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Since its introduction in 1960, the Kalman filter has become an integral component
in thousands of military and civilian navigation systems. This deceptively simple,
recursive digital algorithm has been an early-on favorite for conveniently integrating
(or fusing) navigation sensor data to achieve optimal overall system performance. To
provide current estimates of the system variables -- such as position coordinates --
the filter uses statistical models to properly weight each new measurement relative to
past information. It also determines up-to-date uncertainties of the estimates for
real-time quality assessments or for off-line system design studies. Because of its
optimum performance, versatility, and ease of implementation, the Kalman filter has
been especially popular in GPS/inertial and GPS stand-alone devices. In this
month's column, Larry Levy will introduce us to the Kalman filter and outline its
application in GPS navigation.

Dr. Levy is chief scientist of the Strategic Systems Department of The Johns
Hopkins University Applied Physics Laboratory. He received his Ph.D. in electrical
engineering from Iowa State University in 1971. Levy has worked on applied
Kalman filtering for more than 30 years, codeveloped the GPS translator concept in
SATRACK (a GPS-based missile-tracking system), and was instrumental in
developing the end-to-end methodology for evaluating Trident II accuracy. He
conducts graduate courses in Kalman filtering and system identification at The Johns
Hopkins University Whiting School of Engineering and teaches Navtech Seminars's
Kalman Filtering short course.

"Innovation" is a regular column featuring discussions about recent advances in GPS
technology and its applications as well as the fundamentals of GPS positioning. The
column is coordinated by Richard Langley of the Department of Geodesy and
Geomatics Engineering at the University of New Brunswick, who appreciates
receiving your comments as well as topic suggestions for future columns. To contact
him, see the "Columnists"section on page 4 of this issue.

When Rudolf Kalman formally introduced the Kalman filter in 1960, the algorithm
was well received: The digital computer had sufficiently matured, many pressing
needs existed (for example, aided inertial navigation), and the algorithm was
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deceptively simple in form. Engineers soon recognized, though, that practical
applications of the algorithm would require careful attention to adequate statistical
modeling and numerical precision. With these considerations at the forefront, they
subsequently developed thousands of ways to use the filter in navigation, surveying,
vehicle tracking (aircraft, spacecraft, missiles), geology, oceanography, fluid
dynamics, steel/paper/power industries, and demographic estimation, to mention just
a few of the myriad application areas.

EQUATION-FREE DESCRIPTION

The Kalman filter is a multiple-input, multiple-output
digital filter that can optimally estimate, in real time, the
states of a system based on its noisy outputs (see Figure
1). These states are all the variables needed to
completely describe the system behavior as a function of
time (such as position, velocity, voltage levels, and so
forth). In fact, one can think of the multiple noisy outputs
as a multidimensional signal plus noise, with the system
states being the desired unknown signals. The Kalman
filter then filters the noisy measurements to estimate the
desired signals. The estimates are statistically optimal in
the sense that they minimize the mean-square estimation
error. This has been shown to be a very general criterion
in that many other reasonable criteria (the mean of any
monotonically increasing, symmetric error function such
as the absolute value) would yield the same estimator.
The Kalman filter was a dramatic improvement over its
minimum mean square error predecessor, in-vented by
Norbert Wiener in the 1940s, which was primarily
confined to scalar signals in noise with stationary
statistics.

Figure 2 illustrates the Kalman filter algorithm itself.
Because the state (or signal) is typically a vector of
scalar random variables (rather than a single variable),
the state uncertainty estimate is a variance-covariance
matrix -- or simply, covariance matrix. Each diagonal
term of the matrix is the variance of a scalar random
variable -- a description of its uncertainty. The term is
the variable's mean squared deviation from its mean, and
its square root is its standard deviation. The matrix's
off-diagonal terms are the covariances that describe any
correlation between pairs of variables.

