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Summary
Capturing the interaction between objects that have an extreme difference in
Young's modulus or geometrical scale is a highly challenging topic for numerical
simulation. One of the fundamental questions is how to build an accurate mul-
tiscale method with optimal computational efficiency. In this work, we develop
a material-point-spheropolygon discrete element method (MPM-SDEM). Our
approach fully couples the material point method (MPM) and the spheropoly-
gon discrete element method (SDEM) through the exchange of contact force
information. It combines the advantage of MPM for accurately simulating elasto-
plastic continuum materials and the high efficiency of DEM for calculating the
Newtonian dynamics of discrete near-rigid objects. The MPM-SDEM framework
is demonstrated with an explicit time integration scheme. Its accuracy and effi-
ciency are further analyzed against the analytical and experimental data. Results
demonstrate this method could accurately capture the contact force and momen-
tum exchange between materials while maintaining favorable computational
stability and efficiency. Our framework exhibits great potential in the analysis of
multi-scale, multi-physics phenomena.
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1 INTRODUCTION

The numerical simulation of the multibody system is crucial for understanding several key issues in geomechanics,
such as the mechanical properties of the complex granular matrix,1-3 the interaction between the debris flow and solid
structures.4-6 It could also benefit the physics-based simulation in computer graphics (CG) to generate photorealistic
visual effects for solid-fluid (or granular media) animation.7,8 These systems commonly consist of individual bodies with
disproportional sizes and various shapes. The fines-ballast granular structure typically exists at the railroad foundation,9
where the ratio between the volume of small (fines) and big particles (ballast) reaches a level of 1:10.5 Components in the
system could have distinctively different Young's modulus. For example, the crumb rubbers are artificially added to the
railroad or highway foundation for preventing the breakage of surrounding granite particles and further improving the
stability.10 It is also common in CG production to animate intricate multibody frictional contact between soft and rigid
objects. The numerical methods for these issues often require an accurate simulation for the deformation of the indi-
vidual bodies and contact forces among them. In other words, both the elastodynamic and the kinetic behaviors of each
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body need to be properly calculated. The finite-element method (FEM) is commonly applied, and proper treatment of the
spatial discretization is essential for each component of the system.11,12 However, the accuracy and stability of FEM suf-
fer from the potentially strong distortion of the meshes. Such a problem can be alleviated only by remeshing schemes,13

which, on the other hand, highly compromises the computational efficiency. The material point method (MPM) offers
an attractive alternative approach. It discretizes the computational domain with meshless particles and therefore avoids
the difficulties encountered during large mesh deformation or topology changes. Because the deformation history of the
material domain is stored and represented by material points, MPM utilizes a fixed Eulerian background grid that is not
distorted during the simulation. MPM and its variants have been successfully applied for the study of continuum granular
materials,14 crack propagation in snow,15 and computer animation.16

As a numerical method based on continuum mechanics, either FEM or MPM requires a spatial discretization for every
part of a multibody system. Even for many engineering applications where only the kinematic information of near-rigid
bodies is focused, the calculation of continuum partial differential equations (PDEs) still needs to be performed upon
them.11 The high stiffness of the material requires extremely small time-step intervals for the stability of the simulation,
while the convergence of iterative solvers in the implicit scheme is slow. Meanwhile, both methods use relatively com-
plicated ways to handle the collision and contact force.17-19 One of the inspiring ideas was proposed by Guilkey et al,20

which states each material should be described and evolves in its preferred reference frame. In our case, the computa-
tional efficiency could be largely improved if the near-rigid components are properly simplified so that only an accurate
description of kinetic information is provided. The discrete element method21 (DEM) has high efficiency for simulating
the Newtonian movements of rigid bodies. It treats near-rigid bodies, or particles, as perfectly rigid and defines an inter-
action zone that is coated outside each of them using neighbor detection algorithms. The contact forces are calculated
based on the depth, area, or volume of the intersections among particle zones. This reasonable simplification ignores
the deformation for the particles while accurately simulates the momentum and contact forces through contact laws. No
spatial discretization or mesh generation is involved.

The coupling between DEM and other numerical methods (FEM, MPM) potentially provides an optimized bal-
ance between computational time and accuracy. Several methods have been systematically developed. For example, the
DEM-FEM approach is conducted for hierarchical multiscale modeling of granular media and the interaction between
the tire tread and granular terrain.22 The DEM is coupled with the lattice Boltzmann method (LBM) and computational
fluid dynamics to study the interaction between the fluid and particulate system.23,24 The results of these simulations well
agree with experimental data and analytical solutions. But neither of these methods can be used to model the interaction
between the rigid body and granular materials that has elastic shear resistance such as powders and fines.

One of the recent milestones for the coupling of MPM and DEM was conducted by Liu et al.25 The authors modeled
a 2D sand pile collapsing and impacting three rectangular wooden blocks. The granular flow is simulated with MPM.
A shrunken-point DEM is used to calculate the movement of blocks. Nine material points are attached at the corners,
center of the edges, and the geometrical center of each block. The contact between DEM blocks and the MPM flow is
detected through the mutual background grid node. Contact forces are calculated at the mutual projection gird based on
the momentum information and applied to geometrical nodes on the DEM parts as body forces. The numerical results
show a reasonable agreement with the experimental data. This method could further help the damage analysis of build-
ings under the impact of debris flow. An MPM-DEM26 hybrid method also developed to exploits the dual strengths of
discrete and continuum treatments. However, this method is mainly focused on the improvement of the efficiency of DEM
for simulating the granular flow. Discrete elements and material points are replacing each other under certain criteria
rather than coexisting and interacting.

Liu et al's method25 unifies the coupling procedures under the computational frame of MPM. It inevitably inherits an
issue of MPM for handling the contacts, which is the strong dependency of the background grid system. First, the collision
handling in MPM is calculated based on the proportions of momentum that different objects mutually contribute to grids.
Contact detection and the calculation of force are fundamentally affected by the resolution and the structure of the grid
system. Second, the contact algorithm needs to separately calculate the momentum for each object. The simulation will
be computationally expensive if it involves a large number of discrete bodies. Meanwhile, the influence of shape is also
omitted by simplifying the DEM particles with few material points. For many cases, such simplification is non-trivial and
not rigorously discussed. The accuracy of the angular momentum of DEM particles is highly compromised since the forces
are only applied at the geometrical nodes. These problems limit the performance of the coupling method and diminish the
advantage of using DEM as a rigid body simulator. Therefore, we believe it is necessary to develop an advanced numerical
method that could mitigate these issues and provide a more general way for the coupling between DEM and MPM.
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In this article, we develop a different coupling method between the DEM and MPM. The rigid body is represented by
spheropolygon DEM (SDEM).27 It was developed for simulating the movement of irregular discrete particles. Comparing
with other DEM-based methods, the SDEM could efficiently handle the contact forces among irregular particles and
preserve the conservation of mechanical energy. Due to these merits, SDEM has been coupled with the boundary element
method for simulating subparticle stress and particle breakage.28 The interactions between the fluid and irregular rigid
bodies are also studied using the LBM-SDEM.29 In this work, the MPM is used for simulating the deformable part of the
multibody system. Two different constitutive models, linear elasticity and elastoplastic Drucker-Prager model, are used
to study the elastic-rigid and granular-rigid coupling, respectively. The contact between SDEM and MPM is detected with
the Euclidean distance instead of the existence of mutual projection grids. Coupling forces are directly calculated with
a well-established DEM contact model. For rigid particles, forces are applied at the exact contact position. In summary,
our method unifies the coupling procedure under the computational frame of DEM. It significantly reduces the coupling
dependency to the MPM background grid. The contact detection and force calculation only happen at the boundary of
the rigid particles, which are more efficient than that of the pure MPM. The influence of particle shape can be better
preserved and no longer needs to be simplified with material points.

This article is organized as follows. The computational methodology for MPM and SDEM is introduced in Sections 2
and 3, respectively. The coupling method is presented in Section 4. A serial of numerical tests is conducted in Sections 5
and 6. Results are rigorously discussed with analytical solutions and experimental data as verification and validations for
the MPM-SDEM. Potential applications of this method are provided in Section 7. General conclusions are presented in
Section 8.

