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Abstract
Robust principal component analysis (PCA) is one
of the most important dimension reduction tech-
niques to handle high-dimensional data with out-
liers. However, the existing robust PCA presup-
poses that the mean of the data is zero and incor-
rectly utilizes the Euclidean distance based optimal
mean for robust PCA with `1-norm. Some studies
consider this issue and integrate the estimation of
the optimal mean into the dimension reduction ob-
jective, which leads to expensive computation. In
this paper, we equivalently reformulate the maxi-
mization of variances for robust PCA, such that the
optimal projection directions are learned by maxi-
mizing the sum of the projected difference between
each pair of instances, rather than the difference
between each instance and the mean of the data.
Based on this reformulation, we propose a novel ro-
bust PCA to automatically avoid the calculation of
the optimal mean based on `1-norm distance. This
strategy also makes the assumption of centered data
unnecessary. Additionally, we intuitively extend
the proposed robust PCA to its 2D version for im-
age recognition. Efficient non-greedy algorithms
are exploited to solve the proposed robust PCA and
2D robust PCA with fast convergence and low com-
putational complexity. Some experimental results
on benchmark data sets demonstrate the effective-
ness and superiority of the proposed approaches on
image reconstruction and recognition.

1 Introduction
High-dimensional data are frequently generated in many sci-
entific domains, such as image processing, visual descrip-
tion, remote sensing, time series prediction and gene ex-
pression. However, it is usually computationally expen-
sive to handle high-dimensional data due to the curse of
dimensionality [Parsons et al., 2004; Chang et al., 2015;
Nie and Huang, 2016; Nie et al., 2010]. Therefore, dimen-
sion reduction techniques are typically used to extract mean-
ingful features from high-dimensional data without degrad-
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ing performance. Among these methods, principal compo-
nent analysis (PCA) learns a set of projections that constitute
a low-dimensional linear subspace. It has been widely used
in many applications for its simplicity and effectiveness [Jol-
liffe, 2002].

Typically, standard PCA is based on mean square error,
and thus it is disproportionately affected by the presence of
outliers which occur often in high-dimensional data. For
this issue, multiple robust PCA methods have been pro-
posed to enhance the robustness of PCA by replacing the `2-
norm with `1-norm distance [Wright et al., 2009; la Torre
and Black, 2001; Jolliffe, 2002; Ke and Kanade, 2005;
Chang et al., 2016]. However, `1-norm based robust PCA
methods usually perform worse due to their lack of rotational
invariance and expensive computation. To solve this prob-
lem, a rotational invariant `1-norm based robust PCA, namely
R1-PCA, has been proposed to soften the contributions from
outliers by re-weighting each data point iteratively [Ding et
al., 2006]. This method was further extended to its 2D ver-
sion in [Huang and Ding, 2008; Yang et al., 2004]. However,
the R1-PCA/2DPCA models are solved with subspace itera-
tion algorithm, which costs a lot of time to achieve conver-
gence [Kwak, 2008]. Kwak proposed an intuitive method to
ensure both the robustness and rotational invariance of PCA
by maximizing the `1-norm of variance with a greedy algo-
rithm [Kwak, 2008]. The corresponding 2D and supervised
versions can be found in [Liu et al., 2010; Li et al., 2010;
Pang et al., 2010]. However, the greedy algorithm optimizes
the projection directions one by one, which makes it easy to
get stuck in a local solution. For this issue, Nie et al. [Nie et
al., 2011] exploited an efficient non-greedy optimization al-
gorithm to optimize all projection directions simultaneously
for the `1-norm maximization problem; Kwak [Kwak, 2014]
extended the non-greedy algorithm to `p-norm based max-
imization problem. Additionally, the corresponding robust
2DPCA with non-greedy algorithm can be found in [Wang et
al., 2015].

