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Abstract

Significant advances in the performance of deep neural networks have created a drive
for understanding how they work. Different techniques have been proposed to determine
which features (e.g., CNN pixels) are most important for the classification. However, these
techniques have only been judged subjectively by a human. We address the need for an
objective measure to assess the quality of different feature importance measures. In partic-
ular, we propose measuring the ratio of the CNN’s accuracy on the whole image compared
to an image containing only the important features. We also consider scaling this ratio by
the relative size of the important region in order to measure the conciseness. We demon-
strate that our measures correlate well with prior subjective comparisons of important
features, but importantly do not require their usability studies. We also demonstrate that
the features that multiple techniques agree are important have higher impact on accuracy
than those features that only one technique finds.
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1 Introduction

There has been tremendous advancement in the performance of deep neural networks (DNNs),
specifically in the task of image recognition using deep convolution networks (CNNs) Krizhevsky
et al. [2012]. However, due to the complexity of the models, there is much interest in under-
standing and explaining how the networks work. A variety of visualization techniques have been
proposed to indicate which pixel features are most discriminative for CNNs to determine their
classification prediction on a given image (e.g., Selvaraju et al. [2016]; Simonyan et al. [2014];
Zintgraf et al. [2016]). For example, Simonyan et al. uses the gradients to determine which
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pixels determine classification. Zintgraf et al. proposes occluding the image systematically and
observing the confidence scores to determine the discriminative pixels.

With such different algorithms to determine pixel “importance”, we are interested in com-
paring the regions that each one finds. Most current techniques to evaluate visualizations are
qualitative Zhang et al. [2016]; Zintgraf et al. [2016] and use human studies Selvaraju et al.
[2016] to determine which regions people believe are most discriminative. However, people’s
opinions of important features may be different than what the CNN actually uses to deter-
mine its classification. Additionally, the small number of people used in the studies leads to
challenges in replicability. In contrast to subjective measures, one recent objective method was
proposed to evaluate important pixels by perturbing a random subset and then reevaluating the
perturbed images to observe how the CNN prediction confidence changes Samek et al. [2016].
However, the non-determinism in the perturbations could introduce new artifacts in the image
which might confuse the classifier rather than evaluate pixel importance.

In this work, we also propose that feature importance should be measured objectively with
respect to the predicting CNN. Like Samek el al., our goal is to evaluate whether different
techniques identify the pixels within the image that most affect the accuracy of the CNN.
However, unlike the prior work that measured the decrease in accuracy caused by adding noise
to the important region, we contribute metrics that begin with an uninformative baseline image
and measures the increase in accuracy caused by adding the important pixels. We call this
metric Simple Confidence Gain (SCG). Our second metric - Concise Confidence Gain (CCG) -
builds upon SCG by measuring conciseness of the region of pixels required to classify the image
correctly.

Using our metrics, we contribute comparisons of three different algorithms for finding im-
portant regions of images on two different datasets - Place365 Zhou et al. [2016] and our own
dataset containing images of various floors in our building. The results from our metrics are
internally consistent and correlate well with prior subjective comparisons of important features.
However, we note that this may not always be the case because people may not know what
pixels are important.

Finally, as we evaluated different algorithms, we noticed that many of the important pixels
identified by those algorithms differ. We contribute a technique to find more concise important
pixel regions by identifying the pixel regions that are in agreement between different algorithms
(i.e., the region intersections). These intersecting regions trade-off CNN accuracy with concise-
ness and represent an alternative approach to reducing the important region size. We conclude
that our metrics can be used in conjunction with, or even to replace, the qualitative evaluation
using human studies to evaluate new importance regions and visualization techniques.

2 Related Work

A variety of deep network visualization techniques have been developed to understand CNNs
(e.g., Zintgral et al.; Selvaraju et al.; Lengerich et al.). We roughly divide these techniques
into two categories - class model visualization and image specific visualization. Class model
visualizations such as Simonyan et al.; Yosinski el al. aim to understand how the neurons in
the network contribute to the classification. Image specific visualization techniques aim to find
what features (pixels) the CNNs find most informative Zeiler and Fergus [2014]; Selvaraju et
al. [2016]; Zhang et al. [2016]; Simonyan et al. [2014]; Zintgraf et al. [2016].

