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Abstract

A novel design of a three dimensional localiser intended for

autonomous robot vehicles is presented.  A prototype is implemented

in air using ultrasonic beacons at known positions, and can be

adapted to underwater environments where it has important

applications, such as deep sea maintenance, data collection and

reconnaissance tasks.  The paper presents the hardware design,

algorithms for position and orientation determination (six degrees of

freedom), and performance results of a laboratory prototype.  Two

approaches are discussed for position and orientation determination -

(i) fast single measurement set techniques and (ii) computationally

slower Kalman filter based techniques.  The Kalman filter approach

allows the incorporation of robot motion information, more accurate

beacon modelling and the capability of processing data from more

than four beacons, the minimum number required for localisation.

                                      
1  This work was supported by a Monash University Special research grant.
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1. Introduction

Untethered underwater robot vehicles present challenging

problems to the robotics researcher over conventional wheeled

vehicles operating on a plane surface due to the extra degrees of

freedom in movement and lack of rigid control1,2,3,4,5.  Localisation

in difficult environments, such as in dark or muddied waters with

temperature gradients and varying currents, is an important research

issue, especially in light of the fact that these conditions are present

over most of the Earth.  The exploration and exploitation of undersea

regions has immense potential which can be achieved through

autonomous undersea vehicles with the ability to determine their

position accurately in three dimensions.

The three dimensional localiser described in this paper can

measure the full six degrees of freedom of position and orientation.

Untethered physical autonomy is a feature of this localiser since

neither physical connections nor communication links to the

environment are necessary.  Applications to autonomous airborne and

underwater robot vehicles are feasible, even in poor visibility

conditions.  The localisation system relies on artificial beacons and

hence is independent of environmental features, such as a sea-bed or

underwater structures and can operate in open space where no

identifiable features exist.  Other approaches to localisation can

exploit environmental features1,3,5.  The paper describes algorithms

for robustly determining position and orientation so that sonar

reflections and obscured beacons have little effect on accuracy.

A localiser based on three artificial beacons has been reported

that produces two dimensional position from the intersection of

hyperboloids and relies on under-water pressure sensors for the
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depth4.  Other localisation systems exist for underwater navigation,

such as the SHARPS system2 which reports the vehicle 2 D position,

heading and roll using a beacon system.  The work presented here

uses a fourth beacon for determining depth, and Kalman filtering is

employed for optimal position and orientation estimates with the

rejection of spurious data.  Orientation is available from the system

presented here due to the receiver array structure employed.  The

system presented here is novel in the sense that it produces robust

estimates of all the six degrees of freedom of position and orientation

with the one sensor.

The work described here is an extension of a two dimensional

localiser6,7.  This paper significantly improves on previous work on a

three dimensional position determination algorithm8 and orientation

determination9.  The organisation of the paper is as follows:  In

section 2 the structure of the localiser is introduced and section 3

outlines the hardware design of an airborne prototype.  In Section 4

two position determination algorithms are presented, one derived from

geometrical constraints and the other taking into account models of

robot motion and beacon behaviour using an Iterated Extended

Kalman Filter.  In section 5, orientation algorithms are derived, and

results of experiments on the prototype are summarised in section 6.

Finally future work and conclusions are presented in section 7.

2. Overview of the 3-D Localiser

The localiser requires at least four fixed beacons in known non-

coplanar locations.  For example, three beacons could be placed on

the surface of water and the fourth suspended underwater.  In the

prototype described in this paper beacons are placed at the coordinate

system origin and on each of the axes as shown in figure 1.  The
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beacons fire ultrasonic pulses that are received by the receiver array

onboard the robot.

Z

X Y

Receiver array

Beacon 4

Beacon 1

Beacon 2

Beacon 3

Figure 1 - Overview of Localiser (not to scale).