The multiple measurements (at each time point) are also
vectors that a recursive algorithm processes sequentially
in time. This means that the algorithm iteratively repeats
itself for each new measurement vector, using only

WHAT GAUSS SAID 

If the astronomical
observations and other
quantities, on which the
computation of orbits is
based, were absolutely
correct, the elements
also, whether deduced
from three or four
observations, would be
strictly accurate (so far
indeed as the motion is
supposed to take place
exactly according to the
laws of Kepler), and,
therefore, if other
observations were used,
they might be confirmed,
but not corrected. But
since all our
measurements and
observations are nothing
more than
approximations to the
truth, the same must be
true of all calculations
resting upon them, and
the highest aim of all
computations made
concerning concrete
phenomena must be to
approximate, as nearly
as practicable, to the
truth. But this can be
accomplished in no other
way than by a suitable
combination of more
observations than the
number absolutely
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values stored from the previous cycle. This procedure
distinguishes itself from batch-processing algorithms,
which must save all past measurements.

Starting with an initial predicted state estimate (as shown
in Figure 2) and its associated covariance obtained from
past information, the filter calculates the weights to be
used when combining this estimate with the first
measurement vector to obtain an updated "best"
estimate. If the measurement noise covariance is much
smaller than that of the predicted state estimate, the
measurement's weight will be high and the predicted
state estimate's will be low.

Also, the relative weighting between the scalar states will
be a function of how "observable" they are in the
measurement. Readily visible states in the measurement
will receive the higher weights. Because the filter
calculates an updated state estimate using the new
measurement, the state estimate covariance must also be
changed to reflect the information just added, resulting in
a reduced uncertainty. The updated state estimates and
their associated covariances form the Kalman filter
outputs.

Finally, to prepare for the next measurement vector, the
filter must project the updated state estimate and its
associated covariance to the next measurement time.
The actual system state vector is assumed to change
with time according to a deterministic linear
transformation plus an independent random noise.
Therefore, the predicted state estimate follows only the
deterministic transformation, because the actual noise
value is unknown. The covariance prediction ac-counts
for both, because the random noise's uncertainty is
known. Therefore, the prediction uncertainty will
increase, as the state estimate prediction cannot account
for the added random noise. This last step completes the
Kalman filter's cycle.

requisite for the
determination of the
unknown quantities. This
problem can only be
properly undertaken
when an approximate
knowledge of the orbit
has been already
attained, which is
afterwards to be
corrected so as to satisfy
all the observations in the
most accurate manner
possible.

-- From Theory of the
Motion of the Heavenly
Bodies Moving about the
Sun in Conic Sections, a
translation by C.H. Davis
of C.F. Gauss's 1809
Theoria Motus
Corporum Coelestium in
Sectionibus Conicis
Solem Ambientium.
Davis's 1857 translation
was republished by
Dover Publications, Inc.,
New York, in 1963.

 One can see that as the measurement vectors are recursively processed, the state
estimate's uncertainty should generally decrease (if all states are observable)
because of the accumulated information from the measurements. However, because
information is lost (or uncertainty increases) in the prediction step, the uncertainty
will reach a steady state when the amount of uncertainty increase in the prediction
step is balanced by the uncertainty decrease in the update step. If no random noise
exists in the actual model when the state evolves to the next step, then the
uncertainty will eventually approach zero. Because the state estimate uncertainty
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changes with time, so too will the weights. Generally speaking, the Kalman filter is a
digital filter with time-varying gains. Interested readers should consult "The
Mathe-matics of Kalman Filtering" sidebar for a summary of the algorithm.

If the state of a system is constant, the Kalman filter reduces to a sequential form of
deterministic, classical least squares with a weight matrix equal to the inverse of the
measurement noise covariance matrix. In other words, the Kalman filter is essentially
a recursive solution of the least-squares problem. Carl Friedrich Gauss first solved
the problem in 1795 and published his results in 1809 in his Theoria Motus, where
he applied the least-squares method to finding the orbits of celestial bodies (see the
"What Gauss Said" sidebar). All of Gauss's statements on the effectiveness of least
squares in analyzing measurements apply equally well to the Kalman filter.

A SIMPLE EXAMPLE

A simple hypothetical example may help clarify the concepts in the preceding
section. Consider the problem of determining the actual resistance of a nominal
100-ohm resistor by making repeated ohmmeter measurements and processing
them in a Kalman filter.

