
Intra-Robot Replanning to Enable Team Plan Conditions*

Philip Cooksey1 and Manuela Veloso2

Abstract— Individual team members are the building blocks
of successful multi-robot teams in dynamic competitive do-
mains. The current approach to designing a team is to divide
the planning into a hierarchy by separating team coordination
and task assignment – global planning – from task planning
and execution – local planning. The global planner must
make assumptions based on simplified models of dynamics
and/or opponents, and as such certain conditions are assumed
true when globally planning but are not always true at local
execution time. In this paper, we describe several algorithms
for intra-robot replanning that allow the individual robots to
enable the conditions of their tasks. We then demonstrate
improvements in task completion when the robots are capable
of replanning their task(s) and their teammates’ task(s) in a
simplified robot soccer domain. We further show preliminary
results on learning when to replan.

I. INTRODUCTION AND RELATED WORK

Cooperative multi-robot team planners in competitive
robot domains often have limited computational time, have
poorly modeled dynamic objects, and have incomplete
knowledge of their environment. These issues remain with
the individual robots, however they can gather state infor-
mation and learn to improve their execution by choosing the
best fit replanning algorithms. Involving the team planner to
incorporate more information on every robot is not effective
or practical for highly dynamic domains with potentially
many robots. Likewise, team planners often reduce infor-
mation and complexity in order to make team planning
feasible within dynamic domains, so additional information
can hinder performance.

The standard approach to team planning in the literature
is to use a hierarchy, thereby dividing up the planning
problem involved in controlling a team of robots [1], [2],
[3]. We follow the Skills, Tactics, and Plays (STP) hier-
archy as described by [4]. This division of computation
is used to simplify the problem of controlling a team in
dynamic, competitive environments and allows planning to
happen at different abstraction layers. Skills are low level
repeatable algorithms that are specific to the domain. Tactics
combine skills towards accomplishing a more complex task
using finite-state machines, consider passing the ball which
includes Skills like driving into the ball, positioning the
ball, and kicking the ball. Plays guide the team towards

*This work is supported in part by AFRL and DARPA under agreement
#FA8750-16-2-0042, ONR grant N00014-09-1-1031, and AFRL grant num-
ber FA87501220291. The views and conclusions contained in this document
are those solely of the authors.

1Philip Cooksey is with Robotics Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA. pcooksey@andrew.cmu.edu

2Manuela Veloso is with the School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, USA. veloso@cs.cmu.edu

(a, b, l, w)

Tb TrOb Or

Fig. 1: Passing with marking: Tb needs to pass the ball to
Tr within the zone (a, b, l, w). Tb is facing the ball with the
direction arrow. Opponents Ob and Or try to remain on the
line between the other robots to block or intercept the pass.
The top image is the physical robots, middle is the simulated
robots, and bottom is a simplified representation that we will
use in this paper.

their goal(s) and they define robot roles, positions, and a
series of Tactics. Plays are changed based on defined state
variables, i.e., number of robots and ball on defensive side.
STP essentially separates planning into two levels, global
(Plays) and local (Tactics).

In competitive dynamic domains, the global planner will
assign a Play using incomplete information and simplified
models of the environment. This missing information is
often due to opponents’ adversarial behavior but can also
be attributed to the simplified models of the team members’
abilities. A Play will only change when new information
is presented at the global level that triggers a failure in its
defined state variables, so failures at the local level might not
be considered. This is due to the different requirements of the
global planner and the local planning robots with respect to
their abstraction in planning, i.e., to local information gains
and/or the global planner not fully modeling the domain.
We can especially see this in competitive domains like the

Small-Size Robot Soccer League (SSL).
The SSL league matches two teams of six omnidirec-

tional robots and each team receives the same information
(positions and headings) through overhead cameras [5].
Any further information must be generated by each team
including velocities, predicting opponents, and the physics of
ball movement at the expense of each team’s computation.
In STP, a Play may assign a pass between two robots for
reasons unknown to the local robot. Still, the computation
for completing that pass is left to the Tactic, and opponents
may make that exact pass impossible to the assigned robot.
Therefore, knowing that the global planner has made assump-
tions, we argue that robots can collect local information to
learn when to use intra-robot replanning algorithms to enable
conditions during execution to make a more successful team.