The beacons fire in a regular sequence with fixed inter-firing period as

illustrated in figure 2.  Note that beacon 1 emits a double pulse for

initial identification by the receiver.  Once beacon 1 is identified, the

double pulse can be ignored, since the time of arrival uniquely

determines the beacon number thereafter.  The beacon design is

similar in concept to the 2-D localisation system and is described in

more detail elsewhere6.  The beacons are required to be synchronised

to each other, a common feature of many navigation systems.  The

synchronisation can be achieved via wiring interconnections as is

done in the air prototype or via more sophisticated local time keeping

and message passing approaches as in the Loran-C10 navigation

system.
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Figure 2 - Beacon Firing Sequence (not to scale).

3. Receiver Hardware Design

The receiver array is spherical in shape and consists of an array

of 32 ultrasonic receivers positioned on the faces of a truncated

icosahedron as shown in figure 3.  This arrangement orients all

receivers so that their angular sensitivity adequately covers a full solid

angle.  There are two types of receivers - pentagonal receivers (connect

to 5 adjacent receivers) and hexagonal receivers.  The directions of a

pair of adjacent receivers differ by 37.3 or 41.8 degrees, depending on

whether the pair consists of two hexagonal receivers or one hexagonal

and one pentagonal receiver.  The worse case of 41.8 degrees

corresponds to an angular sensitivity of       -15 dB with respect to

straight ahead.

The organisation of the 32 receivers for the interfacing to an 8

bit microprocessor is done by "colouring" the receivers with four

colours so that no two adjacent receivers share the same colour, as

shown in Figure 4.  The colouring allows receivers to be interfaced in

four groups where at most one receiver within a group is active for any

arrival pulse direction.  Interference is thus avoided within a group

interface where signals are added before being rectified for envelope

extraction.
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The microprocessor interface circuit in figure 5 allows three

modes of data interrogation:  (i) the envelope of the sum of like

coloured receiver signals, (ii) the envelope of the sum of all receiver

signals (iii) the envelope of each receiver individually.  The arrival time

can then be logged accurately (within 40 µsec) and the closest receiver

found.  Due to the slow rise time of the received pulse envelope (0.5

msec), the closest receiver will have the maximum envelope amplitude

just after a threshold has been exceeded by the sum of receiver

signals.
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Please use photo original submitted with first draft.

Figure 3  Photo of Receiver Prototype Construction
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Figure 4  Receiver array colouring.
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Figure 5 Receiver Interface Circuitry.

The sequence of microprocessor interrogation begins by

sampling the sum of all receivers in a tight loop until a threshold is

exceeded.  This time is recorded as the raw arrival time which is later

compensated for the amplitude of the received pulse and the slow rise

time.  Each of the four coloured group sums is sampled to find the

maximum colour, and then eight receivers are sampled to find the
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"maximum receiver" within this colour and hence overall.  The

maximum receiver provides an approximate estimate of the arrival

direction of the pulse and is used to determine the orientation of the

receiver.  Thus, 12 receiver samples are necessary to find the

maximum receiver as opposed to 32 that would be required with no

receiver colour grouping.

4. Position Determination

Two techniques are described for 3D position determination.

The first technique, called the geometric position algorithm, requires

little computational time.  The second is based on an Iterated

Extended Kalman Filter and is superior in accuracy, flexibility and

output rate, but requires a significant number of floating point

operations per measurement.

4.1. Geometric Position Algorithm

An iterative algorithm is derived in another paper8 based on the

intersection of hyperboloids.  In this paper, a more concise derivation

of the same algorithm is presented based on the gradients of three

scalar fields.   The scalar fields consist of the difference in distances

from a reference beacon to the other beacons.  Differences in

distances are considered since the absolute distances are unknown.

To elaborate on this, consider the arrival time, ti, corresponding to

beacon i (1..4)

t i T t d ci i=  ( -1) /+ +0  (1)

where T is the (known) beacon inter-firing period, t0 is the (unknown)

time when beacon 1 fires, di is the distance to beacon i and c is the
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speed of sound (known).  In order to eliminate the unknown t0,

differences in distances are employed.