In this work, we focus on evaluating image specific visualizations for the important features
that they highlight. We refer to the feature-finding algorithms as importance functions. For
example, Simonyan et al.; Zhang et al. have developed error backpropagation-based techniques
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to find the importance of different regions of an image for a prediction by computing gradients
with respect to the image. The work has been extended to evaluate activations of particular
neurons rather than pixels in images. Zeiler and Fergus have developed a technique for sen-
sitivity analysis by occluding patches in the image. Zintgraf et al. [2016] has also created a
procedure for finding importance function using occluding patches. While we evaluate our new
metrics on the three importance functions, our metrics can be applied to any techniques that
find features that are important to classifiers.

There are relatively few evaluation techniques for evaluating or comparing importance func-
tions. Selvaraju et al. use human studies to compare different importance function’s ability to
discriminate between classes. However, human studies only evaluate the quality of the func-
tion’s visualization from a human’s point of view and do not give any measure of how well the
function has captured what the network has learned. Samek et al. propose an algorithm to
objectively evaluate importance functions by randomly perturbing a small region around the
important pixels of the image and observing the confidence scores from the classifier. They do
this random perturbation sequentially in order of importance for 100 relevant pixels. The con-
fidence scores during the process are then used for comparing different importance functions.
However, since the work randomly perturbs the pixels of the images, it could introduce new
artifacts in the image which might confuse the classifier. We propose new metrics for objec-
tively evaluating importance functions. Our proposed metrics are 100 times faster than the
prior approach and are deterministic.

3 Importance Functions

We first formalize the definition of an importance function before proposing metrics for eval-
uating them. We assume that a CNN classifier C' outputs p(I = y|w), the probability of an
image I € [0,1]*V with ¢ channels (i.e., 3 for RGB) and N pixels having classification y given
the trained weights w. For clarity, we will refer to the ith pixel in the image as I[i]. Given
C and I, an importance function importance(l,C), takes as input I and C, and outputs a
heat map H € [0,1]" that contains a measure of relevance of each pixel I[i] to the class y. A
variety of importance functions, each with their own heat map, have been proposed for explain-
ing the classification predictions of CNNs. In this section, we briefly summarize three existing
visualization techniques that we will use for evaluating our new metrics.

Occluding Patches (occ), Simonyan et al. [2014] The idea behind the approach is
if a key feature in an image gets occluded, then the classifier’s confidence will fall. The heat
map rates the regions that cause large confidence drops as more important than surrounding
pixels. Specifically, a gray square patch of a fixed size, called the occlusion mask, is used to
systematically occlude parts of the input image. The occ algorithm first creates a visibility
mask V' as the inverse of the occluded patch: V[i] = 0 if I]i] is occluded and 1 otherwise.

By weighing the non-occluded regions of the image by their classifier accuracy, the algorithm
combines all visibility mask scores to generate the heat map H. The high confidence regions
are those pixels that have high values in heat map H.

S p(Loy = ylw) * V;

H=1-
J

(1)

where I, ; is the 4t occluded image and J is the number of images generated by systematic
occlusion. Note that the heat map H is a function of the size of the occluding patch, so we
can evaluate different sized patches to understand how their resulting heat maps change our
importance measures.
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Gradients (grad), Zeiler and Fergus [2014] For the gradient visualization technique,
H represents the magnitude m of the derivative of the classification confidence with respect to
the image. The magnitude of ith pixel m; represents the sensitivity of the network’s prediction
to the change in that pixel’s value and is equal to the derivative of the classification probability
p(I = ylw) with respect to I[i]. We expect the classifier accuracy to be more sensitive to
the change in values of the important features than others. Note that since the gradients are
pixel-wise importance values for the image, the heat map is generally of high entropy thus lacks
continuous important image regions.