First, one must determine the appropriate statistical models of the state and
measurement processes so that the filter can compute the proper Kalman weights
(or gains). Here, only one state variable -- the resistance, x -- is unknown but
assumed to be constant. So the state process evolves with time as

 

x k+1 = xk . [1]

Note that no random noise corrupts the state process as it evolves with time. Now,
the color code on a resistor indicates its precision, or tolerance, from which one can
deduce -- assuming that the population of resistors has a Gaussian or normal
histogram -- that the uncertainty (variance) of the 100-ohm value is, say, (2 ohm)2.
So our best estimate of x, with no measurements, is x0/­= 100 with an uncertainty of

P0/­= 4. Repeated ohmmeter measurements,

 

zk = xk + vk , [2]

directly yield the resistance value with some measurement noise, vk (measurement

errors from turn-on to turn-on are assumed uncorrelated). The ohmmeter
manufacturer indicates the measurement noise uncertainty to be Rk= (1 ohm)2 with

an average value of zero about the true resistance.

Starting the Kalman filter at k = 0, with the initial estimate of 100 and uncertainty of
4, the weight for updating with the first measurement is
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  P0/-   4

 K0= ----------------  = ---------------

  P0/- + R0   4+1

, [3]

with the updated state estimate as

 

x0/0 = (1-K0)x0/- + K0z0

[4]

 

where x0/0 denotes the best estimate at time 0, based on the measurement at time 0.

Note that the measurement receives a relatively high weight because it is much more
precise (less uncertain) than the initial state estimate. The associated uncertainty or
variance of the updated estimate is

 

P0/0 = (1 - K0)P0/- =

 1    4
--------- 4 = ---

4 + 1    5

. [5]

 

Also note that just one good measurement decreases the state estimate variance
from 4 to 4/5. According to equation [1], the actual state projects identically to time
1, so the estimate projection and variance projection for the next measurement at
time 1 is

  4
x 1/0 = x 0/0 ; P1/0 = P0/0
=

---

  5
. [6]
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Repeating the cycle over again, the new gain is

  P1/0  4/5

K1 = ------------- = ------

  P1/0+R1  4/5+1

[7]

 

and the new update variance is

 

P1/1 = (1 - K1) P1/0 =

  1   4   4
(  ---------  )  ---  =  ---
  4/5 + 1   5   9

. [8]

 

Figure 3 represents a simulation of this process with the estimate converging toward
the true value. The estimation uncertainty for this problem, which the Kalman filter
provides, appears in Figure 4. One can see that the uncertainty will eventually
converge to zero.

A New Set of Conditions. Let's now change the problem by assuming that the
measurements are taken one year apart with the resistor placed in extreme
environmental conditions so that the true resistance changes a small amount. The
manufacturer indicates that the small change is independent from year to year, with
an average of zero and a variance of 1/4 ohms2. Now the state process will evolve
with time as

 

xk + 1 = xk + wk. [9]

where the random noise, wk, has a variance of Qk = 1/4. In the previous case, the

variance prediction from time 0 to time 1 was constant as in equation [6]. Here,
because of the random noise in equation [9], the variance prediction is
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     4  1   

 P1/0 = P0/0 + Q0 = --- + --- =  1.05

     5  4   

. [10]

Now the gain and update variance calculations proceed on as in equations [7] and
[8] but with larger values for the predicted variance. This will be repeated every
cycle so that the measurement update will decrease the variance while the prediction
step will increase the variance. Figure 5 illustrates this tendency. Eventually, the filter
reaches a steady state when the variance increase in the prediction step matches the
variance decrease in the measurement update step, with Pk+1/k = 0.65 and Pk/k =

0.4. The Qk represents a very important part of the Kalman filter model because it

tells the filter how far back in time to weight the measurements. An incorrect value
of this parameter may dramatically affect performance.

GPS/INS INTEGRATION

We can see that the Kalman filter provides a simple
algorithm that can easily lend itself to integrated systems
and requires only adequate statistical models of the state
variables and associated noises for its optimal
performance. This fact led to its wide and enthusiastic
use in aided inertial applications.