Suppose the robot vehicle is at position (x,y,z) and beacon i at

position (xi,yi,xi) with respect to an absolute coordinate frame.  Let dij

be the difference in distance dj-di, between the two distinct beacons i

and j.

  d x x y y z z x x y y z zij j j j i i i= − + − + − − − + − + −( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2  (2)

The difference in distance dij can be considered as a scalar field.  The

aim of the position determination algorithm is to find the three

dimensional position that has the required differences in distance to

match the measurements d12, d13 and d14 available from the

localiser receiver.  The approach taken is to start with an estimate of

the position and repeatedly move by δδr until errors in the differences

of distance, δdij, are sufficiently small.  The errors in differences of

distance determine the next move via the gradient of the scalar field

dij as shown below.

The gradient of dij, denoted by ∇ d  ij , is obtained by

differentiating equation (2) with respect to each coordinate to give the

following simple expression

∇ = −d u uij j i  (3)

where ui is the unit distance vector from beacon i to the robot.  The

required incremental displacement vector, δδr, can be expressed in

terms of a new set of three basis vectors, called a biorthogonal basis,

where each basis vector is orthogonal to two of the gradient vectors
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and also self orthogonal.  The coordinates, A, B and C, of δδr with

respect to the biorthogonal basis are defined by

δr d d d d d d13 14 14 12 12 13= ∇ × ∇ + ∇ × ∇ + ∇ × ∇A B C( ) ( ) ( ) (4)

where ×  is the vector cross product.  To a first order linear

approximation, a small move δδr will produce a change in dij of δdij if

δ δr dij• ∇ = dij   (5)

where •  is the vector dot product.  Applying equation (5) to (4), allows

solution for A, B and C as follows:

A
d

B
d

C
d

=
∇ × ∇ • ∇

=
∇ × ∇ • ∇

=
∇ × ∇ • ∇

δ

δ

δ

12

13

4 2 3

14

2 3 4

( )

( )

( )

d d d

d d d

d d d

13 14 12

1 1 1

1 1 1

 (6)

Applying the vector identities

( ) ( ) ( )x y z y z x z x y× • = × • = × •  (7)

to equation (6) and substituting in equation (4) gives

δ δ δ δ
r

d d d d d d
d d d

13 14 1 1 1 1

13 14 12

= ∇ × ∇ + ∇ × ∇ + ∇ × ∇
∇ × ∇ • ∇

d d d12 13 4 2 14 2 3( ) ( ) ( )

( )
  (8)

The expression in equation (8) can be shown, not surprisingly, to give

the same result if the reference beacon 1 is replaced by any other

beacon and therefore the choice of beacon 1 as reference is arbitrary.
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Equations (1) and (3) combined with (8) define the iteration step for

the solution of position.  Equation (8) also allows the error in position

to be estimated from errors in the difference in distances, δdij.

Each new position can be calculated in a few milliseconds on an

80286 16MHz computer with only a 3 or 4 iterations required for

convergence.  The most significant component of the measurement

delay is the inter-firing period which has been designed so that

reverberating pulse amplitudes decay below the receiver threshold.

Measurements are performed every 900 msec by the prototype.

4.2. Iterated Extended Kalman Filter for Position Estimation

Kalman filtering is a well established technique for estimating

the state of a system in the presence of noise and the unfamiliar

reader is referred to Jazwinski11 for details.  The Extended Kalman

filter implementation of the localiser exploits previous estimates of

position by using knowledge about the robot motion and beacon

behaviour to smooth the data.  The previous geometric position

algorithm does not exploit this information since it processes each set

of four arrival times in isolation, ignoring the previous robot position

and subsequent motion that may have taken place.  The Kalman filter

approach also allows the rejection of spurious arrival times which can

arise if an indirect path is taken by a pulse from beacon to receiver.

Given that the measurement and state noise is Gaussian, the Kalman

filter provides the optimum minimum error variance estimate of the

position.  Moreover, the position estimate is updated each time a

beacon fires, thus increasing the frequency of localisation by a factor

of four.  The estimated error variance of the position estimates is also

available from the Kalman filter.  Finally, the Kalman filter
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implementation is easily generalised to more that four beacons, for a

more robust solution.  The cost of these advantages is increased

processing time.