2 MPM FOR ELASTIC AND GRANULAR MATERIAL

The MPM is a hybrid scheme utilizing both Lagrangian particles and Eulerian grids.30,31 It follows the governing equations
of the continuum mechanics and its discretization is derived from the Galerkin weak form of momentum conservation,
similar to the FEM. However, unlike the FEM, which discretizes the computational area into piecewise subdomains on
a mesh, the MPM uses the particlewise material regions to represent the continuum. Lagrangian variables such as mass,
momentum, and position are carried by the material points. The embedding relationship between Eulerian grids and
material points is commonly defined by the nodal shape functions. At each time step, Lagrangian variables carried by
material points need to be first transferred to the corresponding grid nodes. The equation of motion is solved at the grid
nodes, while volume integrals are approximated through particle quadrature, and the velocity is updated accordingly
and then interpolated back to material points for their advection and strain updates. Eulerian grids are restored to a
standard Cartesian configuration after each time step, and only the values and derivatives of the nodal shape functions
are constantly recalculated at the beginning of the next time step.

2.1 Governing equations and discretization for MPM

The Lagrangian kinematic description of a continuum body needs to satisfy a group of PDEs, including conservation of
mass, momentum, and energy. These PDEs are known as governing equations, which, combined with the material con-
stitutive model and boundary conditions, determine the behavior of the material. The conservation of mass is inherently
satisfied in MPM since the material points in this study are assigned with constant mass values. The conservation of
energy is guaranteed because the simulation assumes an isothermal setting that does not involve the exchange of heat.
Therefore, the dynamic state of the material can be obtained by solving the conservation of moment20,25,32:

𝜎ij,j + 𝜌bi = 𝜌üi, (1)

where 𝜌 is the density of the material; ui denotes the displacement, the dots are the notation for the order of time derivative;
𝜎ij is the Cauchy stress tensor, the subscript denotes the components and the deviator of the tensor; bi is the body force
term. The PDEs follow Einstein notation. Equation 1 can be solved in the domain Ω through its weak form:

∫Ω
u∗

i (𝜎ij,j + 𝜌bi − 𝜌üi)dΩ = 0, (2)
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F I G U R E 1 Discretization schemes for the material point
method [Color figure can be viewed at wileyonlinelibrary.com]

and boundary conditions:

t(x)|Γt = t0,u(x)|Γu = u0, (3)

where the computational domain is denoted asΩ; u* represents the virtual displacement which equals zero on the bound-
ary section Γu; the value of traction t̄i is known at the boundary Γt. Combining the boundary conditions, Equation 3 can
be further written as:

∫Ω
𝜌üiu∗

i dΩ + ∫Ω
𝜎ij,ju∗

i dΩ − ∫Ω
𝜌biu∗

i dΩ − ∫
𝜕Ω

tiu∗
i dΓ. (4)

As shown in Figure 1, the domain is discretized by the material points (red dots), here also called “Lagrangian
Points.” The information of deformation gradient, mass, and momentum is carried by these Lagrangian points. Eule-
rian background grid nodes (blue squares) are defined as background scratchpad. At each time step, the variables are
first interpolated to grid nodes using multidimensional shape functions. The information is then updated at grid nodes
and transferred back to the material points for the next time step. The perspective of the generalized interpolation MPM
(GIMP) is adopted for the discretization32,33 process of the governing equation (Equation 4). Each material point occupies
a partition Ωp in the entity Ω:

Vp = ∫Ωp∩Ω
𝜒p(x)dΩ, (5)

where V p is the initial volume and 𝜒p(x) is the characteristic function, the subscript p denotes the value on the material
point. The mass of the material mp can be written as:

mp = ∫Ωp∩Ω
𝜌p(x)𝜒p(x)dΩ, (6)

where 𝜌p =mp/V p is the density of the material. There are mainly two different forms of 𝜒p(x). One is using the total
discrete approach (DMPM):

𝜒p(x) = 𝛿(x − xp)Vp, (7)

where xp is the spatial coordinate of the material point and 𝛿 is the Dirac delta function. The mass only exits at the
discrete position over the entire computational domain. The other method is to use GIMP, where the form of 𝜒p(x) for
each material points to be a continuous function (constant, linear, or even a higher-order) over the Ωp. A given physical
variable k in the computational domain can be approximated by the value kp carried by the relevant material points and
their characteristic functions:

k(x) =
∑

p
kp𝜒p(x). (8)

http://wileyonlinelibrary.com
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Equation (4) can be converted from the continuous integration form into a summation of material points:∑
p ∫Ωp∩Ω

ṗip

Vp
𝜒pu∗

ipdΩ = −
∑

p ∫Ωp∩Ω
𝜎ijp𝜒pu∗

ip,jdΩ

+
∑

p ∫Ωp∩Ω

mp

Vp
𝜒pbipu∗

ipdΩ + ∫
𝜕Ω

tipu∗
ipdΓ. (9)

The behaviors of the continuous material are now defined by the physical variables carried by material points.
Equation 9 needs to be solved on the background grid nodes. The relation of virtual displacement between the grid node
and material points is written as:

u∗
p =

∑
I

NIp(xp)u∗
I , u∗

p,j =
∑

I
NIp,j(xp)u∗

I . (10)

The subscript I is the indexes that denote a value is on the grid node I. Substituting Equation 10 into Equation 9 to
eliminate the virtual displacement, the equation of motion can be rewritten as:

ṗI = f int
I + fext

I , xI ∉ Γu, (11)

where pI is the momentum for the grid node; f int
I + fext

I represent the internal and external force applied on the grid node,
respectively:

ṗiI =
∑

p
ṗipSIp (12)

f int
iI = −

∑
p
𝜎ijpSIp,jVp (13)

f ext
iI =

∑
p

mpbipSIp + ∫
𝜕Ω

tiNIpdΓ. (14)

The interpolation of variables between the material points and the grid nodes is calculated using the weighting
function SIp(x):

SIp(x) =
1

Vp ∫Ωp∩Ω
𝜒p(x)NIp(x)dΩ (15)

SIp,j(xp) =
1

Vp ∫Ωp∩Ω
𝜒p(x)NIp,j(x)dΩ. (16)

This interpolation is often referred to as P-G (particle to grid) transferring and the reverse process is G-P (grid to
particle) transferring. The specific forms of SIp(x) depend on the choice of interpolation method (DMPM or GIMP) and
shape function, which is provided in the Appendix. The interpolation function in GIMP has C1 continuity even if the
shape function is only a linear function with C0 continuity. Generally, GIMP is more stable for spatial discretization,
and it produces less computational noises when the material points moving from one grid cell to another (cell-crossing
noise). However, DMPM with quadratic or cubic B-spline weighting functions also has its advantage for being able to
use a noise-free and angular momentum conserving transferring scheme called affine-particle-in-cell method (APIC).34

Note that as pointed out by Gao et al,7 that GIMP and quadratic-B-Spline-DMPM are equivalent when particle domain is
chosen to be a box with its width equal to the grid cell spacing.