We note that Plays provide a fully instantiated team plan
for each team member robot Ti. The robots execute their
Tactics according to their assigned variables. The global
planner may at any time change the Play due to new
information, but there is no guarantee for changes in Plays
due to faults observed only at the local level. The Play was
created with the Tactics’ conditions considered true and that
the robot could complete its role using those Tactics. An
implicit assumption was that a failure to complete a Tactic
would lead to a global failure, which the global planner
would then solve. If however a local failure does not cause an
immediate global failure, then the robot will continue failing
until complete global failure. In robot soccer, a local failure
is a robot maintaining control of the ball but never finding
an open pass, which results in it driving around in circles
looking for an open pass. A global failure would be a missed
pass or stolen ball.

In this paper, we investigate intra-robot replanning al-
gorithms to enable conditions that are preventing locally
succeeding at the assigned task. The topic of intra-robot
replanning has recently been investigated and formalized
in [6], which defines a more general model for replanning
using different constraints. Replanning for individual robots
has mostly been seen as a task of minimizing the changes
to the current plan, and this same idea has been applied
to multi-robot systems. However, in competitive domains,
the robots have to compensate for the dynamic nature of
the environment, so replanning must be quick and should
be focused on enabling failed conditions with the highest
chance of success. Optimality is often ill-defined in such
complex domains so we focus on the robot accomplishing
the assigned Tactic rather than failing, subsequently failing
the team’s objective. We contribute intra-robot replanning
algorithms to enable the soccer robot to replan for failed
conditions. We further demonstrate that the robot can learn
which algorithm has the highest chance of success.

We highlight a few competitive domains that require intra-
robot replanning but acknowledge that it can be useful in
other domains like fleets of autonomous cars or drones
coordinating towards a common goal while compensating
for dynamic changes. In capture the flag [7], the team can
have limited information about the opponent’s team and their

Initial Position
Tb:loc → (0,0)
Tr:loc → (5,0)

Pass
Tb(5, 5)

Goto
Tr(5, 5)

Zone(a, b, l, w)

Receive
Tr

Fig. 2: A team plan for Tb to pass the ball to Tr.

flag. The team plan that is created is limited to their available
information. Assuming they can only globally plan on their
side, they would need to locally replan for local changes
in their information as well as their teammates’. Similarly,
in robot soccer, the global planner has partial information
about the opponent’s behavior and it makes assumptions
when creating Plays. The robot tasked with passing may
need to replan its own position or the other robot’s passing
location to help it accomplish the pass. We will focus our
efforts on a derivative of robot soccer to demonstrate the
need for intra-robot replanning to enable conditions.

II. PROBLEM DOMAIN

Passing with marking, shown in Figure 1, is a sub-domain
of robot soccer where the task is for the robot with the
ball, Tb, to pass the ball to the receiving robot, Tr, while
opponents try to steal and/or intercept the ball. One opponent
is always placed near Tb to block the initial pass. In our
example, the opponents, Oi, are placed on the line between
the two Ti to block and intercept the straight pass.

An example Play generated by the global planner is given
in Figure 2. The Play is made of Tactics: Pass, Goto, and
Receive. Each Tactic has instantiated variables defining the
assigned robot and the variable(s) for that Tactic. For Pass,
Tb is assigned to kick the ball to (5, 5). For Goto, Tr is going
to location (5, 5) to Receive the ball and must stay within
the Zone(a, b, l, w) defining a box with the left top corner
at location (a, b) with length l and width w.

The Play assigned the Role kicker to Tb and receiver to Tr.
In this case, Tr is assigned the best passing location within
its zone (the dashed-dotted square in Figure 1), but clearly
Or will attempt to intercept the ball. The assignment for the
best passing location and the generation of the probability
of success for that pass follows the approach in [8] and is
outside the scope of this paper. The Play will often fail
quickly from the opponents’ interference. It can also fail
due to randomness in the robot’s performance and kicking
ability in the physics simulator. There have been attempts
to solve this issue in robot soccer as passing is a major
requirement and machine learning has been a major focus
of this research [9]. However, our approach is to design
replanning algorithms that enable failed conditions and learn
when to use each algorithm.