On each pulse arrival, the Kalman filter estimates the n

dimensional state of the system, denoted x, given a new measurement

vector y.  The state in our case is the 5 dimensional vector

x = [ ]x y z T t f
T (9)

which consists of the robot position, (x,y,z), the beacon inter-firing

period, T, and the beacon firing time, tf.  The state transition

equations predict the state at the next time step, x(n+1), given the

current state, x(n), and allow for uncertainty by incorporating noise

components:
x . x w

. x

( ) ( ) ( )

( )

n n n

n

w

w

w

w

x

y

z

T

+ = + +

=

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

+

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

1 1
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 1 0

Φ

 (10)

Where ΦΦ is the state transition matrix and w(n+1) is zero mean white

noise with covariance matrix Q.  The white noise components wx, wy,

wz and wT are assumed to be independent with variances σx2, σy2,

σz2 and σT
2.  The standard deviations σx, σy, σz are chosen to be of

the same order as the maximum movement anticipated in each axis in

one time step, and σT chosen to represent drift in timing due to

temperature variations in the beacon control circuitry and local time

base of the receiver.

Once state prediction has been performed, the state is then

adjusted by the incorporation of a measurement vector.  The
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measurement vector is simply the one dimensional arrival time,

denoted ti where i is the beacon identity.  The formulation of a Kalman

filter requires the measurement to be expressed as a function of the

state, rather than the more difficult problem of expressing the state in

terms of the measurements as has been performed in the previous

section.  The arrival time ti can be expressed as:

t t x x y y z z ci f i i i= + − + − + −( ) ( ) ( ) /2 2 2  (11)

When the function is non-linear, as is the case in equation (11), the

Iterated Extended Kalman filter can be employed to iteratively

linearise the function about the estimate on each step7,11.  The

measurement noise variance needs to be specified, and this was

measured directly from experiments at fixed locations and found to be

approximately constant.

In practice, some measurements are grossly in error due to

echoed arrival times.  If the direct path between a beacon and the

localiser is obscured, and the pulse may take an indirect path, either

diffracted around an obstacle or reflected off another object.  These

echoed arrival times need to be rejected, otherwise divergence of the

filter may result or, at best, large errors in position estimation may

occur.  The criterion for rejection is based on a validation gate12

which rejects a measurement when the estimated number of standard

deviations the measurement is from its expected value (available from

the Kalman filter) exceeds a threshold, say 3 standard deviations.  A

validation gate may cause valid measurements to be rejected

occasionally in the normal course of events, and even frequently when

the state transition noise variances σx2, σy2, σz2 are set unrealistically

low for the type of robot motion encountered.
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The geometric approach described in the previous section is

unable to reject echoed arrival times when four beacons are employed,

since no past data is used as in the Kalman filter nor is there any

measurement redundancy in the four arrival times alone.  When

redundant beacons are employed, beyond the four required, geometric

arguments can be used to reject late arrivals as is performed in a 2 D

version of the localiser6.  The angle of arrival of a pulse, derived from

the maximum receiver, can also be used to reject those echoed pulses

which arrive from a grossly different direction.

It is possible, but unlikely, that some arrival times are delayed

only slightly rather than grossly.  This may occur when a diffracted

path is taken around a small obstacle that differs little from the direct

path to a beacon for example. Unfortunately, there is no way of

distinguishing these errors from genuine random noise perturbations

of the arrival time unless they persisted for a long period of time.  The

effect on the Kalman filter is that a small temporary bias will be

introduced in the position estimates.

Due to the computation involved with matrix manipulations, the

processing time for the Kalman filter algorithm is considerably longer

than the previous approach.  On a 16MHz 80286, measurements

could be processed in real time - that is 230 msec per measurement

step.  The Kalman filter software was coded in C++ using a class

library written by the author applicable to any Kalman filtering

application.

Further measurements can easily be incorporated into the

localiser Kalman filter, such as dead-reckoning of movements7,

underwater depth sensors4 or inertial navigation devices.
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5. Orientation Determination

For each beacon firing, the receiver array reports the closest

receiver transducer to the beacon.  These direction measurements are

used for determining the orientation of the robot.