However, the `1-norm based robust PCA mentioned above
usually use the mean of data as the optimal mean [Nie et al.,
2014]; moreover, it is supposed that the data are already cen-
tered, i.e., the average of data is zero. Indeed, this assumption
is unreasonable for the following three reasons: (1) It’s hard
to ensure the zero mean in real-world applications; (2) The
outliers in high-dimensional data often make the data mean



bias, which degrades the robustness of PCA [He et al., 2011].
(3) It ignores the data mean calculation problem and incor-
rectly uses the average of data as the optimal mean for `1-
norm based robust PCA. Indeed, the average of data is the
optimal mean for conventional PCA based on Euclidean dis-
tance.

There are relatively sparse works which take these impor-
tant issues into consideration. To the best of our knowledge,
He et al. [He et al., 2011] proposed a robust PCA based
on maximum correntropy criterion and handled non-centered
data with an estimation of optimal mean; Nie et al. [Nie et
al., 2014] introduced a mean variable and exploited a novel
robust PCA objective with optimal mean. Nevertheless, both
of this methods integrate the mean calculation into the opti-
mization objective and lead to expensive computation.

In this paper, we equivalently reformulate the maximiza-
tion of `2 variances for conventional PCA, such that the opti-
mal projection directions are learned via maximizing the sum
of projected difference between each pair of instances instead
of the difference between each instance and the mean of data.
Based on this reformulation, we propose a new robust PCA
by maximizing the sum of projected difference between each
pair of instances based on `1-norm distance. This method
automatically avoids calculating the `1-norm based optimal
mean and makes the assumption on centered data unneces-
sary. An efficient non-greedy method is further exploited
to maximize the objective with fast convergence in practical
application. Intuitively, we also extend the proposed robust
PCA to its 2D version for image recognition. It is noteworthy
that the proposed algorithms keep linear computation com-
plexity with respect to the number of data points in the prac-
tical application.

The remainder of this paper is organized as follows. We
give a brief review of conventional PCA and `1-norm based
robust PCA in Section 2. In Section 3, we propose a novel
robust PCA to avoids the optimal mean calculation and de-
velop a non-greedy algorithm to solve the proposed optimiza-
tion problem. An extension version to 2D robust PCA can be
found in Section 4. In Section 5, we conduct several experi-
ments to verify the effectiveness of the proposed methods on
both tasks of image reconstruction and recognition. Conclu-
sions are given in Section 6.

2 Principal Component Analysis Review
Suppose the given data matrix is X = [x1,x2, · · · ,xn] ∈
Rd×n, where each instance xi is represented by a vector with
d-dimensionality and n refers to the number of instances.
Conventional PCA learns a transformation to map high di-
mensional data to low dimensional representations. Specif-
ically, let W = [w1,w2, · · · ,wm] ∈ Rd×m be a semi-
orthogonal transformation matrix, the idea of traditional PCA
is formulated by minimizing the reconstruction error based on
`2-norm distance in the original high-dimensional space, i.e.

min
W>W=I,m

n∑
i=1

‖(xi −m)−WW>(xi −m)‖22, (1)

where m is the mean of data. By setting the derivative of
the objective function (1) with respect to m to zero, we ob-

tain the optimal mean of data based on `2-norm distance is
m = x̄ = 1

n

∑n
i=1 xi. According to some evident equivalent

transformation, optimization problem (1) can be reformulated
as the maximization of covariance in the projected space, i.e.,

max
W>W=I

n∑
i=1

‖W>(xi − x̄)‖22. (2)

Generally, the mean x̄ is supposed to be zero; otherwise, it
is subtracted from each instance of optimization problem (2)
with least-squares. In such a way, the orthogonal transfor-
mation matrix W can be solved by maximizing the following
optimization problem

max
W>W=I

n∑
i=1

‖W>xi‖22, (3)

where the instances xi (i = 1, 2, · · · , n) are centered. PCA
has been widely applied in many applications for its effi-
ciency and simplicity However, the high computational com-
plexity and the outlier sensitivity induced by `2-norm make
it hard to apply to a large scale data with high dimensional-
ity [Nie et al., 2011]. For this issue, robust PCA is proposed
by directly substitute `1-norm for `2-norm maximization in
optimization problem (3)[Kwak, 2008; Galpin and Hawkins,
1987; Nie et al., 2011], i.e.,

max
W>W=I

n∑
i=1

‖W>xi‖1. (4)

Nevertheless, the existing robust PCA methods and its var-
ious based on `1-norm distance neglect the optimal mean
calculation problem and incorrectly utilize x̄ as the optimal
mean. Indeed, x̄ is definitely the optimal mean in the case
of `2-norm distance rather than `1-norm used in the objec-
tive functions of RPCA. Nie et al. [Nie et al., 2014] consider
this issue and propose a new robust PCA by integrating the
optimization of optimal mean into the dimension reduction
objective; however, it leads to expensive computation.