III. INDIVIDUALS ENABLING CONDITIONS

In [10], they describe an approach called pass-ahead that
tries to sync the arrival of the receiver with the ball so that

they arrive at the passing location at the same time. This
approach alone does poorly in the passing with marking
domain because of the opponent Ob that blocks or steals the
ball. In [11], they demonstrated the requirement of opponent
aware algorithms for Tb to maintain possession of the ball,
which improved pass-ahead’s performance in the passing
with marking domain (Dribbling-Move in Results Section).
However, that algorithm does poorly in our example domain
where an opponent was added to mark the receiving robot.
The issue is that Dribbling-Move only focuses on replanning
to enable one condition of the Tactic Pass, which is ball
possession (HasBall). HasBall is defined as true if the
ball is closer to it than any other robot. And, the condition
being failed is Open, which is defined true if the pass can
be successful. Open is ill-defined without knowledge of the
opponents’ intercept abilities and therefore is estimated by
the global planner. Another issue is in Tb’s ability to enable
the Open condition.

Pass
Tb(5, 5)

HasBall()
Open()

Dribbling-Move
Tb(5, 5)

¬Open∨¬HasBall

Open∧HasBall

Fig. 3: Intra-robot replanning to enable Pass’s condition
HasBall through dribbling. HasBall() and Open() are condi-
tional functions (T/F) and switch what Tactic is used through
the links.

Dribbling-Move enables the condition HasBall by drib-
bling – the robot has a rotating bar in its forward direction,
the arrow in Figure 1, that applies a back spin on the ball
for maintaining possession – and can implicitly enable the
condition Open by moving the ball towards the passing
location while circumventing nearby opponents. This does
not solve the issue of opponents marking the receiver or the
ill-defined Open condition. For now, Open can be defined
as true if the probability of a successful pass, given by the
team planner, is above the defined threshold γ. The partial
Play in Figure 3 illustrates the intra-robot replanning for Tb
using Dribbling-Move. The robot changes its local position
variable towards the passing location. As previously stated,
the condition Open is only being enabled implicitly as Tb is
not attempting to find a new or better passing location. The
condition will be enabled when the global planner declares
the current pass probability above γ given some assumptions
and simplification based on the current state. Dribbling-Move
gives a relatively simple solution to enabling conditions
HasBall and Open, but it performs poorly in our example
domain.
HasBall can be defined as an independent condition.

The ability to enable it is on a single robot’s own ability
to keep the ball or get the ball. Independent conditions can
be enabled by changes in the robot’s assigned variables to
compensate for changes in the environment. Open can be
defined as a dependent condition. Its ability to be enabled

is highly dependent on the other teammate(s) and/or oppo-
nent(s). Dependent conditions can be enabled by changes in
the variables of the robots that are involved with enabling
the condition. Obviously, the opponents’ variables cannot
be manipulated directly so it can be difficult to enable a
dependent condition.

Pass
Tb(px, py)
HasBall()

Open()

Dribbling-Move
Tb(px, py)

Goto
Tr:(px, py)

Zone(a, b, l, w)

Adjust Teammate
Zone(x, y + w

2 , l, w)
¬Open∨¬HasBall

Open∧HasBall

¬Open

Zone

px, py

Fig. 4: Intra-robot replanning to more explicitly enable Open
by using the action Adjust Teammate to change the zone
variable.

To enable Open, Tb would need to change its variables
– this occurs through dribbling – and the variable(s) of the
teammate’s Tactic involved in the pass. Here we add the
action Adjust Teammate to Dribbling-Move which changes
the Zone variable of the receiver’s Goto Tactic, shown in
Figure 4. Adjust Teammate is used if Open is not enabled
when dribbling. It places the zone in front of Tb and towards
Tr as shown in Figure 5. A new location is found within the
new zone for the pass and given to Tb and Tr. Tb can now
explicitly attempt to enable the Open condition by moving
the teammate to a zone better situated for its own dribbling
abilities.

