approach to handling different parts of the problem.
Furthermore, since the variables within each community are
ordered by their original naming, a higher number of com-
munities will also lessen the reliance on the original order-
ing. Among these sets of communities, we then choose the
one with the smallest deviation from the average community
size, aiming for a more balanced community structure. Fi-
nally, we determine the variable order by concatenating the
variables from all the communities, processing each com-
munity sequentially.

Example 5 Suppose the Louvain Community Detection al-
gorithm is executed three times, yielding the following sets
of communities:

S1 = {C1,1 = {x1, x3, x5}, C1,2 = {x2, x4}}
S2 = {C2,1 = {x1, x3, x5}, C2,2 = {x2}, C2,3 = {x4}}
S3 = {C3,1 = {x1, x3}, C3,2 = {x2, x5}, C3,3 = {x4}}
We would first select the second and third sets of com-

munities, as they contain the highest number of communi-
ties. Next, we would choose the third set, as the community
sizes show a smaller deviation from the average size. Lastly,
we concatenate the variables from all communities, yield-
ing: x1 + x3 + x2 + x4 ≤ 2.

Experimental Evaluation

We ran experiments on StarExec (Stump, Sutcliffe, and
Tinelli 2014). The specs can be found online (StarExec
2024). Each experiment had 32 GB of memory and an 1,800
second timeout. We present average PAR-2 scores: the aver-
age runtime with timeouts counted twice. A runtime is the
sum of literal sorting, clausal encoding, and solving.

The main literal sorting configurations are the follow-
ing: Natural, Random (from 5 random permutations we re-
ported the best (BestRandom) and worst (WorstRandom)
times for each formula), Occur, Proximity, and Graph (com-
puting communities up to 50 times with a 300 second time-
out). Proximity can be extended with the AMO detection
(PAMO) restricted by a 50 second timeout. Additionally, we
ran Natural for 100 seconds then restarted with PAMO if the
formula was unsolved (Natural+PAMO) and ran PAMO for
formulas with fewer than one million clauses and occurrence
otherwise (PAMO+Occur).

Given a problem represented as a set of clauses and car-
dinality constraints, the tool chain sorts literals in the car-
dinality constraints, encodes the cardinality constraints into
CNF using PySAT, then runs the CDCL SAT solver CaDi-
CaL (Biere et al. 2020) on the resulting CNF formula.
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Formula size (hard clauses)

T
im

e
(s
)

PAMO

Proximity

Natural

Occur

Graph

Figure 5: Preprocessing time that includes literal sorting and
clausal encoding.

MaxSAT Competition Benchmarks
Our evaluation uses MaxSAT benchmarks from the 2023
competition unweighted track (Järvisalo et al. 2023). Each
MaxSAT formula contains a set of hard clauses and soft
units. The goal is to find the optimum (minimum) num-
ber of soft units that must be falsified while satisfying all
hard clauses. MaxSAT problems can be converted to SAT
by combining the hard clauses with one, often large, car-
dinality constraint stating at most k soft units are falsified.
We can generate a satisfiable SAT problem by making the
cardinality constraint’s bound the optimum, and an unsatis-
fiable SAT problem by making the bound the optimum mi-
nus one. We consider problems with known optimums and
bounds greater than 1 and less than one minus the number of
soft units, ensuring that the resulting cardinality constraint is
not a clause. This gives 398 satisfiable and 398 unsatisfiable
SAT problems.

These benchmarks are a suitable choice for evaluating
cardinality constraint encodings. The cardinality constraints
are crucial and must be utilized in solver reasoning, as
they enforce nontrivial (optimal) bounds. This significance
allows us to compare the impact of different encodings
more accurately. In contrast, cardinality constraints in other
benchmarks may be less relevant to solving the problem, and
performance differences between encodings could be influ-
enced by other factors like branching heuristics, introduc-
ing noise into the comparison. Furthermore, the MaxSAT
Competition provides a diverse set of 30 benchmark fami-
lies, each with approximately 10 instances, highlighting the
robustness of our techniques.

Figure 5 shows the preprocessing times on different-sized
formulas. The Natural ordering is given by the variable
names, so the preprocessing time amounts to parsing and
encoding the problem into CNF. The parsing time scales



Table 1: MaxSAT 2023 instances solved on the generated
SAT problems with various literal sortings for the optimal
bound constraint: Natural (Nat), PAMO+Occur (P+O), Prox-
imity (Prox), Occur,and BestRandom (BRand)

Encoding Nat P+O Prox Occur BRand

kmtotalizer 635 670 655 588 561
mtotalizer 623 653 643 572 547
cardinality network 608 639 629 565 544
sorting network 602 645 631 561 532
sequential counter 597 617 611 563 539

Table 2: kmtotalizer with additional literal sorting methods.
Solved instances and Par2 scores are presented for satisfi-
able (SAT) and unsatisfiable (UNSAT) formulas. VBS is the
virtual best solver, i.e., a solver that picks the best literal
sorting method for each formula.