2.2 Time integration scheme

The computational domain is time-variant, which indicates that Equation 11 needs to be fulfilled at each time step. The
central difference method is applied for the update of the grids' momentum:

pn+1∕2
I = pn−1∕2

I + fn
I Δt, (17)
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where superscript n denotes the sequence of the time step and Δt is a constant interval of the time increment at each step;
f n

I equals fext
I +f int

I is the total nodal force. In this article, we use the update-stress-first (USF)35 format for the optimal
efficiency and the conservation of energy of the simulation. The USF format general has a minimal dissipation for energy
but less stable than the update-stress-last (USL) format, especially for simulating the osculation with unresolved mode.35

It is a more suitable format for examining the energy conservation of the coupling method.
The algorithm to update the nodal and point variables is introduced in its computational sequences:

1. The nodal mass mI , momentum pI , and velocity vI are calculated through the interpolation of the corresponding
material points and their weighting function SIp:

mn
I =

∑
p

mpSn
Ip, (18)

pn−1∕2
I =

∑
p

mpvn−1∕2
p Sn

Ip, (19)

vn−1∕2
I = pn−1∕2

I ∕mn
I . (20)

2. The material point's strain 𝜀̇n−1∕2
ijp and spin Ψ̇n−1∕2

ijp rate tensors are obtained with the nodal velocities24:

𝜀̇
n−1∕2
ijp = 1

2
∑

I
(Sn

Ip,jv
n−1∕2
iI + Sn

Ip,iv
n−1∕2
jI ), (21)

𝜓̇
n−1∕2
ijp = 1

2
∑

I
(Sn

Ip,jv
n−1∕2
iI − Sn

Ip,iv
n−1∕2
jI ), (22)

where the value of SIp is decided according to the method of spatial discretization and the relative position between the
material point and grid node. The strain and stress are then calculated as:

𝜀n
ijp = 𝜀n−1

ijp + 𝜀̇n−1∕2
ijp Δt, (23)

𝜎n
ijp = 𝜎n−1

ijp + 𝜎̇n−1∕2
ijp Δt. (24)

The stress rate is determined by:

𝜎̇ij =
𝛻
𝜎ij + 𝜎ik𝜓jk + 𝜎jk𝜓ik,

𝛻
𝜎ij = Cijkl𝜀̇kl, (25)

where Jaumann stress rate
𝛻
𝜎ij for linear elasticity is adopted to eliminate the influence of pure rotation to the Cauchy

stress tensor. The specific form of stress rate 𝜎̇ij depends on the constitutive model.

3. The internal and external nodal forces are updated using the material point's stress, the body force term bp, and the
boundary traction tp according to Equations 12 and 13

4. Equation 11 is solved at the grid nodes with the nodal forces and momentum to further update the velocity and posi-
tion of material points. There are three methods for this specific G-P transferring procedure, particle-in-cell format
(PIC),30,36 fluid-implicit-particle format (FLIP),37 and the hybrid format. The PIC transferring update the material's
velocity directly using the interpolation functions and corresponding grid values:

vn+1∕2
p =

∑
I

pn+1∕2
I Sn

Ip∕mn
I . (26)

This transferring method has a strong numerical dissipation; the angular momentum and kinetic energy of mate-
rial points decrease rapidly with the progress of iterations. This problem makes the PIC format unsuitable for simulating
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dynamic problems such as the landslide. Because the kinetic energy of granular flows is not accurate enough and hence
makes the results unreliable. However, this dissipation effect is not entirely undesirable. It efficiently decreases the vibra-
tion in quasistatic simulations, which generated by the initial configuration of the objects, and helps the system to reach
an equilibrium. The FLIP updates the velocity using the nodal force:

vn+1∕2
p = vn−1∕2

p + Δt
∑

I
fn

I Sn
Ip∕mn

I . (27)

It greatly improves the conservation of angular momentum. But the exact conservation can only be achieved by using
the “full” mass matrix instead of lumped mass matrix, which is necessary for the numerical stability but impractical due to
its potential singularity.34,38 Meanwhile, FLIP format generates the so-called “ringing instability” because of noisy velocity
modes in the null space of the transfer operator. It causes the numerical instability when simulating the granular material
with strong dynamic behaviors. A better way to preserve the advantages of PIC and FLIP is to use a hybrid transferring
format39:

vn+1∕2
p = 𝛼

∑
I

pn+1∕2
I Sn

Ip∕mn
I + (1 − 𝛼)

(
vn−1∕2

p + Δt
∑

I
fn

I Sn
Ip∕mn

I

)
, (28)

where 𝛼 is the coefficient that ranges between 0 and 1; 𝛼 = 0 is the pure FLIP format and 𝛼 = 0 gives the pure PIC format.
The value of 𝛼 is proportional to the magnitude of the dissipation effect and can be used for controlling the damping for
the quasi-static simulation. The instability of the FLIP format is also alleviated. However, the hybrid method still has an
issue. No rigorous analysis to define the quantitative relation between the dissipation and the value of 𝛼. The behavior
of the material is also sensitive to the variation of 𝛼 and the numerical damping highly depends on the time step size.
Especially for the granular material, the specific value of the coefficient is rather an empirical setting.

Such a problem can be properly solved by using APIC format or extended-particle-in-cell format (XPIC).40 We adopt
APIC in this article. This innovative method is developed by Jiang and Schroeder.34 It represents particle velocities as
locally affine, which allows APIC to conserve linear and angular momentum across transfers. This transferring format
effectively reduces the numerical dissipation; it also does not experience the velocity noise and instability in FLIP. It has
been applied for the simulation of both the granular and hyperelastic material and exhibits superior performance. The
APIC still uses the PIC format for the velocity and position update of material points at step (d). However, APIC applies
a different scheme for the P-G transferring procedure at step (a), which is written as34,41:

Dn
p =

∑
I

Nn
Ip(x

n
I − xn

p)(xn
I − xn

p)T =

{
L3I∕3 cubic
L2I∕4 quadratic

, (29)

pn−1∕2
I =

∑
p

mpNn
Ip(v

n−1∕2
p + Bn

p(Dn
p)−1(xn

I − xn
p)), (30)

where L is the grid spacing and I is the unit matrix; the additional matrix Dp serves as the inertia matrix for affine motion
and Bp contains the angular momentum information and updates as:

Bn+1∕2
p =

∑
I

SIpvn+1∕2
I (xn

I − xn
p)T . (31)

In this article, we use the GIMP with the hybrid format for simulating the linear elastic material and DMPM with
APIC format for the granular material. The quadratic kernel is adopted as the shape function.

2.3 Constitutive models

The physical properties of granular material have been a difficulty for the numerical simulation. Large deformation may
happen due to the elastoplastic behavior of granular material, which causes trouble for the mesh-based method. The
MPM, therefore, has a unique advantage for simulating both quasistatic deformation and granular flow without the
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F I G U R E 2 Yield criteria of Drucker-Prager (D-P) model that includes the
tensile stress cut-off24

restriction of mesh. The Drucker-Prager plasticity model (D-P) is employed to simulate the granular material. This model
has been widely applied for the engineering application and MPM sand simulation. Although the Jaumann stress rate
introduced earlier may not be exceedingly accurate for moderate deformation with deviatoric strains that more than 10%
(eg, granular flow),42 it can still provide reasonable results and we choose to use it for a direct comparison to the results
in the existing literature.25

The yield criteria in D-P model are shown in Figure 2 and defined as:

f s = 𝜏 + q𝜙 − k𝜙, (31)

f t = 𝜎m − 𝜎t, (32)

where f is the yielding surface, the superscripts s and t denote the shear and tensile yielding behavior respectively; 𝜎t is
the tensile strength; 𝜏 is the equivalent shear stress and 𝜎m is the spherical stress:

𝜏 =
√

J2, J2 = sijsij∕2, (33)

𝜎m = I1∕3, I1 = 𝜎kk, (34)

where J2 is the second invariant of the deviatoric stress tensor and sij is the deviatoric stress components; I1 denotes the
first invariant of the stress tensor. The coefficients q𝜙 and k𝜙 are the frictional coefficient and yield stress for shearing
behavior, respectively. They are calculated based on the friction angle 𝜙 and the cohesion term c:

q𝜙 = 3 tan𝜙√
9 + 12 tan2𝜙

, k𝜙 = 3c√
9 + 12 tan2𝜙

. (35)

MPM uses the return mapping24 method to detect whether the yielding conditions are fulfilled at each time step. The
isotropic linear elasticity is used for solid material:

Cijkl = K𝛿ij𝛿kl + G
(
𝛿ik𝛿jl + 𝛿il𝛿jk −

1
3
𝛿ij𝛿kl

)
, (36)

where C is the constitutive tensor; K and G are the bulk and shear module, respectively.