The Zone becomes a sliding window towards the right
based on Tb’s location, shown in Figure 5. This ensures that
Tb is always close to the passing Zone and the global planner
finds Tr a new pass location.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We use the passing with marking domain as we described
in our example with a field size of 9m long by 6m wide.
Tb starts at (2m, 3m) with the ball directly in front of it
at (1.86m, 3m) and opponent Ob behind it at (2.4m, 3m).
Teammate Tr starts at (7m, 3m) with the opponent Or in
front of it at (6m, 3m). The Play is always the same with Tb
passing to Tr, however the passing location changes quickly
as the global planner attempts to find the best position within
Tr’s defined zone. The zone is defined as (x = 4.5m, y =
0m, l = 4.5m,w = −6m), so the zone covers half of the
field.

The pass must happen within one minute or it is consid-
ered a failed pass. If the ball goes outside field boundaries
it is also considered a failed pass. Touching is defined as
being within a robot radius plus a ball radius to the center

(a, b, l, w)

Tb TrOb Or

(x, y + w
2 , l, w)

Tb TrOb Or

Fig. 5: Demonstrating the Zone adjustment, resulting in a
change in pass location, from the plan in Figure 4.

of a robot. If the ball is touching an opponent for five video
frames then it has been intercepted and the pass has failed. A
pass succeeds if Tr is touching the ball for five video frames.

The opponents place themselves in the direct line of sight
between the two Ti. Ob maintains a close distance of three
robot radii (3*0.09m) from Tb. Or maintains a distance of
0.5m from Tr. When the ball is kicked, i.e., its velocity goes
above 0.9m/s and it is two robot diameters away from Tb,
Or attempts to intercept the ball.
Tr uses the pass ahead algorithm to receive the ball as pre-

viously referenced. We are introducing Change-Zone which
follows Figure 4. The zone parameters were determined by
trial and error for improving the performance of passing.
We compare Change-Zone to three algorithms for Tb with
varying degrees of replanning to enable conditions:
• Base Case: Positions to face the ball and pass location,

then immediately kicks as planned (no replanning).
• Dribbling-Move, D0

M , γ = 0: Previously referenced
algorithm with γ set for any pass.

• Dribbling-Move, D1
M , γ = 0.15: Only passes if the

pass probability is above γ.
• Change-Zone, CZ : Uses D1

M with the Adjust Team-
mate action to enable the condition Open by altering
the Teammate’s Zone using: (l = 2m,w = 6m).

B. Results

Each different Tb algorithm was run five hundred times in
a physics-based simulator starting with the same formation
of teammates, opponents, and the ball. The results can be
found in Figure 6. Base Case fails almost every time and its
few successes can be attributed to random chance as the ball
is often stolen or blocked. Both Dribbling-Move algorithms
improved the chance of a successful pass by enabling the
condition HasBall, but passes were often intercepted by
Or. With the higher γ, Dribbling-Move further increased the
success rate by waiting for γ to improve (even if just slightly

Base Case D0
M D1

M
CZ

0

20

40

60

80

100

2.4

31
37

60.6

Su
cc

es
s

%
(5

00
Tr

ia
ls

)

Fig. 6: Results for four different algorithms used by Tb in
the passing with marking domain.

as 0.15 is still very low). Change-Zone further increased the
success rate by more explicitly attempting to enable Open
by moving Tr closer to find an open pass.

We used the binomial proportion test to verify that the
different success rates of the algorithms were not due to
randomness or limited sampling. The binomial proportion
test is, as defined in [12]: given a set of N1 observations in
a variable X1 and a set of N2 observations in a variable X2,
we can compute a normal approximation test that the two
proportions are equal, or alternatively, that the difference of
the two proportions is equal to 0. A standard approach is that
a p value of less than 0.05 can reject the null hypothesis. In
our case, the null hypothesis defines that there is not enough
evidence to show a statistically significant difference between
the results of the algorithms.