3 The Proposed Methodology
In this section, we consider a general case that the mean of
data is not zero, and propose a novel robust PCA based on
`1-norm distance. This method automatically avoids calcu-
lating the optimal mean with `1-norm distance and makes the
assumption of centered data unnecessary. For a better repre-
sentation, we first introduce the following theorem. It refor-
mulates the objective of conventional PCA as maximizing the
sum of projected difference between each pair of instances
rather than the difference between each instance and the mean
of data.
Theorem 1. Let X = [x1,x2, · · · ,xn] ∈ Rd×n be the data
matrix and x̄ = 1

n

∑n
i=1 xi be the mean of X . The solution

W of conventional PCA which minimizes the reconstruction
error based on Euclidean distance, i.e.,

min
W>W=I,m

n∑
i=1

‖(xi −m)−WW>(xi −m)‖22, (5)



is also the solution of the following formulation of PCA

max
W>W=I

∑
i,j

‖W>(xi − xj)‖22. (6)

Proof. With fixed W satisfying W>W = I , we set the
derivative of objective function (5) with respect to variable
m to zero and have m = x̄. We substitute m = x̄ into the
objective function (5) and reformulate it equivalently as the
maximization of covariance in the projected space, i.e.,

max
W>W=I

n∑
i=1

‖W>(xi − x̄)‖22. (7)

Furthermore, we substitute x̄ = 1
n

∑n
i=1 xi into the objective

function above and achieve the following equation

n∑
i=1

‖W>(xi − x̄)‖22

=

n∑
i=1

x>i WW>xi −
1

n

∑
i,j

x>i WW>xj ; (8)

On the other hand, it is evident to reformulate the objective
function of optimization problem (6) via equivalent transfor-
mation as ∑

i,j

‖W>(xi − xj)‖22

= 2n

n∑
i=1

x>i WW>xi − 2
∑
i,j

x>i WW>xj . (9)

According to Eq. (8) and Eq. (9), the proof is completed.

Based on Theorem 1, we equivalently reformulate the `2-
norm based PCA as follows,

max
W>W=I

∑
i,j

‖W>(xi − xj)‖22. (10)

As opposed to the conventional PCA formulated by optimiza-
tion problem (5) or (2), the alternative formulation (10) esti-
mate the transformation matrix with the calculation of opti-
mal mean avoided automatically. However, considering the
sensitivity of `2-norm distance to outliers, in this paper, we
propose a novel robust PCA based on `1-norm by solving the
following optimization problem

max
W>W=I

∑
i,j

‖W>(xi − xj)‖1. (11)

Note that existing robust PCA which directly replaces the `2
norm in optimization problem (3) with `1-norm and incor-
rectly employs x̄ as the optimal mean of `1-norm based ro-
bust PCA. The proposed objective (11) automatically avoids
calculating the `1-norm based optimal mean and makes the
assumption on centered data unnecessary.

Algorithm 1 Non-greedy `1-norm maximization.

Initialize: z(1) ∈ C, k = 1.
1: while not converge do
2: v

(k)
i = sgn(gi(z

(k))) for each i;
3: z(k+1) = arg maxz∈C f(z) +

∑
i v

(k)
i gi(z);

4: k = k + 1;
5: end while

Output: z(k).

3.1 Optimization procedure
In this section, we employ an efficient iterative re-weighted
algorithm [Nie et al., 2011] to solve the non-smooth opti-
mization problems (11). This algorithm is first proposed to
solve general optimization problem,

max
z∈C
L(z) = f(z) +

∑
i

|gi(z)| (12)

where z ∈ C is an arbitrary constraint; f and gi are arbitrary
functions defined on C for each i. Let vi = sgn(g(z)) with
element-wise sign function sgn(·), then the objective func-
tion L(z) can be reformulated as

L(z) = f(z) +
∑
i

vigi(z). (13)

As a result, the general optimization problem (12) can be
solved with an non-greedy re-weighted algorithm which is
described in Algorithm 1.