3 SPHEROPOLYGON DISCRETE ELEMENT METHOD

The SDEM27 is selected as the DEM part of the hybrid algorithm due to its unique advantages. The geometrical irregularity
of a particle is properly represented as a Minkowski sum of a polygon with a disk, and the multiple contacts between
irregular particles are calculated based on distances between vertices and edges. These features make it computationally
efficient.25 The contact information between MPM and the SDEM can be easily applied to the correct position of SDEM
instead of its geometrical modes. The point contact relation is also more realistic for contacts between rigid bodies and
granular materials.
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F I G U R E 3 Spheropolygon element obtained by sweeping a disk around a polygon [Color
figure can be viewed at wileyonlinelibrary.com]

3.1 SDEM algorithm

A spheropolygon is the Minkowski sum of a polygon to represent the irregular shape of a near-rigid object and a disk with
radius a, which defines an elastic area to calculate the contact forces that generated among particles. Mathematically the
Minkowski sum of two sets of points P and Q of a vector space is given by27:

P + Q = {x + y| x ∈ P, y ∈ Q}. (37)

The geometrical interpretation of this operation is equivalent to the sweeping of a disk around the profile of the poly-
gon while maintaining its original orientation. For example, the DEM particle with a shape of the hexagram in Figure 3
is properly approximated by a spheropolygon element with a few boundary lines and a disk sweeping its profile. The hex-
agram defines the element shape, and the disk is used for contact force calculation. SDEM has been proved as a more
effective approach than using a cluster of small particles to approach this shape, especially when the particle shape is
more irregular or complicated.

The contact force of the spheropolygon is defined through a vertex-edge contact relationship. Let us consider two
spheropolygons SPi and SPj with their polygons Pi and Pj and the radii of the disks ai and aj. Each polygon is defined by
its own set of vertices {V } and edges {E}. The overlapping length 𝜉 between each vertex-edge pair (V, E) is written as:

𝜉(V ,E) = ⟨ai + aj − d(V ,E)⟩, (38)

where d(V , E) is the Euclidean distance between the vertex V and the edge E. The brace at the right side of the equation
means the nonnegative limit of 𝜉. Therefore, the force vector F applied on particle i by particle j is expressed as:

Fij = −Fji =
∑
ViEj

F(Vi,Ej) +
∑
VjEi

F(Vj,Ei), (39)

and the torque 𝝉 ij of particle i is:

𝝉 ij =
∑
ViEj

(p(Vi,Ej) − ci) × F(Vi,Ej) +
∑
VjEi

(p(Vj,Ei) − ci) × F(Vj,Ei), (40)

where ci is the center of mass of particle i and p is the point of contact, which is defined as the middle point of the overlap
area between a vertex and an edge:

p(V ,E) = X +
(

ai −
1
2
𝛿(V ,E)

) X − Y‖Y − X‖ , (41)

where X is the position of the vertex V , and Y is its closest point on the edge E. The movement of the center of mass ri
and the orientation 𝜑i of the particle are governed by the equations of motion:

mic̈ =
∑

j
Fij, Ii𝝋̈ =

∑
j
𝝉 ij, (42)

http://wileyonlinelibrary.com
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where mi and Ii are the mass and moment of inertia of the particle, respectively; the linear elastic model is used throughout
this article. The force F can be written as:

F = kn𝛿nN + kt𝛿tT, (43)

where kn and kt are the normal and tangential stiffness, respectively; N and T are the normal and tangential unit vectors
that are measured at the edge of the contact; 𝛿n denotes the length of the overlap; 𝛿t is the tangential relative displacement
between two particles, which accounts for frictional forces. It is limited by the condition kt𝛿t ≤𝜇kn𝛿n, where 𝜇 is the
friction coefficient.

4 COUPLING OF MPM AND SDEM

MPM and SDEM are fully coupled through the contact force information. The crucial part of the coupling is how to
properly detect and calculate the contact force between the material points and SDEM particles. Liu et al25 proposed a
method that attaches material points to the DEM particles; the square particles are represented with nine materials at its
corners, edges' middle point, and center of mass. Both the contact detection and contact forces are then calculated using
a pure MPM contact algorithm developed by Bardenhangen and Brackbill.14 This coupling method unifies the contact
handling under a pure MPM scheme. The fundamental reason for these problems rises from the simplification of the
contact and the dependency of the grid system. The contact force cannot be accurately calculated if only a small amount
of material points is involved. However, the advantage of efficiency largely decreases if the material points are densely
attached to the DEM particle.

4.1 Contact handling between MPM and SDEM

In this article, we proposed a different approach for the computation of contact handling, which unifies the contact
detect and force calculation under the scheme of SDEM. The basic idea of this algorithm can be summarized as follows.
The Verlet distance, which is the cut-off distance for the potential contact between two discrete elements, is applied to
examine the contact between material points and SDEM particles. If a material point is within the Verlet distance of a
spheropolygon particle it is treated as a small SDEM disk particle with a certain radius for contact detection. If the material
points and spheropolygon particles are in contact, the contact force between the material point and the spheropolygon is
calculated based on DEM contact force models. The calculated force is applied to the material points in a form of extra
boundary force term.

As indicated in Figure 4A, material points within the Verlet distance V d are transformed into a circular discrete ele-
ment with its position xp as the center of mass. Here we name it identified material points (IMP). The interactions among
the IMPs are still calculated under the MPM scheme despite the intersections of their radius that may happen after the
transformation. Figure 5A shows that the magnitude of the contact force fSDEM between an IMP and an SDEM particle
can be then calculated based on the modification of Equation (39):

𝜉(xp,E) = ⟨ai + rp − d(xp,E)⟩, (44)

where rp is the contact radius assigned to an IMP; ai is the sphero-radius of the SDEM particle; d denotes the Euclidean
distance between the points xp and the edge E on the SDEM particle. The optimal value of rp is still an open question.
Here we provide an estimated interval for rp:

lp
√

1∕n < rp < lp, (45)

where lp is the length of the background grid and n is the average number of the material point in each grid. The value of
rp must be smaller than the grid length to control the contact happens within or at the boundary of a cell. Meanwhile, it
should be larger than the influential length that a material point representing in the computational domain.

If an IMP is in contact with multiple SDEM particles, as shown in Figure 5B, the particle-spheropolygon forces are
summed together. The single contact of IMP is most likely to happen during the coupling since the radius assigned to the
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F I G U R E 4 The contact
handling between the
spheropolygon and material
points. A, Spheropolygon is
represented by the green zone
and material points by red points,
V d is the Verlet radius from the
center of mass o. B, Material
points in potential contact with
the spheropolygon are assigned
with a small radius (red dash
circles) [Color figure can be
viewed at
wileyonlinelibrary.com]

F I G U R E 5 The intersection and contact force
calculation between an identified material point (IMP) and
spheropolygon discrete element method (SDEM). A, The
calculation of the contact force between one IMP and SDEM
particle. B, The total forces exert on an IMP [Color figure can
be viewed at wileyonlinelibrary.com]

IMP is much smaller than the size of SDEM particles. But in extreme cases, such multiple contact relationship will not
affect the stability or the efficiency of the coupling.

The contact forces are applied at the corresponding material point as an external boundary force:

fcont
p =

∑
fSDEM

k , (46)

fcont
I =

∑
p

fcont
p SIp(xp), (47)

where the fSDEM is the coupling contact force; f cont
p and f cont

I are the external force on the IMPs and corresponding nodes,
respectively. Therefore, the nodal equation of motion (Equation 18) is further modified as:

ṗI = f int
I + fext

I + fcont
I . (48)

In this way, the influence of the contact force is taken into the calculation of MPM at step (c). And through this
equation, it could further its influence on the movement of material points in the whole computational area. For the
SDEM particle, the contact forces are applied at its center of mass. The total force and torque exerted on the particle in
Equations (39) and (40) are now modified as:

Fij =
∑
ViEj

F(Vi,Ej) +
∑
VjEi

F(Vj,Ei) +
∑

p
fSDEM(Vi, xp) +

∑
p

fSDEM(xp,Ei), (49)

http://wileyonlinelibrary.com
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𝝉 ij =
∑
ViEj

(p(Vi,Ej) − ci) × F(Vi,Ej) +
∑
VjEi

(p(Vj,Ei) − ci) × F(Vj,Ei)

+
∑

p
(p(Vi, xp) − ci) × fSDEM(Vi, xp) +

∑
p
(p(xp,Ei) − ci) × fSDEM(xp,Ei). (50)

These equations are equal to adding extra contact forces that are produced by small circular particles to the large
SDEM particle, so that the movement and rotation of the SDEM particles are also affected by the IMP that is in contact
with it.