Contrastive Marginal Winning Probability (C-MWP), [Zhang et al., 2016] For
a CNN acting on I, C-MWP models H using probabilistic Winner-Take-All(WTA) formulation
Tsotsos et al. [1995]. The WTA identifies the neurons that are relevant to the task in a partic-
ular layer using Fxcitation Backpropagation that computes the Marginal Winning Probabilities
(MWP). After identifying the relevant neurons, the heat map is generated using the most rele-
vant neurons’ receptive field— pixels the neuron acts on. The MWP heat map’s discriminative
ability can be improved by backpropagating contrastive signals to produce C-MWP heat maps.
Contrasting signals for an image belonging to class A, is the difference in the gradients of A
and not A classifier.

4 Analyzing Important Features

Given an image and classifier that determines what the image contains, our goal is to under-
stand which pixels of the image are most important to its classification. Because different
algorithms may determine different pixels as important, we are interested in a measure of good-
ness to compare different important regions. Prior work has focused on allowing users to rate
visualizations overlayed on the image. In contrast, we propose to reduce variability in subjec-
tive preferences by contributing measures that utilize the classifier itself. This proposal also
captures the relevance of the important regions to the classifier which is not captured in the

human studies.
EEH G ‘:‘
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(a) (b)
Figure 1: (a) an original image, (b) base image obtained from using Gaussian kernel Gy, (c) heat
map obtained using C-MWP where red and blue represents the most and the least important
pixels, (d) binary mask obtained after thresholding the heat map for top p=5% pixels, (e) mask
obtained after growing the regions of the mask in (d). (f) and (g) are the hybrid images created
using mask in (d) and (e) respectively using base image (b). (h) is the hybrid image obtained
using mask in (d) and a base image obtained using zeros kernel Zj.

4.1 Problem Formulation

Rather than visualizing heat maps for use by humans to judge whether the importance function
has found important parts of the image (e.g., Heat map Figure 1(c) for Figure 1(a)), we use
those heat maps to identify a subset of pixels that, when added to a baseline image, closely
matches the accuracy of the CNN classification compared to the original image.

4
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We compute a binary mask M as shown in Figure 1(d), that signifies whether each pixel is
included in the important region or not. A mask M € {0,1}* is created such that each pixel i
takes value: M[i] = 1 if important and 0 otherwise. In this work, we threshold the top p highest
value pixels of the heat map as our mask but other techniques such as graph cut Boykov and
Jolly [2001] could also be used.

Our goal is to add those pixels to a base image to capture the accuracy of the important
region compared to the original image. We define a base image I which represents the image
I altered using a kernel function K. The kernel is chosen such that it renders the pixels
comparatively less informative for classification. In this work, we have explored two such
kernels: a Gaussian kernel Gy, which blurs the image refer Figure 1(b), and a zeros kernel Zj,
with zeros in its all element values. A hybrid image I as shown in Figures 1(f) and 1(h)
contains important pixels from the mask M and less informative base image pixels using kernel
K otherwise.

Next, we propose two measures of confidence gain to reflect the proportion of confidence
that can be attributed to the important region compared to the original image. Our metrics
yield high values when the important regions are responsible for a majority of the confidence
in the original image.

4.2 Metric: Simple Confidence Gain (SCG)

The Simple Confidence Gain (SCG) measures the ratio of the improvement in accuracy of the
base image to the hybrid image containing only important features compared to the improve-
ment in accuracy of the base image to the original image. Note that we assume that the kernel
is predefined and the same for all compared masks M.

~ pInx = ylw) — p(Ix = ylw)
SOGL K, M) = p(I = ylw) — p(Ix = ylw) @

We calibrate p(I = y|w) with respect to p(Ix = y|w) to measure only the relative increase in the
classification accuracy due to the important features and not the transformed non-important
regions. SCG outputs values from 0 to 1. A value of SCG close to 1 indicates that the masked
pixels contribute highly to the classifier accuracy. Values close to 0 indicate that the mask has
little contribution.