Two approaches, along the lines of the position determination,

are considered for orientation determination.  The first technique

relies on a set of four direction measurements to geometrically

evaluate the orientation of the receiver array. The second technique

employs an Iterated Extended Kalman filter which allows

measurements to be smoothed in accordance with knowledge of

motion statistics.

5.1. Geometrical Orientation Algorithm

The orientation of the robot can be determined from the arrival

directions of pulses with respect to the robot from two beacons and

the robot position.  The 3-D rotational transformation that aligns the

two arrival direction vectors in local robot coordinates with vectors to

the two beacons in global coordinates is derived below.

The derivation proceeds in three stages.  Firstly, the general

form of the transformation that rotates a given vector to another

vector about the three dimensional axis perpendicular to both vectors

is derived.  Stage two uses such a transformation to match the

normals of the first to the second of two planes defined by: (i) the two

local arrival direction vectors and (ii) the two beacon global vectors.

Thirdly, working on the now common plane, the transformation that

matches the bisectors of the vectors (ii) and the transformed vectors (i)

is derived.  The bisector is chosen since the angles between the

vectors in (i) and (ii) may not be exactly equal.
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Three dimensional vectors are represented in the form of

column vectors v = [x y z]T.  The orientation is obtained from the 3x3

transformation matrix Tfinal, derived below.  Each column of Tfinal

represents the directions of robot axes in the world coordinate frame.

Firstly, the transformation is derived that rotates a unit vector v

to a unit reference vector vref about the axis orthogonal to both

vectors.  This is defined by a rotation of angle α about the axis v vref× ,

where α is defined by sin( )α = ×v vref  and cos( ) v vrefα = • .  The

transformation matrix T can be obtained by a combination of

rotations about the coordinate axes that are described in 13 (in terms

of row vectors rather than the column vectors used here):

T v vref( , ) . . . .= − −R R R R Rx y y x
1 1

α  (12)

where R Rx x
T− =1  and R Ry y

T− =1   are given below in terms of the direction

cosines of the axis of rotation   [cx cy cz] = unit(v vref× ):

Rx =
+

−

+

+ +

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

1 0 0

0
2 2 2 2

0
2 2 2 2

cz

cx cy

cy

cx cy
cy

cx cy

cz

cx cy

 (13)

Ry =

+ −

+

�

�

�
�
�
�
�

�

�

�
�
�
�
�

cx cy cx

cx cx cy

2 2 0

0 1 0

0 2 2
 (14)

Rα

α α
α α=

−�

�

�
�
�

�

�

�
�
�

cos( ) sin( )

sin( ) cos( )

0

0

0 0 1

 (15)

The rotation transformation to match normal vectors of planes

defined by the receiving elements n1 and n2 with the unit vectors to
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the corresponding beacons b1 and b2 is derived below.  If either n1

and n2 or b1 and b2 lie in a straight line, there is no unique rotation

to match the vector pairs and the problem is ill-conditioned.  Thus the

pairs of vectors are chosen from a cycle of four beacons to have the

maximum absolute sine of angle between them.  The planes defined

by the vector pairs are matched with Tplanes given by

Tplanes T n1 n2 b1 b2= × ×unit( ), unit( )� � (16)

The angles between the pairs may not be the same in practice

due to the discretisation in the receiver normal vectors (ie there are

only 32 of them for a full solid angle).  The approach taken is to match

the pairs so that the error is minimum and the same for each vector.

The bisector vectors, which now lie in the same plane, are matched, to

produce the final transformation:

Tfinal T Tplanes n1 n2 b1 b2 Tplanes= + +.unit( ), unit( ) .� �  (17)

The transformation Tfinal can be converted to the roll, pitch and yaw

angles (described in the next section) by referring to Graig14.