As shown in Figure 7 each improvement on the Base
algorithm is statistically significant when compared to pre-
vious algorithms. The initial change, D0

M , occurred when
replanning enabled the condition HasBall by dribbling. Our
contribution, CZ , shows further significant improvement by
replanning to enable the condition Open by moving the
teammate into a more beneficial zone. Our data demonstrate
the large improvement when individual robots within a team
can replan to enable all the conditions needed by their
Tactics.

The authors of the Dribbling-Move algorithm showed
the improved success rate of passing when marked by an
opponent similar to Ob. With the inclusion of the second
opponent, Or, the success rate dropped dramatically. We
can see that the improvement of Dribbling-Move mainly
contributed to the enabling of the condition HasBall and its
ability to handle the close opponent, Ob. Changing-Zone’s
improvement was in changing the teammate’s zone variable
to benefit the dribbling algorithm’s abilities. It brought the
passing location closer for tighter, shorter passes and this
helped improve the probability of enabling Open.

Binomial Proportion Test (Two-Tailed)
Algorithm Algorithm P Value
Base Case D0

M < 0.0001
D0

M D1
M 0.0452

D1
M CZ < 0.0001

Fig. 7: Testing for the null hypothesis that the two propor-
tions are equal and the difference is due to randomness.

V. CHOOSING A REPLANNING ALGORITHM

In this section, we describe how to choose which algo-
rithms to use during the execution of the robot’s Tactic. First,
we describe an approach using the worst case analysis for
choosing the appropriate algorithm. Second, we describe a
state based approach that learns which algorithm to use given
a world state. This approach allows the robot to use simpler
algorithms when possible, like the base case, while learning
when to use the more complicated ones like CZ .

A. Worst Case

The task of our robot is to pass the ball to another
teammate. This involves releasing the ball and losing all
further control over it. It is an irreversible action, which
cannot be replanned or halted. With irreversible actions, we
would like to choose an algorithm that would minimize the
worst case failure rate of the robot, because most of the
failures cause the other team to obtain the ball.

Given the individual robot must pick to execute one of
the algorithms in order to accomplish the task of passing,
we define a method of choosing an algorithm based on the
worst case. A standard approach for choosing one algorithm
over another is if the algorithm is better in the worst case
independently of the worst case actually occurring. Let Z =
{0, 1}, where 0 is a failure and 1 is a success, and p be the
function that gives the probability p(z), where

∑
z∈Z p(z) =

1, for obtaining the failure or success in Z. We then assign
a value v(z) to the values of Z. We set v(z) to be the total
number of success for the algorithm, in Figure 6. We use the
definition in [13],

p % q if min{v(z)|p(z) > 0} ≥ min{v(z)|q(z) > 0} (1)

Therefore, the algorithms would be ordered CZ % D1
M %

D0
M % BaseCase. So, the Change-Zone algorithm would

have the largest minimum value and be chosen as the default
algorithm.

B. State Based

The worst case method will choose the algorithm that
minimizes the worst case scenario, but by definition it
does not consider the actual probability of the worst case
happening. This can be seen as an issue if the worst case
rarely, if ever, happens. Another possible issue is that each
of the replanning algorithms alters the team plan causing
changes that may have been unnecessary. In a normal game,
situations like our example domain may not occur with high
probability. In other words, if we have an open pass to our

teammate with no opponents nearby there would be no point
in dribbling the ball and/or moving the teammate closer.

A better method for picking the replanning method would
then be based on the state of the world. Using the state
information, it is possible to learn the likelihood of that al-
gorithm being successful. Then we can choose the algorithm
given its likelihood of succeeding. We must reiterate that,
because the domain is dynamic and adversarial, success is
very probabilistic even in the exact same state. Our robots
move with some randomness which means that predicting the
likelihood of an algorithm being successful at any given state
will be probabilistic. The robots will likely diverge quickly
into very different states in the future as subtle differences
and randomness influence their trajectories.

We use neural networks to learn a function from world
state to the probability of success. The state is described in
the reference frame of the robot using the algorithm in order
to help generalize different situations across the field.