Integrating GPS with an inertial navigation system (INS)
and a Kalman filter provides improved overall
navigation perfor-
mance. Essentially, the INS supplies virtually noiseless
outputs that slowly drift off with time. GPS has minimal
drift but much more noise. The Kalman filter, using
statistical models of both systems, can take advantage
of their different error characteristics to optimally
minimize their deleterious traits.

As shown in the "The Mathematics of Kalman Filtering"
sidebar, the Kalman filter is a linear algorithm and
assumes that the process generating the measurements is
also linear. Because most systems and processes
(including GPS and INS) are nonlinear, a method of
linearizing the process about some known reference
process is needed. Figure 6 illustrates the approach for
integrating GPS and inertial navigators. Note that the
true values of each system cancel out in the
measurement into the Kalman filter so that only the GPS
and inertial errors need be modeled. The reference
trajectory, one hopes, is sufficiently close to the truth so
that the error models are linear and the Kalman filter is

THE MATHEMATICS
OF KALMAN
FILTERING

The Kalman filter
assumes that the system
state vector, xk, evolves

with time as

xk+1 = Fkxk + wk

with the measurement
vector given by

zk = Hkxk + vk 

where x0, wk, and vk
are mutually uncorrelated
vectors: The latter two
are white noise
sequences, with means
of m0, 0, and 0 and

nonnegative definite
covariances of S0, Qk,

and Rk, respectively. The

corresponding optimal
Kalman filter is given by
the recursive algorithm of
Figure 7, which
corresponds to the block
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that the error models are linear and the Kalman filter is
optimal. For most GPS applications this is the case.

So, even though the overall systems are nonlinear, the
Kalman filter still operates in the linear domain. Of
course, the state variables for the Kalman filter must
adequately model all error variables from both systems.
GPS errors could include receiver clock, selective
availability, ionospheric, tropospheric, multipath, and
satellite ephemeris and clock errors. Inertial
inaccuracies, on the other hand, could include position,
velocity, orientation, gyro, accelerometer, and gravity
errors. The equipment quality and the application
requirements will determine how extensive the error
models must be.

If the GPS outputs are user position, one terms the
integration architecture as loosely coupled. A tightly
coupled architecture depicts one in which the GPS
outputs are pseudoranges (and possibly carrier phases)
and the reference trajectory is used (along with the GPS
ephemeris from the receiver) to predict the GPS
measurements. In the tightly coupled system, the
measurement errors would be in the range domain
rather than the position domain. Usually, the tightly
coupled arrangement is preferred because it is less
sensitive to satellite dropouts, and adequate Kalman
filter models are simpler and more accurate. One must
employ the loosely coupled arrangement when the
receiver outputs provide position without raw
measurements.

The open-loop correction approach of Figure 6 is
termed linearized Kalman filtering. An alternate
approach in which the algo-rithm feeds the estimates
back to the inertial system to keep the reference
trajectory close to the truth is an example of extended
Kal-man filtering.

GPS-ONLY NAVIGATION

In some applications, an INS is not desired or may not
be available, as in a stand-alone GPS receiver. In such
cases, the Kalman filter resides within the receiver, and
some known (or assumed) receiver equations of
motion will replace the inertial system in a tightly
coupled version of Figure 6. The extent to which the
equations of motion (usually dead reckoning, for a
moving receiver) faithfully model the receiver trajectory

corresponds to the block
diagram of Figure 2. The
vector xk/j denotes the

optimal estimate of x at

time tk, based on

measurements up to tj,

and Pk/j is the

corresponding "optimal"
estimation error
covariance matrix when
the implemented 
filter model matches the
real-world system that is
actually generating the
data.

One can derive the filter
equations using a number
of methods. Minimizing
the generalized mean
square error,

E[et
k/jAek/j], where

ek/j[xk ­ xk/j and A is

any positive semidefinite
weighting matrix, results
in the Kalman equations
if all variables and noises
are Gaussian. For
non-Gaussian cases, an
additional restriction
requires that there be a
linear relationship
between the state
estimate, the
measurements, and the
predicted state.
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will determine the error model needed in the Kalman
filter.

Simple equations of motion generally exhibit large errors
that cause degraded performance relative to
inertial-based reference trajectories in moving-receiver
scenarios. Of course, fixed location equations of motion
are trivial and very accurate. Here, the advantage of
using Kalman filtering versus a single-point,
least-squares fix is that the equations of motion can
smooth the GPS noise, improving the performance.