We follow Algorithm 1 and exploit an non-greedy method
to solve the proposed optimization problem (11). In this case,
the key step lies in addressing the following optimization
problem

max
W>W=I

∑
i,j

v>ijW
>(xi − xj), (14)

where vij = sgn((W (k))>(xi − xj)) is a vector with m-
dimensionality. Let R =

∑
ij(xi − xj)v

>
ij ∈ Rd×m, then

equation
∑

i,j v>ijW
>(xi − xj) = Tr(W>R) holds and the

optimization problem (14) can be rewritten as

max
W>W=I

Tr(W>R). (15)

We solve optimization problem (15) based on Theorem 2.
Theorem 2. Suppose the SVD of R is R = PΛQ>, where
P ∈ Rd×d, Λ ∈ Rd×m and Q ∈ Rm×m. The solution of
optimization problem (15) is derived as W = P [I; 0]Q>.

Proof. Based on the SVD of R, we have

Tr(W>R) = Tr(W>PΛQ>) = Tr(ΛQ>W>P )

= Tr(ΛΨ) =
∑
k

λkkψkk,

where Ψ = Q>W>P ; λkk and ψkk represent the (k, k)-th
element of matrices Λ and Ψ, respectively. Recall that the
constraint W>W = I , so we have ΨΨ> = I and ψkk ≤ 1,



Algorithm 2 Robust PCA with non-greedy `1-norm maxi-
mization
Input: data set {xi ∈ Rd : i = 1, 2, · · · , n}, m.
Initialize: W (1) ∈ Rd×m s.t. (W (1))>W (1) = I , t = 1.

1: while not converge do
2: vi,j = sgn((W (t))>(xi − xj)) (∀i < j);
3: R =

∑
i,j(xi − xj)v

>
ij ;

4: Calculate the SVD of R as R = PΛQ>, then
W (t+1) = PQ>;

5: t = t+ 1;
6: end while

Output: W t ∈ Rd×m.

where I is an m by m identity matrix. Combining with the
fact λkk ≥ 0 since λkk is singular value ofR, we arrive at the
following inequality

Tr(W>R) =
∑
k

λkkψkk ≤
∑
k

λkk (16)

and the equality holds when ψkk = 1 (1 ≤ k ≤ m). As a
result, the objective function (15) reaches its maximum when
Ψ = [I,0]. Recall that Ψ = Q>W>P , the optimal solution
to problem (15) is W = PΨ>Q> = P [I; 0]Q>. The proof
is completed.

In summary, we describe the non-greedy `1-norm max-
imization algorithm in Algorithm 2 to solve optimization
problem (14). Theoretical analysis in [Nie et al., 2011] guar-
antees the proposed non-greedy algorithm will convergence
and usually obtain a local maximum solution within ten iter-
ations in practical applications.

3.2 Complexity discussion
In this section, we analyze the computational complexity of
the proposed Algorithm 2. Given F = [f1, f2, · · · , fn] =
W>X ∈ Rm×n with computational complexity O(ndm),
we have vij = sgn(fi − fj) ∈ Rm for i, j = 1, 2, · · · , n. It
seems like the computational cost of vij (i, j = 1, 2, · · · , n)
is O(mn2). In fact, it can be avoided with some techniques.
Indeed, the computation of R in Algorithm 2 only depends
on m-dimensional vectors vi· :=

∑
j v>ij and v·j :=

∑
i vij

due to the following equivalent transformation:

R =
∑
i,j

(xi − xj)v
>
ij =

∑
i,j

xiv
>
ij −

∑
i,j

xjv
>
ij

=
∑
i

xi

∑
j

v>ij −
∑
j

xj

∑
i

v>ij

=
∑
i

xiv
>
i· −

∑
j

xjv
>
·j =

∑
i

xi(v
>
i· − v>·i )