4.3 Metric: Concise Confidence Gain (CCG)

The Concise Confidence Gain (CCG) builds upon SCG in two ways. First, it requires the
important region to produce an accurate classification. Second, it measures the conciseness of
the important region necessary to classify the image correctly. The idea of CCG is to increase
the region under M to form a new accurate mask AM as shown in Figure 1(e), such that the
classifier predicts the class y of the hybrid image Ians i correctly as shown in Figure 1(g).
There are many ways of increasing the size of the mask. For example, we can simply construct
a new mask from the heat map with an increased threshold p. In this work, we have chosen to
grow the mask using the dilate operation which enlarges the boundary regions of the foreground
pixels. With the new hybrid image, the CCG metric is calculated as:

(p(Iar.x = ylw) — p(Ix = ylw)) * N
(p(I = ylw) — p(Ix = ylw)) * Aam

CCG(I,K,AM) = (3)

where A 4)s is the area of the image masked by AM. Note that two different masks that are
originally the same size need not be the same after dilation, as it depends on the geometry of
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Algorithm 1 Procedure for calculating CCG
Input: H, I, K, p, w, y
M + GetBitMask(H, p) /* Creating the mask */
I + TransformImage(I, K) /* Creating the base image */
/* Loop until prediction matches the correct class */
repeat
Ik < CreateHybrid(M, I)
y’ = Classify (I, w) /* Predict for the hybrid image */
/* Break if the predicted the correct class */
if y’ ==y then
Tane < Ik
Aap < TotalElements(M) /* Area of the mask */
break
end if
M « DilateGrow(M) /* Grow the mask */
until
CCG ¢+ Compute with Equation 3

the mask. We divide the relative confidence by the ratio A 4p; to image size N. The complete
algorithm for finding CCG is shown in Algorithm 1.

Unlike SCG, CCG values can range from 0 to N. High values of CCG reflect both 1) high
accuracy of the hybrid image T4, x compared to the original image, and 2) conciseness of the
mask AM compared to the size of the whole image. Unlike SCG, it can be used to compare
features of different sizes. In a sense, CCG measures the density of information in a region that
can sufficiently determine the class, while SCG measures the total information in a feature set.

4.4 Agreement Between Importance Functions

In practice, many importance functions find very dissimilar important regions, which raises the
question whether regions that are in agreement between algorithms are more informative than
those that are not. In other words, pixels that several different importance functions can agree
are important are potentially more likely to be the most discriminative and have higher values
of our CCG metric compared to the regions in individual importance functions. We do not use
SCG metric for the comparisons as the size of the mask changes.

There are many different ways to find the intersection of important regions. For example,
it is possible to add two heat maps and then segment it to generate a new mask. In this work,
we take the intersection of the binary-masked regions. We will compare the accuracy of the
individual importance functions to the features that the functions have in common.

Applications Beyond Visual Domains. Our metrics make it possible to compare dif-
ferent algorithms more directly without user studies. The metrics could be used to analyze
measures other than classification accuracy by substituting its value - p(I = y|w) - with a term
that captures the new measure. Additionally, unlike the visualization techniques, our metrics
apply not only to visual domains but also to non-visual domains as long as an importance
function exists. Finally, we note that SCG and CCG could be used to evaluate which pixels are
important in an incorrect classification, i.e., by analyzing the important regions in the image
with respect to the incorrect label rather than the ground truth label.