PRACTICAL DESIGNS

Regardless of an application's equipment -- be it GPS,
INS, or other devices -- developing a practical
Kalman filter­based navigation system requires
attention to a variety of design considerations.

The filter's covariance analysis portion (not requiring
real data; see Figures 2 and 7) uses predetermined
error models of potential systems (GPS, inertial, and
so forth) to predict the particular configuration's
performance. The filter designer repeats this for
different potential equipment (models) until the
requirements are satisfied. In some cases, one must
implement the Kalman filter in a "small" computer with
only a few states to model the process. This
suboptimal filter must be evaluated by special
covariance analysis algorithms that recognize the
differences in the real-world model producing the
measurements and the implemented filter model.
Finally, once the filter meets all performance
requirements, a few simulations of all processes should
be run to evaluate the adequacy of the linearization
approach and search for numerical computational
errors.

In most cases, the extended Kalman filter (with resets
after every cycle) will ameliorate any linearization
errors. Numeric computational errors caused by finite
machine word length manifest themselves in the
covariance matrices, which become nonsymmetric or
have negative diagonal elements, causing potentially
disastrous performance. This problem can be
alleviated by increasing the computational precision or
by employing a theoretically equivalent but more
numerically robust algorithm.

  Further Reading

The literature on Kalman
filtering abounds, with
applications ranging from
spacecraft navigation to
the demographics of the
French beef cattle herd.
To ease you into it, here
are a few suggestions.

For the seminal introduction
of the Kalman filter algorithm,
see

"A New Approach to
Linear Filtering and
Prediction Problems,"
by R.E. Kalman in the
Journal of Basic
Engineering, the
Transactions of the
American Society of
Mechanical
Engineers, Series D,
Vol. 83, No. 1, pp.
35­45, March 1960. 

For an excellent,
comprehensive introduction
to Kalman filtering, including
a GPS case study, see

Introduction to
Random Signals and
Applied Kalman
Filtering (with Matlab
exercises and
solutions), 3d edition,
by R.G. Brown and
P.Y.C. Hwang,
published by John
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CONCLUSIONS

Because of its deceptively simple and easily
programmed optimal algorithm, the Kalman filter
continues to be the integration method of choice in
GPS-based navigation systems. It requires sufficiently
accurate multidimensional statistical models of all
variables and noises to properly weight noisy
measurement data. These models enable the filter to
account for the disparate character of the errors in
different systems, providing for an optimal integrated
combination of large-scale systems. The recursive
nature of the filter allows for efficient real-time
processing. Off-line covariance studies enable the
integrated system performance to be predicted before
development, providing a convenient and easy-to-use
system design tool.

published by John
Wiley & Sons, Inc.,
New York, 1997. 

For discussions about
various Kalman filter
applications, see

IEEE Transactions on
Automatic Control,
Special issue on
applications of
Kalman filtering, Vol.
AC-28, No. 3
published by the
Institute of Electrical
and Electronics
Engineers (IEEE),
March 1983. 

For a comprehensive
selection of reprints of
Kalman filter theory and
application papers, including
some of the germinal ones
from the 1960s and those
from the IEEE Transactions
on Automatic Control special
issue, see

Kalman Filtering:
Theory and
Application, edited by
H.W. Sorenson,
published by IEEE
Press, New York, 1985.

For a discussion about
special covariance analysis
and numerically robust
algorithms, see the lecture
notes

Applied Kalman
Filtering, Navtech
Seminars, Course 457,
presented by L.J.
Levy, July 1997. 

For an introductory
discussion about GPS and
inertial navigation integration,
see

"Inertial Navigation
and GPS," by M.B.
May, in GPS World,
Vol. 4, No. 9,
September 1993, pp.
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56­66. 

Several good Web sites
devoted to Kalman filtering
exist, including 

"The Kalman Filter," a
site maintained by G.
Welch and G. Bishop
of the University of
North Carolina at
Chapel Hill's
Department of
Computer Science:
http://www.cs.unc.edu
/~welch/kalman
Links.html. 
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