Consequently, the computational cost of R is O(nmd) when
vi· and v·i are given. Recall that vij = sgn(fi − fj), thus
we have vi· =

∑
j vij =

∑
j(fi − fj). As a result, for

each i, the k-th entry of vectors vi·,v·i ∈ Rm can be ob-
tained efficiently by sorting the k-th entries of f1, f2, · · · , fn
with computational complexity O(n log(n)). Based on this

ranking, the entire computational cost over all vi· and v·i
is O(nm log(n)). As a result, the computational complex-
ity of Algorithm 2 is O(nm(log(n) + d)t). Indeed, log(n)
is usually much smaller than d in practical applications with
high-dimensional data. Hence, the computational complexity
of Algorithm 2 reduces toO(nmdt). Therefore, the proposed
robust PCA does not require an additional computational cost
in contrast to the state of the art robust PCA in [Kwak, 2008;
Nie et al., 2011].

4 Extensions to 2D Version of Robust PCA
To keep the structural information of two dimensional (2D)
image matrix, 2DPCA is proposed to construct an covariance
matrix using the original 2D image matrices directly. In this
section, we extend the proposed robust PCA to its 2D version
and develop a novel robust 2DPCA with the calculation of
optimal mean avoided automatically.

We suppose that the data is denoted by X =
[X1, X2, · · · , Xn] ∈ Rc×d×n, where each component Xi ∈
Rc×d (i = 1, 2, · · · , n) refers to a image matrix and n is
the number of data. Let U = [u1,u2, · · · ,um] ∈ Rd×m

be the collection of projection directions uk ∈ Rd for k =
1, 2, · · · ,m, then conventional 2DPCA learns transformation
matrix U by maximizing the following optimization problem
with Frobenius norm,

max
U>U=I,M

n∑
i=1

‖(Xi −M)U‖2F , (17)

where M = 1
n

∑
iXi is the optimal mean in the case of

Frobenius norm distance, and it is usually assumed to be zero
in conventional 2DPCA. However, as mentioned in the pre-
cious section, the mean of data is not always zero in practical
applications.

Following Theorem 1, we rewrite the objective of opti-
mization problem (17) and learn the directions via maximiz-
ing the sum of projected difference between each pair of im-
ages, i.e.,

max
U>U=I

∑
i,j

‖(Xi −Xj)U‖2F . (18)

Considering the poor robustness of Euclidean distance, we go
further to replace the `F -norm used in optimization problem
(1) with `1-norm and propose an alternative formulation of
robust 2DPCA as

max
U>U=I

∑
i,j

‖(Xi −Xj)U‖1 (19)

⇐⇒ max
U>U=I

∑
i,j

c∑
k=1

‖U>(xik − xjk)‖1 (20)

where xik,xjk ∈ Rd (k = 1, 2, · · · , c) are the transpose of
the k-th row of image matrices Xi and Xj , respectively. We
can also solve the optimization problem (20) through Algo-
rithm 1. Thus, the key step lies in addressing the following
optimization problem

max
U>U=I

∑
i,j

c∑
k=1

v>ijkU
>(xik − xjk), (21)



Table 1: Reconstruction error comparison of three robust PCA methods on 5 benchmark data sets with different dimensions.
The best reconstruction result under each dimension is bolded.

JAFFE

Dimension 10 15 20 25 30 35 40 45 50
RPCA 0.9256 0.8409 0.7348 0.7380 0.6849 0.6324 0.5749 0.5603 0.5533

RPCA-OM 0.9381 0.9094 0.8029 0.7141 0.6911 0.6380 0.6093 0.6673 0.5567
RPCA-AOM 0.9114 0.8632 0.7236 0.6704 0.6279 0.5851 0.5605 0.5331 0.5130

UMIST

Dimension 10 15 20 25 30 35 40 45 50
RPCA 0.9271 0.8434 0.7005 0.7272 0.6995 0.6118 0.5009 0.4459 0.4088