6
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p = 25%
SGC*100 CCG*100
Floor Places365 Floor Places365
COl’lﬁg Gk Zk Gk Zk Gk Zk Gk Zk

10 43 | 34 || 31 23 114 | 98 93 7
occ 50 28 | 38 || 22 | 21 103 | 96 85 82
100 || 36 | 27 || 18 | 18 105 | 94 81 80
0 46 | 24 || 39 | 19 113 | 70 110 | 82
grad 2 61 | 31 || 43 | 20 107 | 74 112 | 88
5 57 | 30 || 44 | 25 116 | 88 116 | 90
C-MWP 71 139 | 50 | 37 || 120 | 113 || 137 | 115

grad+occ 25 | 30 || 20 15 223 | 139 || 122 | &9
C-MWP+grad || 43 | 32 || 28 | 16 239 | 169 || 155 | 122
C-MWP+occ 29 | 30 || 17 | 13 225 | 171 || 154 | 114
p = 5%
10 25 | 22 || 20 | 16 161 | 132 || 103 | 88
occ 50 16 | 19 || 14 | 13 135 | 136 96 86
100 || 20 | 22 || 11 12 119 | 113 91 84
0 18 1 22 ] 26 | 14 163 | 70 128 | 83
grad 2 35 128 || 29| 15 237 | 98 128 | 94
5 31 | 22 || 28 | 18 189 | 122 || 130 | 96
C-MWP 40 | 22 27 21 208 | 162 || 162 | 125
grad+occ 6 | 18 7 9 209 | 166 || 133 | 103
C-MWP+grad || 16 | 22 || 11 9 330 | 230 || 186 | 137
C-MWP+occ 7 |15 4 5 249 | 269 || 179 | 133

Table 1: Average SCG and CCG (*100) for individual masks with p = 25% and 5%. C-MWP
performs best (bold) in almost all datasets, base image kernels, and p values. The intersection
of all pairs of importance functions were also tested. Bold values show that CCG is higher for
the pairs than the best single important region. For the pairs of functions, patch size for occ is
10 and dilation for grad is 5.

5 Experiments

We performed experiments on two different datasets and the three importance functions. We
first describe our datasets and the corresponding CNNs. Then, we present our experiments for
evaluating the different important functions using our proposed measures. Finally, we use our
metrics and the datasets to compare the accuracy of the individual importance masks to those
features that different masks have in agreement.

5.1 Datasets and Classifiers

We chose a scene recognition task because it is challenging for a person to determine which
part of an image is most important to classification compared to object detection tasks in which
the object within the image should be most important. We expect subjective analysis of scene
recognition visualizations to be less consistent because there are many areas of the image that
may affect scene classification.

Building-Floor. When a robot navigates across many floors of a building, it can be

7
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challenging to determine which floor it is currently on. We collected the Building-Floor dataset
in one of our buildings. Each image contains the scene just outside the elevator from six different
floors of the building. The goal of the classifier trained on this dataset is to recognize the floor
the image belongs to.

For each of the floors in the building, ten images were taken at specific locations that our
robot stops at outside the elevators, with slight variation in position. To simplify the analysis,
all the images were taken at the same time of the day, and the effects of people moving around
in the building are not considered. The training data consists of three images, and remaining
seven images form the testing dataset.

In order to classify the floor for each image, we chose to use a CNN based on Siamese
architecture Bromley et al. [1993], because it has been shown to perform well in one-shot learning
problems Koch et al. [2015]. Our training network of nine layers followed AlexNet Krizhevsky
et al. [2012] with an input size of N=227x227, in a modified Siamese architecture proposed in
Sun et al.; Zheng et al., which combined the identification— Softmax, and the verification loss—
Contrastive, for better performance. We combined identification and verification loss with a
pre-trained network to reduce overfitting which could happen when the complexity of network
is higher than that of the data. During training, the first seven layers of our network were
initialized from Places205-AlexNet which was trained in the Places205-Standard dataset and
provided by the authors Zhou et al. [2014]. The remaining two layers were trained from scratch.
During training, the contrastive loss was utilized in the eighth layer which is a dense layer of
1000 units, while the softmax loss was employed in the ninth layer. During testing, our network
was able to classify all the images in the dataset correctly.

Places365-Standard. The Places365-Standard dataset Zhou et al. [2016] contains indoor
and outdoor images from 365 categories. We used the Places365-AlexNet model with an input
size of N=227x227, provided by the authors, which was trained using ~1.8 million images. For
testing, 200 random images were selected from the dataset without any other consideration like
ground truth label.