Ordering Solved Par2 (s)

SAT UNSAT SAT UNSAT

VBS 363 332 358 653
PAMO+Occur 353 317 492 799
Natural+PAMO 351 315 499 806
PAMO 347 312 560 857
Proximity 343 312 591 856
Graph 332 312 762 949
Natural 334 301 635 916
Occur 317 271 792 1189
BestRandom 313 248 818 1388
WorstRandom 284 244 1106 1434

linearly with the number of hard clauses, but the encod-
ing time depends on the size of the cardinality constraint,
as determined by the number of soft units and the opti-
mum. Random (not displayed) is nearly identical to Natu-
ral, with a negligible cost for generating a random permuta-
tion for literal sorting. Counting occurrences requires a sin-
gle pass over the formula, creating a slight slowdown be-
tween Occur and Natural. Proximity and Graph have larger
overheads. Proximity can take more than 100 seconds for for-
mulas over 100,000 clauses, and 1,000 seconds for formu-
las over 1,000,000 clauses. The difference between PAMO
and Proximity is more pronounced on smaller formulas when
AMO detection with a 50 timeout outweighs the cost of
Proximity. SAT solvers will forego preprocessing, execute
for some time, then run preprocessing as inprocessing, to
avoid the preprocessing overhead on quickly solved prob-
lems. This motivated the Natural+PAMO approach, but for
some large formulas not solved in 100 seconds the Proximity
computation after the restart may timeout. To address this,
PAMO+Occur uses the cheap Occur method for larger for-
mulas. For many large formulas, the Graph approach cannot
compute the community structure 50 times, instead exiting
at 300 seconds or more if a single execution of community
detection exceeds 300 seconds.

Table 1 shows the impact of literal sorting on the solv-
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Figure 6: The kmtotalizer encoding with all literal sorting
methods on all MaxSAT formulas. Runtime includes the pre-
processing and solving time.

ing time for the five encoding types. When considering the
Natural ordering, the kmtotalizer solves the most formulas;
however, when using the PAMO+Occur ordering the mtotal-
izer, cardinality network, and sorting network solve more in-
stances than the Natural kmtotalizer. In other words, choos-
ing the best encoding type, kmtotalizer, is less impactful
than choosing the best literal ordering, PAMO+Occur, with
the other encoding types. The Occur ordering does not per-
form as well as the Natural, so a cheap heuristic that ig-
nores the structure of the formula is not good enough to
match default performance. Furthermore, even when select-
ing the best runtime from five random permutations Ran-
dom performs the worst, suggesting a bad ordering cannot
be adequately compensated for by a good choice of encod-
ing type. The sequential counter not only performs the worst
with Natural, but has the smallest performance gain with
PAMO+Occur. The sequential counter’s asymmetry may be
stifling the impact of literal ordering.The sorting network
has the biggest increase from Natural to PAMO+Occur. The
intermediary auxiliary variables (outputs of swap gates)
have unclear meaning, but the hierarchical nature of the sort-
ing network allows the solver to reason over layers of ab-
stractions. Surprisingly, the sorting network overtakes the
cardinality network with PAMO+Occur, indicating that sim-
plifications in the cardinality network (fewer clauses and
fewer auxiliary variables) might limit a solver’s learning ca-
pabilities. This is not the case for the totalizer, with the sim-
plified kmtotalizer outperforming the mtotalizer.

Table 2 shows the fine-grained results for all literal sort-
ing methods when using the kmtotalizer encoding. The Par2
scores for PAMO+Occur show that a good ordering affects
both satisfiable and unsatisfiable formulas. The gap between



PAMO+Occur and the VBS implies that some problems re-
quire different orderings, and PAMO+Occur is not one-size-
fits-all. The Par2 includes preprocessing, so the overhead of
Proximity (see Table 5) is worth the cost to improve the solv-
ing time. On the other hand, the Graph approach solves more
instances than Natural but has a larger Par2 score due in large
part to the preprocessing time.