1) Input State:
• Tb: (X, Y) position and velocity of Tb.
• Ball: (X, Y) position and velocity of ball in robot’s

frame of reference.
• Teammates: (X, Y) position and velocity of each team-

mate in robot’s frame of reference.
• Opponents: (X, Y) position and velocity of each oppo-

nent in robot’s frame of reference.
2) Output State:
• Probability Value: Likelihood of input state leading to

a successful pass using an algorithm.
The data needed to train the neural network can be col-

lected over many runs of each algorithm in various scenarios.
We can simulate similar episodes in our example domain
with variations on ball location, opponent’s locations, and
teammate’s locations. As an episode starts we begin saving
state information for each video frame. Then once the pass
has either been received, intercepted, or gone out of bounds
(the episode ends), we label all the saved states with a
success value of 1 or a failure value of 0. As previously
mentioned, even starting in the same state does not mean the
robots will execute the same path in the future even when
using the same algorithm. There is therefore a probabilistic
nature to succeeding from a given state.

The neural network can then be trained using a supervised
learning method. Given that similar, even the exact same,
states will most likely be labeled success and failure, the net-
work will actually learn the probability of succeeding within
the training data. Therefore, the output is the likelihood of
an algorithm succeeding from a given state.

Given that we train multiple neural networks, each trained
on one algorithm, we will have the likelihood of success
for each algorithm given a state. We then must decide on
a method of choosing which algorithm to run based on
the probability value. We use the expected utility of the
algorithm as described in [13]:

p % q if
∑
z∈Z

v(z)p(z) ≥
∑
z∈Z

v(z)q(z) (2)

Predicting Success or Failure of D1
M

Data Sets Accuracy Recall Precision
Training Data 0.70 0.31 0.74
Next 200,000 0.65 0.26 0.65
Next 200,000 0.71 0.24 0.50

Fig. 8: Accuracy of predicting successes or failures for our
example domain using the algorithm D1

M .

where v(z) = z
C(ai)

and C(ai) is an ordering cost for
each algorithm, ai.

3) Preliminary Experimental Evidence: To test the state
based method, we used the open source library OpenANN
[14]. The neural network has 20 inputs, see Input State, and
1 output as the probability of success, see Output State. We
used a fully-connected network with three hidden layers with
100 neurons in each layer. We used LOGISTIC activators
for the neurons and Mini-batch Stochastic Gradient Descent
(MBSGD) to solve the supervised learning problem.

Our preliminary work has focused on determining the
accuracy of predicting the success or failure of an algorithm
using our example domain. We used the D1

M algorithm and
repeatedly ran our example domain roughly five thousand
times, gathering over 4 million states. We used two hundred
thousand states to train the network over ten thousand
iterations of MBSGD.

In Figure 8, we see that the accuracy of prediction is
between 0.65-0.71. The low accuracy can be attributed to the
randomness of a state leading to a success or failure because
of the inherit randomness in the robot’s performance. For
example, the starting position of our passing with marking
domain should be labeled as failure because on average it
fails more often than it succeeds. This is confirmed as the
start position produces the value 0.412. The neural network
will always consider that position as a failure, which brings
down the accuracy when the robot happens to succeed. In
comparison to D1

M ’s success rate in Figure 6, 0.37, the neural
network has learned a similar approximation.

The low recall performance can be attributed to the large
bias for failure in the dataset. The individual robot is started
in an disadvantaged position and the likelihood of succeeding
is already low. Similarly, when the robot actually succeeds in
a given state it has probably failed multiple times from that
exact same state in the dataset. The negative examples then
highly outnumber the positive examples leading the neural
network to perform poorly on recalling positive examples. A
possible correction for this would be to balance the samples
of positive and negative, however, this new bias would likely
decrease the precision and accuracy of predicting if the
algorithm will fail from a given state.

This preliminary work demonstrates the ability to learn the
probability of success for a given state. Future work includes
training neural networks for every algorithm and choosing
which algorithm to execute based on their predictions and
expected utilities.