RPCA-OM 0.9301 0.8722 0.7793 0.6637 0.5547 0.4901 0.4410 0.4128 0.3972
RPCA-AOM 0.9254 0.8505 0.7521 0.6478 0.4787 0.4800 0.4297 0.4056 0.3870

ORL

Dimension 10 15 20 25 30 35 40 45 50
RPCA 0.8870 0.8070 0.6798 0.5657 0.4850 0.4861 0.4176 0.3771 0.3704

RPCA-OM 0.9644 0.7948 0.6204 0.5668 0.5019 0.4446 0.3833 0.3556 0.3383
RPCA-AOM 0.9139 0.6499 0.5809 0.5509 0.4686 0.4352 0.3638 0.3514 0.3353

COIL20

Dimension 10 15 20 25 30 35 40 45 50
RPCA 0.6914 0.6225 0.5334 0.4616 0.4542 0.4247 0.4054 0.3681 0.3425

RPCA-OM 0.6923 0.5620 0.5096 0.4322 0.4082 0.3975 0.3789 0.3425 0.3096
RPCA-AOM 0.7119 0.6207 0.4478 0.4240 0.4038 0.3918 0.3770 0.3375 0.2991

USPS

Dimension 10 15 20 25 30 35 40 45 50
RPCA 0.6742 0.6150 0.5692 0.5198 0.4825 0.4254 0.4132 0.3525 0.3305

RPCA-OM 0.6512 0.5909 0.5616 0.5178 0.4916 0.4159 0.3951 0.3802 0.3358
RPCA-AOM 0.6477 0.5888 0.5605 0.5033 0.4749 0.4225 0.3893 0.3659 0.3129

Algorithm 3 Robust 2DPCA with non-greedy `1-norm max-
imization
Input: data set {Xi ∈ Rc×d : i = 1, 2, · · · , n}, m.
Initialize: U (1) ∈ Rd×m s.t. (U (1))>U (1) = I , t = 1.

1: while not converge do
2: vijk = sgn

(
(U (t))>(xik − xjk)

)
∈ Rm (∀i <

j,∀k);
3: S =

∑
ij

∑c
k=1(xik − xjk)v>ijk ∈ Rd×m;

4: Calculate the SVD of S as S = ADB>, then

U = A[I; 0]B>;

5: t = t+ 1;
6: end while

Output: U t ∈ Rd×m.

where vijk = sgn
(
U>(xik − xjk)

)
is an m-dimensional

vector. Denote S =
∑

i,j

∑c
k=1(xik − xjk)v>ijk, the opti-

mization problem (21) can be rewritten as

max
U>U=I

Tr(U>S). (22)

Assume the SVD of S is S = ADB>, we have the optimal
solution to problem (22) is U = A[I; 0]B> according to The-
orem 2. We summarize the robust 2DPCA with non-greedy
`1-norm maximization in Algorithm 3. The corresponding
analyses on convergence and computational complex can be
obtained according to similar strategies used for Algorithm 2.

5 Experimental Analysis
In this section, we conduct thorough experimental evalua-
tions of the proposed Robust PCA and Robust 2DPCA with
Avoiding Optimal Mean, abbreviated as RPCA-AOM and
2DRPCA-AOM, respectively.

5.1 Reconstruction error comparison for RPCA
Regarding the experiments on reconstruction with different
robust PCA methods, we normalize each initial feature of
image into [0, 1] and randomly select 20% images to be oc-
cluded with randomly place of 1/4 size for fair comparison.
The evaluation metric is defined as the average reconstruction
error between an original unoccluded image and the recon-
structed image [Nie et al., 2014], i.e., 1