5.2 Experimental Procedure

The three importance functions each required chosen parameters. For occ, the heat map is
a function of the size of the occluding patches. For our evaluation, we varied the size of the
occluding patches € {10,50,100} pixels. grad’s heat map H is of high entropy, so we dilate
the raw heat map 0, 2, and 5 times with a 3x3 kernel. Dilating smoothens the heat map and
improves the continuity of important regions as shown in Figure 2(a). For C-MWP, we use H
from the pool2 layer for both of the networks as we lose the spatial accuracy at higher layers.
For our C-M WP implementation, we used the source code provided by the authors.

Given the heat maps generated by each importance function, we then created the binary
masks using simple thresholding to ensure that p% (p = 5% and 25%) of the top features
are consistent across tests. To create the base images, we used two different techniques - a
Gaussian kernel Gy, of size 17*17 for creating the blurred base images and a zero kernel Zj, to
substitute black for the non-important pixels. In order to create the accurate hybrid image, we
grow the regions of the mask using a 3x3 dilate operation. When testing the common features
in agreement between importance functions, we evaluated all pairs on both datasets, namely
grad+occ, C-MWP+grad, and C-MWP+occ. For the experiments in agreement with occ, we
have fixed the patch size to be 10, and for grad, the number of dilating operations is 5.

During the experiments, the images where p(I = ylw) — p(Ix = y|lw) and p(Iapk = ylw) —
p(I;, = y|lw) are less than zero are not considered, as it violates our assumption that K renders

8
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Figure 2:  (a) The image masks for the (top) occ importance function and (bottom) grad
importance function generated with the parameters p=25% and with dilation = {0, 2, 5}
respectively for one image from the Building-Floor dataset (left three images) and one image
from the Places365 dataset belonging to the class amusement station (right three images). (b)
A side by side comparison of occ(patch size = 10), grad(dilation = 5), and C-M WP respectively
on an image from the Building-Floor and the Place365 dataset (p=25%).

Figure 3: A side by side comparison of the three pairs of importance functions (grad+occ, C-
MWP+grad, and C-MWP+occ respectively) on an image from the Building-Floor dataset and
the Place365 dataset (p=25%).

the pixels less informative for the classifier. An example for such a case could be an image
belonging to the class night, using a zero kernel Z; will make it the best image for the class.
In both, the datasets less than 5% of the images violates this assumption. Additionally, some
images were omitted for a specific test condition. During CCG calculation, we ignore the images
where the M had to be grown more than 50 times in order to avoid growing the mask too much
beyond the original mask. In practice, this was an issue for some test images with p=5%, about
5% of the test images were omitted from each dataset with this condition.
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6 Results And Discussion

Evaluating Importance Functions. In total, 38 and 180 images were used for testing in
Building-Floor and Place-365 dataset respectively. The quantitative results of the evaluation
of the individual importance function’s masks are shown in Table 1. The masks obtained from
varying the respective parameters for occ and grad on one image from each dataset are shown
in Figure 2(a)(top) and 2(a)(bottom). For occ, we find that the patch size of 10 on average
performs better than 50 which is better than 100. occ rates all pixels covered by large occlusion
patches as important when only a small area under the occlusion may actually be important.
A patch size of 10 occludes smaller regions of important features and are more concise, and
hence better capture what the network has learned. For grad, dilating the region 2 and 5 times
performs as well or better than not dilating the heat map. When the important regions have
high entropy (e.g., 0 dilations), the hybrid image is not informative for the classifier.

A side by side comparison of the mask obtained for occ with patch size=10, grad with
number of dilations=5, and C-MWP are shown in Figure 2(b). Among the three, on average
C-MWP performs the best, followed by grad according to both metrics, which can also be
qualitatively seen in Figure 2(b) with a bus station example. In the figure, C-M WP captures
the more discriminative features like the bus wheel and the floor for the image belonging to
the bus station while the other techniques capture non-relevant regions like the buildings. Our
metrics consistently find that the C-MWP importance function outperforms the others across
a random sample of scenes which demonstrate the robustness of our metrics to large variations
in features and image labels.