Since the algorithm is using an explicit form, the critical time step Δtmin needs to be determined for the stability of
the coupling. This criterion42 can be written as:

Δtmin = min
⎧⎪⎨⎪⎩
𝜅1

lmin
cmax

2𝜋𝜅2

√
mmin

kn

, (51)

where the lmin is the minimum length of the background grid and cmax is the maximum acoustic velocity of the material
in MPM; mmin is the minimum mass of the SDEM particle. The coefficient 𝜅1 and 𝜅2 are used to further guarantee the
stability since the equation for critical time step is obtained based on the linear elasticity, which 𝜅1 = 0.8 and 𝜅2 = 0.1 are
commonly used.

The contact between material points and the SDEM particle can be fully coupled together through the contact
force. There are several advantages to using this scheme. Contact relations are detected with the Euclidian distance
between the center of mass of SDEM particle and the position of a material point. The contact list can be saved as
a data structure and reused for the next time step if the displacement of the particles and material points is small.
It is more efficient than the condition of a mutual grid node where the velocity field on each object is constantly
recalculated. Contact forces can be directly calculated with DEM contact models instead of using the grid momentum
as an indirect approach. Positions for applying contact forces are not restricted by the grid node or the geometrical
nodes of the rigid particles. Irregular shapes are considered, and the angular momentum of the rigid body is better
preserved.

4.2 Coupling method procedures

The coupling algorithm in a time step Δt can be summarized as follows:

1. SDEM: contact detection and force calculation

Update the contact list of SDEM particles based on the Verlet distance.
Update the contact list of SDEM particles and IMPs.
Update Vertices {V } for each particle.
Update the vertex-edge contact relations between particles within the contact list.
Calculate the contact force of SDEM particles and apply the gravity.
Calculate the fSDEM between SDEM particles and IMPs.

2. MPM: variables transfer between nodes and points

Calculate the nodal mass mI , momentum pI and vI .
Calculate the strain and spin rate 𝜺̇p, 𝜴̇p of material points.
Calculate the stress 𝝈p of material points.

3. Coupling: Update of material points

Calculate the nodal force f ext
I , f int

I , and coupling force f cont.
I .

Update the nodal momentum pI .
Update the position xp and velocity vp of material points.
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T A B L E 1 Parameters and material properties for the simulation of conservation of energy

SDEM parameters MPM (GIMP) parameters

kn Normal stiffness 6.0× 106 N/cm dg Grid interval 0.3 cm

kt Tangential stiffness 3.0 × 105 N/cm rp Coupling radius 0.1 cm

𝜇 Frictional coefficient 0.1 n Number of points 5000

Δt Time interval 1.0−4 s MPM material properties

V d Verlet distance 0.2 cm 𝜈 Poisson's ratio 0.278

ai Sphero radius 2.0 cm K Bulk modulus 5.0 × 102 / ×103 KPa

SDEM material properties G Shear modulus 3.7 × 102 / ×103 KPa

𝜌d Density 2.0 g/cm2 𝜌p Density 2.0 g/cm2

Abbreviations: GIMP, generalized interpolation material point; MPM, material point method; SDEM, spheropolygon discrete element method.

4. Coupling: Update of the SDEM particles

Apply the fSDEM to the SDEM particles.
Update the velocity, angular momentum.
Update the position of center of mass for each SDEM particles.

5 VERIFICATION

A series of tests is conducted in this section for the validation of MPM-SDEM method. They include three essen-
tial parts of the interaction between MPM and SDEM bodies: the conservation of energy, the contact force, and
the granular-solid interaction. The first two tests are simulated using linear elasticity as the material property of
the MPM; the last test is conducted with Drack-Prager model for the plastic deformation of granular material. The
conservation of energy is crucial for the stability of the coupling. Contact forces between the MPM and SDEM bod-
ies need to be correct since the contact handling method is unified under the DEM contact. It is also necessary
to examine the plastic behavior between the MPM and SDEM where the variation of contact relationships is far
stronger than that of solid cases. Results are rigorously compared and analyzed with analytical solutions. It helps
to better understand the advantages and limitations of this method as a general scheme for the coupling between
SDEM and MPM.

5.1 Conservation of energy

Two tests are designed to investigate the exchange of momentum and the transferring between the kinetic and gravita-
tional potential energy. The main purpose is to examine whether the energy of the system is conserved by the collision
between MPM and SDEM. The stability of the simulation can only be preserved if no extra energy is introduced into the
system by the coupling algorithm. The other important purpose is to investigate whether the coupling could well preserve
the conservation of energy and how strong will the coupling affects the system energy. The system still has the numerical
dissipation caused by pure DEM and MPM.

5.1.1 Exchange of momentum

The exchange of momentum is conducted by the 2D-elastic collision between MPM and SDEM disks. As illustrated in
Figure 6, the MPM disk moving with a constant velocity of 2 m/s toward the SDEM body, which is in a static state. The
disks have the exact same shape, density, and size. The effect of gravity is eliminated from this test. Material properties
and simulation parameters are listed in Table 1.
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F I G U R E 6 The collision
between the material point
method (MPM) and discrete
element method (DEM) disk at
each time slice (unit: cm/s). A,
The soft material case. B, The
hard material case (color
encodes velocity) [Color figure
can be viewed at
wileyonlinelibrary.com]

The MPM and SDEM share the same time interval and sequence; the coupling parameters for the collision handling
are calculated with the same parameter of normal and tangential stiffness of SDEM. Two groups of material modulus,
which are marked bold in Table 1, are used for the MPM disc. The bulk and shear modulus of the hard group is 10 times
larger than that of the soft case. This comparison is proposed to investigate the influence of the material properties on
the conservation of energy. It could further demonstrate the ability of MPM-SDEM to simulate the soft-rigid multibody
system.

It can be observed from Figure 6A that the contact between two bodies is captured by the coupling algorithm and the
collision is calculated with the contact force. The velocity of the MPM disk drops rapidly during the collision and transfers
its kinetic energy to the DEM disk at t = 1.46 seconds and 1.50 seconds. Part of the energy is stored in the MPM body in
a form of strain energy because some of the material points at t = 1.70 seconds still have a small velocity. This part of the
energy is dissipated in the MPM disk since the collision is completed. It dissipated due to the P-G transferring scheme and
eventually disappear (eg, t = 2.4 seconds). This phenomenon is consistent with the variation of square of v in Figure 7,
where kinetic energy is largely transferred into the DEM disc, which obtained a vx = 1.92 m/s. It still shows a 7.84% loss
of kinetic energy as these parts are not transferred to DEM after the collision.

For the hard material case in Figure 7, the conservation of energy is much better than that of the soft case. The collision
happened in a short time of duration as it is shown in Figure 6B after t = 1.46 seconds. The velocity of the material points
disk becomes zero after the collision. The SDEM disk obtained a v = 1.992 m/s. The kinetic energy reaches a level of
99.202% of the perfect elastic collision.