n

∑n
i=1 ‖xr

i − xo
i ‖,

where n is the number of images, xr
i denotes the recon-

structed image and xo
i is the original image without occlu-

sion.
We compare the reconstruction error of our proposed

RPCA-AOM with robust PCA with non-greedy `1-norm
maximization (RPCA) [Nie et al., 2011] and optimal mean
robust PCA (RPCA-OM) [Nie et al., 2014] in Table 1. The
reconstruction errors with respect to nine different reduced
dimensions from 10 to 50 are reported over 5 benchmark
data sets, including the Japanese Female Facial Expression
Database (JAFFE) [Dailey et al., 2010], UMIST face data
set [Wechsler et al., 2012], the ORL database of faces [Cai
et al., 2007], Columbia Object Image Library-20 (COIL-20)
data set [Nene et al., 1996] and the USPS handwritten digit
database [Liu et al., 2003]. All of the image data sets are
downloaded from different web sites.
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Figure 1: Recognition accuracy comparison over ORL data set. (a) 0% training images with outliers. (b) 20% training images
with outliers. (c) 40% training images with outliers. (d) 60% training images with outliers.
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Figure 2: Recognition accuracy comparison over UMIST data set. (a) 0% training images with outliers. (b) 20% training
images with outliers. (c) 40% training images with outliers. (d) 60% training images with outliers.

From Table 1, we can observe that: (1) The proposed
RPCA-AOM algorithm performs better than RPCA over all
data sets, except for slightly worse performance on a few pro-
jected dimensions. Note that both RPCA and RPCA-AOM
employ the non-greedy `1-norm maximization algorithm.
However, the proposed RPCA-AOM requires no supposition
on the zero-mean of data, however, the RPCA method de-
pends on this assumption. (2) The proposed RPCA-AOM
method performs better than RPCA-OM, except for projected
dimension 15 in ORL data set and projected dimension 35 in
USPS data set. Note that both RPCA-OM and PRCA-AOM
take the incorrect optimal mean into consideration. However,
RPCA-OM integrates the optimization of optimal mean into
the procedure of dimension reduction, which leads to expen-
sive computational cost.

5.2 Recognition comparison for robust 2DPCA
Regarding face recognition task, we design a series of experi-
ments to evaluate the performance of different robust 2DPCA
methods over the ORL database and UMIST data set, in-
cluding robust 2DPCA with greedy algorithm (2DRPCA-
G) [Li et al., 2010], robust 2DPCA with non-greedy algo-
rithm (2DRPCA-NG) [Wang et al., 2015] and our proposed
2DRPCA-AOM. Note that both 2DRPCA-G and 2DPCA-NG
depend on the assumption of zero-mean of data and incor-
rectly employ the mean of data as the optimal mean of `1-
norm based 2DPCA.

The ORL data set consists of 400 face images of 40 ob-
jects, and each object contains ten images. The UMIST data
sets consists of 575 face images of 20 objects, and each ob-
ject contains a varying number of images ranging from 48
to 19. We randomly select half of the images from each
object to form the training set and retain the rest as testing
set for both of the data sets. To illustrate the robustness of

2DRPCA-AOM, we corrupt a varying percentage of training
images with outliers and recognize testing face images in the
reduced space with the nearest neighbor (NN) classifier.

With 0, 20, 40 and 60 percentage of images corrupted in
training set, Figure 1 and Figure 2 demonstrate the compar-
isons of recognition accuracy with respect to different meth-
ods over ORL data set and UMIST data set, respectively. It
indicates that 2DRPCA-G and 2DRPCA-NG achieve worse
performance than our proposed 2DRPCA-AOM which avoids
calculating the optimal mean automatically, especially when
the percentage of corrupted training image becomes larger.
As a result, our proposed method shows better robustness to
outliers. Additionally, both robust 2DPCA methods based
on non-greedy algorithm perform much better than 2DRPCA
with the greedy algorithm, which illustrates the efficiency and
superiority of non-greedy algorithm for `1-maximization.

6 Conclusion

In this paper, we propose a novel robust PCA to learn the pro-
jection directions by maximizing the `1-norm based projected
difference between each pair of instances, instead of the dif-
ference between each instance and the mean of data. This
method automatically avoids calculating the optimal mean
based on `1-norm distance and makes the assumption of cen-
tered data unnecessary. To solve the proposed non-smooth
objective, a non-greedy algorithm is exploited with fast con-
vergence and low computational cost. Intuitively, we extend
the proposed method to its 2D version and study the corre-
sponding robust 2DPCA for image recognition. Extensive
experimental results illustrate the effectiveness and superior-
ity of the proposed robust PCA and robust 2DPCA on both
tasks of image reconstruction and recognition.
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