5.2. Iterated Extended Kalman Filter for Orientation Estimation

There are three degrees of freedom of orientation, and these are

represented by nine elements of the transformation matrix described

in the previous section.  Such a redundant state representation in a

Kalman filter implementation would result in complexity and

inefficiency.  Instead, the orientation is represented by a state vector

consisting of roll, pitch and yaw angles, φ, θ, ψ15.  The transformation

matrix RPY(φ, θ, ψ) that rotates the world axis frame to the axes of the
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robot is defined by the ordered rotations around each coordinate axis

as follows:

RPY(φ, θ, ψ) = Rot(z, φ) Rot(y, θ) Rot(x, ψ) (18)

where Rot(x, ψ) is a rotation around the x-axis by angle ψ and

similarly for Rot(y, θ) and Rot(z, φ).  These are defined in terms of

matrix transformations in McKerrow15.  Note that the orientation

representation is not unique for roll, pitch and yaw angles between -π

and π and the restriction of a pitch angle lying between -π/2 and π/2  is

necessary to make the representation unique.  Furthermore, if the

pitch angle is equal to π/2 or -π/2, only the sum or difference of roll and

yaw angles is unique, and then the roll angle can be arbitrarily

defined to be zero to achieve a unique representation14.

In the Kalman filter implementation, the state transition matrix,

ΦΦ, is the identity matrix.  The measurement equation relates the

direction cosines of the arrival pulse direction relative to the local

robot axis frame, to the filter state (roll, pitch and yaw angles).  The

measurement vector of arrival direction cosines [α β γ]T is expressed in

terms of the state for beacon i:

α
β
γ

φ θ ψ
�

�

�
�
�

�

�

�
�
�

=
−
−
−

�

�

�
�
�

�

�

�
�
�

RPY
d

x x

y y

z z

T

i

i

i

i

( , , )
1

 (19)

where RPYT is also the inverse of RPY.  The position of the robot (x,y,z)

is available from the position determination algorithms described

above.  The noise variances associated with the measurements can be

estimated based on the discretisation caused by the 32 receiver
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transducers in the receiver array geometry.  It is worth noting that the

measurement errors are not strictly independent from sample to

sample, since they are dominated by discrepancies between receiver

transducer orientation and the actual arrival direction due to receiver

angle discretisation.  If the robot is stationary these errors will be

nearly identical from measurement to measurement.  The Kalman

filter will then optimistically estimate the state covariance matrix.

This covariance matrix approaches the zero matrix if the state

transition noise covariances are zero, as is the case when the robot is

known to be stationary.  If the state error covariance matrix is

unrealistically small, future measurements will be underweighted or

rejected if a validation gate is in place.  A practical solution is to

ensure that the state transition covariance matrix is sufficiently large

in all cases.  The result is a sub-optimal filter that nevertheless

performs well in practice.  The orientation estimate can be fused with

other sensors such as compasses, gravitational field sensors, and

inertial navigation devices very simply by using the same Kalman filter

structure with additional measurement equations.

6. Performance of the Prototype

6.1. Position Accuracy

Beacons were positioned at 2600 mm along each of the

coordinate axes in a corner of the laboratory as in figure 1.  The speed

of sound was estimated to be 340 m/s based on the temperature

readings.  The 3D position was measured manually with a tape

measure at five positions and results of the localiser collected and

summarised in Table I and Table II.  The apparent errors are due to

♦ tape measurement errors of up to 10 mm.
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♦ arrival time estimation errors of the ultrasonic pulses due to

the simple envelope thresholding technique and the slow rise

time of approximately 500 µsec of the piezzo-electric

transducers employed in the prototype.  These errors can be

improved by using computational expensive correlation

techniques outlined in references16,17.

♦ error in estimating the speed of sound, which can be as

much as 1 percent when temperature compensation is used

alone18.

♦ air turbulence and local variations in the speed of sound.

The Kalman filter results in Table II assumed that the robot was

stationary with arrival time standard deviation of 0.2 msec and a

validation gate of 2 standard deviations.  Note that the Kalman filter

results are usually closer to the measured position than the geometric

approach, especially in the last row of the tables, where the validation

gate of the Kalman filter rejected 50 spurious echoed arrival times.
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TABLE I - Localiser Results using Geometric Position Algorithm

Numbe

r

Mean Localiser Reported Position

(standard deviation of results) mm

Measured

Position mm

Sample

s

x y z x y z

111 1207 (7.3) 1116 (10.0) 1346 (7.1) 121

0

115

0

136

0

  68 1186 (7.7) 1121 (6.9)   916

(6.35)