5.1.2 Transferring between the gravitational potential and kinetic energy

The test for the potential-kinetic energy transferring is conducted by dropping an MPM elastic disk at the spheropolygon
boundary. The spheropolygon element is set as an unmoveable elastic boundary. It can be seen in Figure 8 that the MPM
disk hits the boundary and bounces back at the spheropolygon boundary. The contact is detected by the algorithm and

http://wileyonlinelibrary.com
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F I G U R E 7 The variation of
velocity square of discrete element
method (DEM) and material point
method (MPM) disk with different
material properties [Color figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 8 The soft elastic disk dropping at and bouncing back by the spheropolygon boundary [Color figure can be viewed at
wileyonlinelibrary.com]

the collision is properly calculated. The simulation parameters and material properties are the same as in Table 1; the
gravitational acceleration is −10.0 cm/s.2

The variations of the vertical velocity square are presented in Figure 9. The hard disk is shifted with +0.5 second
on the time axis for the comparison. Figure 9 indicates that the soft discs still have a 6.947% loss of energy after the
collision. Similarly, the hard disk has a better performance for the conservation of energy; less energy is dissipated during
the collision, and the maximal kinetic energy reaches 98.95% the initial potential energy. It can also be observed from
Figure 10 that soft disk experienced a longer time to complete the transferring between kinetic and potential energy. For
both soft and hard disc, no extra energy is generated by the collision since the squared velocity after the collision is lower
than the analytical limit. It indicates the coupling algorithm can maintain its stability. These results further support the
fact that the material modulus has a certain influence on the conservation of energy. The low value of elastic modulus
could generate a strong loss of energy after the coupled collision. It may cause a problem for the simulation that requires
a high velocity (eg, impact engineering) but could still be well-applied for the simulation of quasi-static or low-velocity
issues.

5.2 Coupling force

The coupling of the MPM and SDEM is conducted through the contact force that calculated based on the contact model
of DEM. It distinguishes the coupling method developed in this paper from the existing method, which can be used for
the quasi-static and dynamic cases. The value of normal and frictional coupling force between the MPM and SDEM are
examined in this section. Especially the contact force's dependence on the grid size is investigated here with four different
values of grid interval. Simulation parameters and material properties are given in Table 2; integer i denotes the variation
of the grid size, which ranges from 0 to 3 and marked in bold.

http://wileyonlinelibrary.com
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F I G U R E 9 The change of velocity
squared of the material point method
(MPM) disc; the hard disk is shifted with
a 0.5 second on the time axis for the
comparison [Color figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 10 The time gap t1 and
t2 of collision obtained with soft and
hard material point method (MPM) disk
cases [Color figure can be viewed at
wileyonlinelibrary.com]

5.2.1 Normal force

The normal contact force is examined by placing an MPM elastic square on the spheropolygon boundary. Reaction forces
are generated due to the gravitational force and, based on the coupling algorithm, applied on each material point at the
bottom of the square. Figure 11 indicates that the contact relations between material points and the boundary are properly
captured; the contact force is equally applied at the points that are in contact with the spheropolygon boundary. There are
in total 51 material points near the boundary and each one has a normal force of 0.4902 N normal force as the reaction
force for the gravity.

The total reaction force for different grid sizes is shown in Figure 12. It indicates that the simulated value of normal
force has a strong vibration at the beginning of the simulation. Such vibration is caused by the initial zero-overlapping
configuration between the boundary and the elastic block. The normal force gradually converges to the analytical solution.
The progress indicates that the static equilibrium is searched by the contact algorithm and eventually reached. The kinetic
energy is dissipated due to the viscoelastic contact model of DEM and the numerical damping within the point-grid
transferring scheme of MPM. The energy dissipation here is a positive factor, which helps the system to reach a static
state and provides the correct force information. This tendency can be observed for all four cases with different grid sizes.
The larger size of the grid only improves the intensity of the energy dissipation but does not change the convergence of
the contact force; the correctness of the contact force is independent of the size of the background grid. The MPM and
SDEM can be properly coupled through the DEM contact scheme.

http://wileyonlinelibrary.com
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T A B L E 2 Parameters and material properties for the simulation of MPM-SDEM contact force

SDEM Parameters MPM (GIMP-PIC) Parameters

kn Normal stiffness 6.0× 106 N/cm dg Grid interval 0.35+ 0.05× i cm

kt Tangential stiffness 3.0 × 105 N/cm rp Coupling radius 0.1 cm

𝜇 Frictional coefficient 0.1 n Number of points 2601

Δt Time interval 2.0−4 s MPM material properties

V d Verlet distance 0.2 cm 𝜈 Poisson's ratio 0.2558

ai Sphero radius 0.5 cm K Bulk modulus 6.0 × 103 KPa

General Parameter G Shear modulus 3.5 × 103 KPa

g Gravitational acceleration 100.0 cm/s2 𝜌p Density 2.5 g/cm2

Notes: Integer i, which denoted in bold, ranges from 0 to 3 to consider four different grid sizes.
Abbreviations: GIMP, generalized interpolation material point; MPM, material point method; PIC, particle-in-cell; SDEM, spheropolygon discrete
element method.

F I G U R E 11 Normal forces generated between the elastic material point method (MPM) block and spheropolygon boundary (unit: N);
dg = 0.35 and t = 3.5 seconds. A, The normal force contact test of MPM cube and spheropolygon discrete element method (SDEM) boundary.
B, The normal forces are generated at the bottom of the MPM elastic square where the material points are in contact with the spheropolygon
boundary and the magnitude of the force generated each point is all equal to 0.4902 N (red value in color bar); the other material points have
zero force value (blue value in color bar) since they are not in contact with the boundary [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 12 The total normal
force vs time for different background
grid size dg [Color figure can be viewed
at wileyonlinelibrary.com]
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F I G U R E 13 Frictional forces generated between the elastic material point method (MPM) block and spheropolygon boundary (unit:
N); dg = 0.35 and t = 3.5 seconds. A, The normal force contact test of MPM cube and spheropolygon discrete element method (SDEM)
boundary. B, The frictional forces are generated at the bottom of the MPM elastic square where the material points are in contact with the
spheropolygon boundary while sliding; the magnitude of the frictional force on each point are all equal (blue value in color bar) since their
relative position to the boundary is the same; the other material points have zero frictional force (red value in color bar) since they are not in
contact with the boundary [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 14 The total frictional force
vs time for grid size dg = 0.5 [Color figure can
be viewed at wileyonlinelibrary.com]

5.2.2 Frictional force

The same model is used for simulating the frictional force. A constant velocity of V x = 2.0 m/s is applied to the same
MPM square. It is sliding toward the positive direction of the x-axis and generates a friction force. Its friction coefficient
between the MPM and DEM boundary are set as 𝜇= 0.3. It can be observed from Figure 13 that the friction force applies to
the material points located at the bottom of the elastic MPM square. The magnitude of the friction force is 𝜇Fn =−7.5 N,
which equals −0.14706 N for each material point that in contact with the boundary. This result is consistent with the
result of the normal-force test.

The variation of total frictional force is shown in Figure 14. The test for the effect of grid size has been clarified in
the normal force test and therefore not repeated here. The grid size dg = 0.50 is used to quickly reduce the vibrations
generated by the initial configuration. Similarly, the friction force also converges to the analytical value with the progress
of the simulation. The vibration energy is dissipated and the MPM square reaches a quasi-static state; both normal and
friction force are correctly calculated.

5.3 Granular flow

The coupling performance between the SDEM and the MPM granular material is tested with the silo flow model.
The Drucker-Prager model is used to simulate the plastic behavior of the noncohesive dry sand, which is represented

http://wileyonlinelibrary.com
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T A B L E 3 Parameters and material properties for the simulation of MPM-SDEM granular flow

SDEM parameters MPM (APIC) parameters

kn Normal stiffness 6.0× 106 N/cm dg Grid interval 0.35 cm

kt Tangential stiffness 3.0 × 105 N/cm rp Coupling radius 0.1 cm

𝜇 Frictional coefficient 0.2 n Number of points 8/9/10 × 103

Δt Time interval 2.0−4 s MPM material properties

V d Verlet distance 0.2 cm 𝜈 Poisson's ratio 0.2358

rd Sphero radius 0.5 cm K Bulk modulus 5.0 × 102 KPa

General Parameter G Shear modulus 3.2 × 102 KPa

g Gravitational acceleration 10.0 cm/s2 𝜌m Density 1.5 g/cm2

Drucker-Prager model

𝜎t Tensile strength 0.0 MPa 𝛷 Friction angle 35.0 degree

𝜓 Dilation angle 25.0 degree

Abbreviations: APIC, affine-particle-in-cell; GIMP, generalized interpolation material point; MPM, material point method; SDEM, spheropolygon
discrete element method.