Effect Of Varying Parameters. We varied p = 5% and 25% as the size of the mask.
We find that SCG metric was higher for larger masks and CCG was higher for smaller ones.
This indicates that when the percentage of the image decreases so does the size of important
regions leaving a more concise area. However, the larger mask size does not increase the mask
proportionately. CCG finds that the smaller area is sufficient for achieving “high enough”
accuracy while SCG values the higher accuracy achieved with more pixels. Selecting values of
p for future evaluations of importance functions should take this tradeoff into account. CCG
on average dilates the accurate mask for 10 (p = 5%) and 6 iterations (25%) respectively.
Although we did not analyze kernel parameters extensively, our initial experiments showed
that the parameter did not significantly affect the metrics nor relative ranking between the
importance functions.

Agreement Between Importance Functions. We then analyzed the features that were
in agreement or in common between different importance functions (results shown in Table 1
and the masks are visualized in Figure 3). The in-common features resulted in higher average
CCG values than those computed using individual important features, as predicted. However,
the in-common average SCG values are lower than the individual ones, because SCG considers
only the amount of information gained and not the density or conciseness of the features like
CCG.

There are far fewer discriminative features that pairs of importance functions have in com-
mon (Figure 3) compared to those found by individual functions (Figure 2(b)). This result
is most apparent in the Building-Floor dataset, where the in-common importance masks have
captured the glass door and the hallway behind it while the individual masks have captured
other features as well. Subjectively, we agree that the glass door is the most discriminative
feature of that image and of the floor because it is the only floor with a glass door. Similarly,
in the image from the Places365 dataset, in-common importance masks capture only the bus
while the individual functions capture additional features.

10
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Among all combinations of importance functions for agreement, C-MWP+grad performs
better than C-MWP+occ by a small margin. And, both C-MWP+grad and C-MWP+occ
outperform grad+occ by a large margin. Because C-MWP performs the best individually
followed by grad, it makes sense that the features in agreement would also perform better. We
have also conducted experiments to find the intersection of all three importance masks and
observed that the CCG scores were on an average higher and SCG scores were lower than the
ones of common importance masks for two importance functions.

We conclude that finding common features from different importance functions result in a
more concise region of important features, which can be beneficial for preventing information
overload to humans for visualization as well as determining the most discriminative pixels for
classification.

Quantitative vs Qualitative Evaluation. Finally, we compared our metrics to prior
findings based on subjective results!. Our metrics find that C-MWP outperforms the other
two by a significant margin, followed by grad and then occ. This result matches the conclusion
in Zhang et al. which compares C-MWP and grad qualitatively and shows that the former is
able to produce better localization of objects.

However, it may not necessarily always be the case that our objective metrics match the
subjective results, when the classifier uses pixels that are different than what a human would
find important. We emphasize that our metrics capture the features that the DNN actually
uses to classify, and therefore the direct correlation or comparison to subjective approaches is
not necessarily possible.

7 Conclusion

Prior work to evaluate regions of images that are most discriminative for classification has been
largely subjective, depending on humans to rate visualizations. In this work, we contribute two
metrics — SCG and CCG — to address the need for an objective measure to assess the quality
of different feature importance measures. The principle behind both the metrics is to compare
the proportion of the classifier accuracy that is attributed to the important features. Our CCG
metric also takes into account the conciseness of the region and requires the classifier to classify
the image accurately.

We have used the metrics to compare three visualization techniques on two scene recognition
datasets and demonstrate the differences between the metrics and importance functions with
different parameters. Our results correlate with prior subjective evaluations, although this
result is not guaranteed. We demonstrated that the features that appear in multiple importance
functions result in higher CCG scores, i.e., they are a more concise set of better discriminative
features than a single importance function. We conclude that our metrics can be used in
conjunction with or in lieu of subjective human studies to objectively evaluate importance
functions towards understanding and explaining CNN classification.
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