121

0

113

0 900

  65   567 (8.8) 1124 (5.4)   901 (8.6)

590

114

0 900

  64 2335

(78.1)

2077 (67.6) 1341

(15.7)

237

0

220

0

135

0

  80   586 (9.7) 1006 (122.0) 1577

(10.6) 600

115

0

160

0

TABLE II - Localiser Results using Kalman Filter

Numbe

r

Localiser Reported Position (standard

deviation from filter) mm

Measured

Position mm

Sample

s

x y z x y z

111 1210 (7.4) 1122 (7.5) 1357 (7.1) 121

0

115

0

136

0

  68 1188 (8.3) 1127 (8.5)   926 (9.0) 121

0

113

0 900

  65   569 (9.6) 1130 (7.4)   911 (8.1)

590

114

0 900
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  64 2341

(21.8)

2089 (19.8) 1358

(15.1)

237

0

220

0

135

0

  80   574 (9.7) 1109 (10.1) 1593 (7.3)

600

115

0

160

0

6.2. Orientation Accuracy

The orientation estimate is obtained from the closest receiver to

each beacon.  The dominant errors in this measurement process are

due to the inherent discrete sampling of angle, rather than by random

processes.  These errors are deterministic since they can be

determined a priori from the orientation and position.  An upper

bound on the angle discretisation error is 21 degrees which is half the

maximum angular separation of the receivers, assuming that the

receiver channels are matched.  An unlikely situation can occur where

all beacons are seen exactly halfway between pairs of receivers and

the geometric orientation algorithm could report angles in error by 21

degrees.  The Kalman filter orientation error may also produce this

error if no movement occurs.  Localiser movement results in the

Kalman filter algorithm averaging data with time and the reduction of

errors.

The orientation errors due to the discretisation of received angle

are studied by a Monte-Carlo analysis.  A random walk in position

and angle is generated with a standard deviation of 5 mm on each axis

and 0.57 degrees in roll, pitch and yaw for each beacon firing.  The

position was restricted to lie in a cube bounded by the points (0.5,

0.5, 0.5) and (2.5, 2.5, 2.5) meters.  The angle error on each

measurement is defined as the maximum angle difference between the

axes of the actual localiser coordinate frame and the measured

localiser coordinate frame.  The results are summarised in Table III for
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10 000 samples each of the Extended Kalman Filter (EKF) angle

estimate and the geometrical angle estimate.  Note that the EKF

performs significantly better than the geometrical technique since all

four beacon directions are used, compared to the two out of four in

the geometrical technique.  Also the EKF incorporates past

information into its estimate of orientation since the orientation

changes slowly.  The geometrical approach estimates orientation after

collecting a full cycle of 4 beacon measurements under the

assumption that the localiser is stationary.  However, in practice and

indeed in the Monte-Carlo analysis the orientation changes after each

transmitter firing.  This explains why the maximum error is larger

than that of the EKF.  The maximum EKF angle error is due to the

discretisation of angle with the receiver spacing of 42 degrees as

described above.

TABLE III - Orientation Errors.

Maximum Angle

Error (degrees)

Mean Angle Error

(degrees)

EKF angle estimate 21.1 9.34

Geometrical angle

estimate

29.7 15.0

7. Future Work and Conclusions

A novel three dimensional localiser has been designed,

constructed and tested.  The laboratory prototype performs to an

accuracy of approximately 50 mm depending on the position.  The size

of the prototype workspace could be extended to 10 meters on each

axis with no modification of the hardware (if laboratory space

permitted) and with little change in the absolute error, based on
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experience with a two dimensional ultrasonic localiser7.

Improvements in the accuracy of the localiser can be achieved by

more sophisticated pulse arrival time detection techniques16,17 and

the use of more expensive transducers.  However the aim of this

prototype was to prove the concept and this has been successfully

achieved.

Further beacons can also be added beyond the minimum

required number of four to improve the robustness and accuracy of

the localiser.  Kalman filtering techniques are particularly suited to

fusing the data of redundant beacons and also the exclusion of

spurious arrival times.  An underwater version is also being

considered as an extension of this work.
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