VI. CONCLUSION AND FUTURE WORK

We demonstrated an increase in team performance by
providing the Tactic level with the ability to replan its robot’s
location, the ball’s location, and a team member’s variable in
order to enable the Tactic’s conditions. In our example, this
was through dribbling and adjusting the preplanned zone of
the team member. As the types of conditions were different,
independent and dependent, enabling them required a dif-
ference in what variables needed to be changed. Replanning
to enable both types of conditions clearly provides a better
alternative to failing and waiting for the global planner to
change its task.

We showed preliminary results on predicting the proba-
bility of succeeding for an algorithm. Future work has been
left to picking the algorithm with the highest expected utility
such that the robot succeeds often without defaulting to
an unnecessarily complicated algorithm. Research is also
needed to learn how to change variables in different situ-
ations. Specifically, it would be beneficial to learn the actual
zone size and zone location that improves the pass success
beyond the hard coded zone used in our experiments.

REFERENCES

[1] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of
multi-robot coordination,” International Journal of Advanced Robotic
Systems, vol. 10, December 2013.

[2] R. Simmons, T. Smith, M. B. Dias, D. Goldberg, D. Hershberger,
A. Stentz, and R. Zlot, A Layered Architecture for Coordination of
Mobile Robots. Dordrecht: Springer Netherlands, 2002, pp. 103–112.

[3] F. Pecora and A. Cesta, “Planning and Scheduling Ingredients for a
Multi-Agent System,” in Proceedings of UK PLANSIG02 Workshop,
Delft, The Netherlands, 2002.

[4] B. Browning, J. Bruce, M. Bowling, and M. Veloso, “Stp: Skills,
tactics, and plays for multi-robot control in adversarial environments,”
Proceedings of the Institution of Mechanical Engineers, Part I: Journal
of Systems and Control Engineering, vol. 219, no. 1, pp. 33–52, 2005.

[5] S. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso, “Ssl-
vision: The shared vision system for the robocup small size league,”
in RoboCup 2009: Robot Soccer World Cup XIII. Springer, 2010,
pp. 425–436.

[6] K. Talamadupula, D. Smith, W. Cushing, and S. Kambhampati,
“A theory of intra-agent replanning,” ICAPS 2013 Workshop on
Distributed and Multi-Agent Planning (DMAP), 2013. [Online].
Available: dmap13.pdf

[7] M. S. Atkin, D. L. Westbrook, and P. R. Cohen, “Capture the flag:
Military simulation meets computer games,” in Proceedings of AAAI
Spring Symposium Series on AI and Computer Games, 1999, pp. 1–5.

[8] J. Biswas, J. P. Mendoza, D. Zhu, B. Choi, S. Klee, and M. Veloso,
“Opponent-driven planning and execution for pass, attack, and defense
in a multi-robot soccer team,” in Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems,
2014, pp. 493–500.

[9] P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu, “Keepaway soccer:
From machine learning testbed to benchmark,” in RoboCup 2005:
Robot Soccer World Cup IX. Springer, 2006, pp. 93–105.

[10] J. P. Mendoza, J. Biswas, D. Zhu, P. Cooksey, R. Wang, S. Klee, and
M. Veloso, “Selectively Reactive Coordination for a Team of Robot
Soccer Champions,” in Proceedings of AAAI’16, the Thirtieth AAAI
Conference on Artificial Intelligence, Phoenix, AZ, February 2016.

[11] P. Cooksey, J. P. Mendoza, and M. Veloso, “Opponent-aware ball-
manipulation skills for an autonomous soccer robot,” in Proceedings
of the RoboCup Symposium. Leipzig, Germany: Springer, July 2016,
nominated for Best Paper Award.

[12] T. P. Ryan, Modern Engineering Statistics. Wiley, 2008, no. 124-126.
[13] A. Rubinstein, Lecture Notes in Microeconomic Theory. Dordrecht:

SUNY-Oswego, Department of Economics, 2006, pp. 87–96.
[14] A. Fabisch, “Openann,” 2017, https://github.com/OpenANN/OpenANN.