Five configurations in Figure 6 solve more instances than
Natural. Natural+PAMO is consistently better than Natural by
solving easy problems in the first 100 seconds with Natu-
ral and solving harder problems with PAMO. The other four
configurations have a preprocessing overhead for easier for-
mulas, with the Proximity configurations taking around 400
seconds and the Graph approach taking around 800 seconds
to meet Natural. Note, the Par2 scores for the Proximity ap-
proaches are still lower than Natural, so their slow start pays
off with many more instances solved. Occur performs closer
to the best Random than Natural, highlighting the need for
complex sorting methods like Proximity.

Clause Coverage
One possible explanation for the effectiveness of the Prox-
imity and Graph orderings is that they split the formula into
equally-sized sections such that introduced auxiliary vari-
ables have similar levels of meaning across the formula. To
quantify this, we introduce the notion of clause coverage. A
clause C is covered by a set of variables S if all of the vari-
ables in C are in S. We track the number of clauses covered
by the first i variables in the generated ordering.

We consider a formula from the extension enforcement
family (Niskanen, Wallner, and Järvisalo 2018). The Proxim-
ity and Graph methods consistently outperform Natural and
Occur on this family. In Figure 7, the clause coverage for
Proximity and Graph is more consistent than Natural and Oc-
cur, which both cover more clauses with the first half of their
ordering. The imbalance may inhibit the solver’s learning
capabilities, with auxiliary variables from the first half of the
encoding representing information that is too coarse-grained
(large parts of the formula) and auxiliary variables from the
second half representing information that is too fine-grained
(small parts of the formula).

Related Works
Many types of cardinality constraint encoding have been in-
troduced in the past two decades (Batcher 1968; Eén and
Sörensson 2006; Sinz 2005; Bailleux and Boufkhad 2003;
Ogawa et al. 2013; Morgado, Ignatiev, and Marques-Silva
2015; Ası́n et al. 2009; Ası́n et al. 2011; Abı́o et al. 2013;
Karpinski and Piotrów 2019; Jabbour, Sais, and Salhi 2013).
They are generally evaluated based on their size (num-
ber of clauses and auxiliary variables), propagation (arc-
consistency), and performance on different benchmark sets.
Most research focuses on reducing the size of an encod-
ing, as this tends to be more performant (Ası́n et al. 2011).
Some limited approaches have implemented lazy encodings
that introduce auxiliary variables during solving (Abı́o and
Stuckey 2012). For pseudo-Boolean constraints, ordering
the literals by coefficient can lead to smaller encodings (Eén
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Figure 7: Clause coverage for unsatisfiable extension-
enforcement-extension-enforcement-strict-com formula.
Solving times: Occur (timeout), Natural (timeout), Proximity
(9), and Graph (308).

and Sörensson 2006). However, this technique is directed at
reducing the size and cannot be used for cardinality con-
straints where all coefficients have value 1. In our work, we
do not change the size but instead focuses on shuffling liter-
als within the constraints to modify the meaning of auxiliary
variables and improve the effectiveness of clause learning.

The theoretic importance of auxiliary variables is well-
known, with small proofs existing for the pigeon-hole prob-
lem using new variables (Cook 1976). Recently, SAT pre-
processing tools have tried introducing auxiliary variables to
improve performance (Haberlandt, Green, and Heule 2023;
Reeves, Heule, and Bryant 2024), and their success moti-
vated our exploration into the impact of auxiliary variable
meanings within cardinality constraints.

Graph-based algorithms, especially community detec-
tion algorithms, have been used to understand the com-
munity structure of industrial SAT benchmarks (Ansótegui,
Giráldez-Cru, and Levy 2012), the relationship between
community structure and performance (Newsham et al.
2014), to explain the usefulness of different CDCL heuris-
tics (Ansótegui et al. 2015), and in MaxSAT to partition the
MaxSAT formula into subformulas (Martins, Manquinho,
and Lynce 2013; Neves et al. 2015). In this paper, we find an-
other use of graph representations to sort the literals in car-
dinality constraints and show that despite the performance
cost of running the community detection algorithm multiple
times, it can still lead to some improvements.

Conclusion
The surprising success of CDCL SAT solvers across many
problem domains is in large part due to the introduction
of auxiliary variables in clausal encodings, which allow the
solver to reason over abstractions. In this work, we proposed
several automated methods for sorting the literals within car-
dinality constraints, shuffling the literals within the clausal
encoding and, therefore, changing the meaning of auxil-
iary variables. Our Proximity methods significantly improved
solver performance on all encoding types we studied, and we
found that a good literal ordering was often more important
than a good choice of encoding type.
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