F I G U R E 15 Four different stages of silo flow. Material point method (MPM) is used to represent the granular material. The silo and
container are spheropolygon discrete element method (SDEM) particles. The color bar encodes the square velocity of the granular materials
(unit: cm2/s2) The diameter of the neck is D0 = 0.04 m. Snapshots are taken at, A, t = 0.0 second, B, t = 3.0 seconds, C, t = 5.0 seconds, and D,
t = 10.0 seconds [Color figure can be viewed at wileyonlinelibrary.com]

with MPM. The SDEM is used as the silo and container of the granular flow. Five different diameters of the silo neck
are used to compare the results with the 2D Beverloo law.43 The main reason for conducting these tests is because
the contact relationship for the plastic MPM-SDEM case is far more changeable than that of elastic MPM-SDEM
cases. Contacts are constantly generated and deleted in the granular flow. Therefore, it is necessary to test whether
the coupling simulation is reliable. Material points, although representing a continuous area, are used to approxi-
mate the assemble of discrete bodies (ie, sand or rock pile). Three different numbers of material points are used
to investigate its influence on mass transportation. The simulation parameters and material properties are given in
Table 3.

As illustrated in Figure 15, the MPM dry sand flows through the bottleneck of the silo and reaches a steady flowing
state; the sand drops at the bottom and held by the SDEM container. It indicates that the coupling algorithm remains
stable for the granular material. The contact can be effectively detected and properly handled.

The mass transfer rates for different sizes of the silo neck are shown in Figure 16. Simulations with different num-
bers of material points are performed for each diameter. Results indicate that the simulated mass transfer rates agree
well with the analytical solution of the 2D Beverloo law.44 The rate increases with the increase in the diameter in a 3/2
power law relation. The number of material points does not have a strong influence on the results since MPM is a contin-
uous numerical method. Although there is still a deficiency for using the Drucker-Prager model as indicated earlier, the
coupling method is reliable for simulating granular-solid interaction.

http://wileyonlinelibrary.com
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F I G U R E 16 The mass flow rate M = C𝜌g0.5(D0 − kcrp)1.5 for different
silo neck diameter and number of material points; C = 0.58 and kc = 2.2 are
the empirical coefficient; D0 is the diameter of the silo neck [Color figure
can be viewed at wileyonlinelibrary.com]

F I G U R E 17 The one-dimensional rod collision test and the contact force scheme. The material point is denoted with the red dot and
the grid node represented with the black square. The red rod is represented with 400 material points and assigned with an initial velocity
v1 = 2.0 cm/s; the lime rod is the rigid spheropolygon discrete element method (SDEM) particle. A, MPM-SDEM scheme, the coupling force
is applied at the material point. B, MPM-GRID scheme, the coupling force is applied at the corresponding node in the vicinity of the contact
position. C, The MPM-DEM method, the rigid body is represented with material points (black ring circle is the left tip of the rigid body), the
coupling is calculated at the node and applied to the material points [Color figure can be viewed at wileyonlinelibrary.com]

5.4 Comparison of the contact schemes

A series of numerical tests based on the one-dimensional elastic rod collision is conducted to compare the grid dependency
of different contact schemes, and further, illustrates the advantages of MPM-SDEM. The parameters in Table 1 is adopted
with 400 material points and the equal mass of two rods. The basic model and three contact handling schemes are shown
in Figure 17. The left scheme is the MPM-SDEM where the coupling force is calculated through the DEM contact model
and applied at the corresponding material point (Equations (46) and (47)); The MPM-GRID scheme in the middle has
the same way of calculating the coupling force but applies the force directly at the corresponding node. The last coupling
scheme (MPM-DEM) is proposed by Liu et al where the rigid body part is represented with three material points at the tips
and the middle point (red circle with the black ring), the coupling force is calculated through the MPM contact model17

at the mutual node.
The grid size ranges from 0.1 to 1.0 cm with a variation of 0.1 cm for each test. The accuracy is measured with the

velocity squared v2 of the system before and after the collision. The results for each scheme are shown in Figure 18.
It can be observed that all three schemes have a general grid dependency; a smaller grid size provides better conser-
vation of kinetic energy of the system, which indicates a more accurate description of coupling between the MPM and
rigid body. MPM-SDEM shows the best performance. The accuracy increases linearly with the decrease in grid size at
the logarithmic scale. A proper accuracy is provided even at the extreme case where the grid size equals the size of the
rigid rod (L2/dg = 1.0). The MPM-GRID and the MPM-DEM scheme has distinctively higher errors at the large grid
size (L/dg = 1.0-0.5). Both schemes show a similar pattern of grid-dependency and rapidly merging to the accuracy of
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F I G U R E 18 The grid-dependency of error v2 for each coupling
scheme. The fitting lines are generated with the standard polynomial
regression; linear regression for material point method-spheropolygon
discrete element method (MPM-SDEM) and cubic regression for the other
two schemes [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 19 The initial configuration of the granular flow and
spheropolygon discrete element method (SDEM) blocks [Color
figure can be viewed at wileyonlinelibrary.com]

MPM-SDEM. The difference between the three cases becomes minimal at dg = 0.1 cm, which is also the limitation of
optimal rp of IMP in Equation 45.

6 VALIDATION

The motion of wooden blocks under the impact of the granular flow is simulated in two dimensions. This test was orig-
inally conducted by Liu et al25 for the validation of a coupled MPM-DEM method. In their method, each DEM block is
represented by nine visual material points to couple its interaction with MPM granular flow based on the exchange of
momentum. The configurations of the test are given in Figure 19. The granular flow will be released and impact three
piled-up wooden blocks. For the granular material, the gravitational potential is transferred to the kinetic energy and
eventually exerts on the blocks through the point-grid projection on the mutual background grids. Two upper blocks will
be pushed to the right side and obtain angular momentum; Block.3 is glued to the ground and thus unmovable. The
variation of the rotational angle of block No.2 is recorded and compared with experimental data.

In this section, this test is reconducted using our MPM-SDEM coupling scheme. The results are compared and rigor-
ously analyzed with both numerical and experimental data from the existing literature. It further illustrates the advantages
of using the contact force as the connection of the coupling between MPM and DEM. The material properties and sim-
ulation parameters are given in Table 3 with a few modifications for the simulation: g = 10 m/s, 𝜓 = 0◦, n = 8000, and
𝜙=22.0◦ to be consistent with Liu et al's test.

The movements of granular flow and blocks in the simulation are shown in Figure 20. Each screenshot is taken at
the exact same time as Liu et al's study to provide a clear visual comparison. The results indicate that both the collapse
of the granular pile and the motion of the blocks agree well with the existing numerical and the experimental data at
each compared time step. The sand flow reaches the pile of blocks at t = 2.5 seconds; the blocks start to move and rotate
due to the impact. The block No.2 touches the ground after t = 4.0 seconds and block No.1 touches the ground after
t = 4.5 seconds.
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F I G U R E 20 Comparison
among Liu et al's experiment
(left) and numerical results
(middle), and material point
method-spheropolygon discrete
element method (MPM-SDEM)
(right) simulation of granular
flow impacting blocks at different
time steps [Color figure can be
viewed at
wileyonlinelibrary.com]
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F I G U R E 21 The temporal variation of block No.2's rotational
angle 𝛽 [Color figure can be viewed at wileyonlinelibrary.com]

The rotation of block No.2 is recorded and compared with the numerical and experimental data in Figure 21. It can be
observed from the results that compared with the existing method, the rotational angle of MPM-SDEM is generally closer
to the experimental results at each measured time step. Such better performance is particularly obvious at t = 0.25 and
t = 0.40 second. The differences between MPM-SDEM and experimental data are smaller than 4.0◦, where this difference
reaches almost 20.0◦ for the existing method. Furthermore, the variational of the rotational angle experiment is smoother
than that of Liu et al's method. It indicates that the change of the angular momentum and rotational angle of block No.2
is continuous in the experiment. But the result of the existing coupling method exhibits clear jumps of these variables.
According to the snapshots, this kind of discontinuity is particularly strong between t = 0.2 second to 0.25 second.

Such a problem in Liu et al's method is caused by two reasons: first, the DEM blocks are insufficiently represented
with only nine material points. There is a strong loss of accuracy when calculating the momentum transfer between
the granular flow and the highly simplified DEM blocks. Second, this coupling scheme has a strong dependency on the
background grid. The angular momentum will be highly compromised if the gird size is too large. However, if the grid size
is too small the material point at the center of mass will be ignored and receive zero momentum from the granular flow.
The grid size has a strong influence on the simulation, yet the optimal value is highly difficult to be determined; neither
increase nor decrease in the grid size can guarantee an improved accuracy. Improvements can be made by increasing the
number of material points to represent the DEM block. But it makes a large compromise of computational efficiency;
the contact detection and farce calculation become far more expensive. Therefore, this method is only reliable for certain
cases.

In contrast to the existing method, the displacement pattern provided by MPM-SDEM shows a more continuous trend
that similar to the experimental data. No sudden jump of angular velocity for the SDEM blocks is observed. This is because
the coupling is conducted through the contact force. Neither contact detection nor force calculation has a strong depen-
dency on the grid. The angular momentum is better preserved during the impact process since the transferring of the
momentum is not limited by the grid system. Contact detection and force calculation can be obtained using solely the
Euclidian distance. Material points of the granular flow can transfer its kinetic energy to the edges of the blocks at any
position if their Euclidian distance is recognized as in contact. The MPM-SDEM shows a better performance comparing
to the existing method and should be reliable for a variety of applications due to its unique advantages.

7 SIMULATION OF THE GRANULAR MATRIX

An important application of the MPM-SDEM coupling method is to simulate the granular matrix. It consists of particles
in very different sizes and thus exhibits complicated physical properties different from a homogeneous state of its con-
stituents. The size ratio between large particles and fines could reach a scale of 105-6. The simulation of such a system
is highly computational expensive using a pure DEM method. Numerical methods based on the continuum mechanics
also have difficulties to simulate both of the large deformations of fines and the interaction among particles. Studies have
been conducted using DEM and certain progress for understanding the granular matrix has been made.1,45 However, par-
ticles and the fines are represented with a fairly limited amount; the mechanical properties of fines are not rigorously
simulated. These problems deeply undermine the validity of conclusions.

The MPM-SDEM method provides a better way to simulate the micro-mechanism of the granular matrix since it
is a scale-crossing method that could tolerant the objects in an extreme size ratio. A basic model is presented here for
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F I G U R E 22 The uniaxial compression of the granular
matrix consist of fines and particles. The container size of
61× 61 cm; the compression bar is moving with a constant
velocity of vy = −0.5 cm/s. A, The initial configuration of the
granular matrix. B, Granular matrix at t = 22.0 seconds [Color
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 23 The force-settlement curve for different
percentages of fine content [Color figure can be viewed at
wileyonlinelibrary.com]

simulating the structure of granular matrix. Large particles are represented by the SDEM with randomly generated pen-
tagons. Fines, which fills the voids between the particles, are simulated with the MPM. The mechanical properties of
fines are governed by the D-P model. In this way, the influence of fines is rigorously simulated with a well-established
constitutive model, while the discrete behavior of large particles can still be preserved. The uniaxial compression test is
conducted to investigate the effect of the fine percentage in the granular matrix. The parameters are the same as Table 3
except the density of SDEM particles is changed to 2.2 g/cm2.

The basic structure of the granular matrix sample is shown in Figure 22. The SDEM particles are the skeleton while
MPM fines exist in the voids among them. Both of the components bear the compressive load from the top. At the early
stage of loading, the compression mainly exerts on the SDEM particles since the void space is not fully saturated. SDEM
particles will start to slowly move and rotate. This process can be regarded as a rearrangement process for the skeleton part
of the granular matrix. The void space is shrinking due to this rearrangement. MPM fines start to carry the compressive
load by interacting with SDEM particles if the void space is small enough. This phenomenon is one of the reasons that
the granular matrix exhibits a relatively complex mechanical behavior.

The compression force-settlement curves are shown in Figure 23. The basic skeleton structure of the SDEM is pre-
served in each case. Because the void space is not saturated by fines and the skeleton structure thus will not be affected
by a small change of fine content. It can be observed from the results that the fine percentage has a major impact on
the compressibility of the granular matrix, which would further affect the result for measuring Young's modulus. Even
though the variation is small, a higher fine percentage largely reduces the compressibility of the granular matrix and,
therefore, exhibits a higher Young's modulus at the macroscale. This test provided a good demonstration of the potential
application of MPM-SDEM method.

8 CONCLUSIONS

A hybrid MPM-SDEM method has been developed for simulating the multibody system with a large ratio of size and mate-
rial modulus. The coupling is conducted through the contact force between SDEM particles and material points; both
contact detection and the force calculation are unified under the contact scheme of the SDEM method. A serial of veri-
fication tests has been conducted using two different material constitutive models, linear elasticity, and Drucker-Prager
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model. The conservation of energy, contact force, and mass transfer rate in granular flow has been investigated and ana-
lyzed with analytical solutions. Results have indicated that the conservation of energy is affected by the material properties
but properly maintained in general. No extra energy was generated from the collision between material points and SDEM
boundary, which guarantees the stability of the method. Contact forces, as the communicating value for the coupling,
were correctly provided. Tests of granular flow have proved that our coupling scheme could effectively detect and handle
the highly changeable contact relations between the MPM granular media and SDEM particles.

The motion of wooden blocks under the impact of the granular flow was conducted as a validation of the MPM-SDEM.
Results have been compared with an existing MPM-DEM coupling method and experimental data. The variation of the
rotational angle provided by MPM-SDEM has shown a better agreement with the experimental data. Results have also
indicated that the MPM-SDEM overcomes the problems of the grid dependency and the oversimplification of rigid body
motion in the existing method. Uniaxial compression tests for a granular matrix are performed as an application. It has
further demonstrated that MPM-SDEM coupling method provides a scale-crossing solution for simulating the complex
mechanical behavior of the granular matrix. Both continuous behavior of fines and discrete features of large particles can
be well preserved in the simulation with optimal efficiency. Results have indicated that the fine percentage in a granular
matrix imposes a major influence on its macroscale mechanical properties. In conclusion, the MPM-SDEM has its unique
advantage for multibody interaction in solid dynamics that involves highly different sizes and material modulus. We
anticipate it would make a good contribution to the study of geomechanics and CG.
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APPENDIX A

The three-dimensional weighting functions for the GIMP is written as:

SIp = SxIp(xp) ⋅ SyIp(xp) ⋅ SzIp(xp), (A1)

where SiIp, which is calculated based on the constant characteristic function and linear shape function, is defined as:

SiIp =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0,
[L + lp + (xip − xiI)]2∕(4Llp),
1 + (xip − xiI)∕L,
1 − [(xip − xiI)2 + l2

p]∕(2Llp),
1 + (xip − xiI)∕L,
[L + lp − (xip − xiI)]2∕(4Llp),
0,

xip − xiI ≤ −(L + lp)
−(L + lp) < xip − xiI ≤ −L + lp

−L + lp < xip − xiI ≤ −lp

−lp < xip − xiI ≤ lp

lp < xip − xiI ≤ L − lp

L − lp < xip − xiI ≤ L + lp

xip − xiI > L + lp

, (A2)

where L is the spacing of the background grid and lp is the half size of the square influential area defined by the
characteristic function 𝜒p. This weighting function is used for all the simulations of solid material.

Since the characteristic function is the Dirac delta function 𝜒p(x) = 𝛿(xp), the three-dimensional weighting function
for the APIC format is also the shape function which is using the quadratic kernel:

NIp = NxIp(xp) ⋅ NyIp(xp) ⋅ NzIp(xp), (A3)

where NiIp is written as:

NiIp =
⎧⎪⎨⎪⎩
(1∕2)(|xip − xIp|∕L)3 − (|xip − xIp|∕L)2 + (2∕3),
(1∕6)(2 − |xip − xIp|∕L)3,

0,

0 ≤ |xip − xIp|∕L < 1
1 ≤ |xip − xIp|∕L < 2

2 ≤ |xip − xIp|∕L
(A4)

.


