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INNOVATION

The Kaman Filter:

Navigation's Integration Workhorse

Lary J. Levy

The Johns Hopkins University
Applied Physics Laboratory

Sinceitsintroduction in 1960, the Kaman filter has become an integral component
in thousands of military and civilian navigation sysems. This deceptively Smple,
recursive digitd agorithm has been an early-on favorite for conveniently integrating
(or fusing) navigation sensor data to achieve optima overal system performance. To
provide current estimates of the system variables -- such as position coordinates --
the filter uses satistical models to properly weight each new measurement relaive to
past information. It also determines up-to-date uncertainties of the estimates for
redl-time quaity assessments or for off-line system design studies. Because of its
optimum performance, versdtility, and ease of implementation, the Kaman filter has
been especidly popular in GPS/inertid and GPS stand-done devices. In this
month's column, Larry Levy will introduce us to the Kaman filter and outline its
goplication in GPS navigation.

Dr. Levy ischief scientist of the Strategic Systems Department of The Johns
Hopkins University Applied Physics Laboratory. He received his Ph.D. in dectrica
engineering from lowa State Universty in 1971. Levy has worked on gpplied
Kaman filtering for more than 30 years, codeveloped the GPS trandator concept in
SATRACK (a GPS-based missle-tracking system), and was insrumental in

devel oping the end-to-end methodology for evauating Trident |1 accuracy. He
conducts graduate courses in Kaman filtering and system identification a The Johns
Hopkins University Whiting School of Engineering and teaches Navtech Seminarss
Kaman Filtering short course.

"Innovation” isaregular column featuring discussions about recent advancesin GPS
technology and its applications as well as the fundamentas of GPS positioning. The
column is coordinated by Richard Langley of the Department of Geodesy and
Geomatics Engineering at the University of New Brunswick, who gppreciates
recelving your comments as well as topic suggestions for future columns. To contact
him, see the "Columnigts'section on page 4 of thisissue.

When Rudolf Kaman formaly introduced the Kalman filter in 1960, the dgorithm

was wel| recaived: The digita computer had sufficiently matured, many pressng
needs existed (for example, aided inertid navigation), and the agorithm was
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deceptively smple in form. Engineers soon recognized, though, that practical
gpplications of the agorithm would require careful atention to adequate Satistical
modeling and numerical precision. With these consderations a the forefront, they
subsequently developed thousands of ways to use the filter in navigation, surveying,
vehicle tracking (aircraft, spacecraft, missiles), geology, oceanography, fluid
dynamics, stedl/paper/power industries, and demographic estimation, to mention just

afew of the myriad application aress.

EQUATION-FREE DESCRIPTION

The Kdman filter isamultiple-input, multiple-output
digitd filter that can optimdly estimate, in red time, the
states of a system based on its noisy outputs (see Figure

1). These sates are dl the variables needed to

completely describe the system behavior as a function of
time (such as pogtion, veocity, voltage levels, and so
forth). In fact, one can think of the multiple noisy outputs
asamultidimensond sgnd plus noise, with the system
dtates being the desred unknown signas. The Kaiman
filter then filters the noisy measurements to esimate the
desred 9gnds. The estimates are Satigticaly optima in
the sense that they minimize the mean-square estimation
error. This has been shown to be avery generd criterion
in that many other reasonable criteria (the mean of any
monotonicaly increasing, symmetric error function such
as the absolute value) would yield the same estimator.
The Kdman filter was a dramatic improvement over its
minimum mean square error predecessor, in-vented by

Norbert Wiener in the 1940s, which was primarily
confined to scdlar Sgndsin noise with sationary
datigtics.

Figure 2 illugtrates the Kdman filter dgorithm itsaf.
Because the state (or Signd) istypicaly avector of

scdar random variables (rather than a single varigble),
the state uncertainty etimate is a variance-covariance
matrix -- or smply, covariance matrix. Each diagona
term of the matrix is the variance of a scaar random
varigble -- adescription of its uncertainty. Thetermis
the variable's mean squared deviation from its mean, and
itssquare root is its standard deviation. The matrix's
off-diagona terms are the covariances that describe any

correlation between pairs of variables.

The multiple measurements (at each time point) are dso
vectors that arecursve agorithm processes sequentialy
intime. This meansthat the dgorithm iteratively repeats

itsdlf for each new mesasurement vector, using only

WHAT GAUSS SAID

If the astronomical
observations and other
quantities, on which the
computation of orbitsis
based, were absolutely
correct, the dements
aso, whether deduced
from three or four
observations, would be
drictly accurate (so far
indeed asthe mation is
supposed to take place
exactly according to the
laws of Kepler), and,
therefore, if other
observations were used,
they might be confirmed,
but not corrected. But
sncedl our
measurements and
observations are nothing
more than
aoproximations to the
truth, the same must be
true of dl caculations
resting upon them, and
the highest am of all
computations made
concerning concrete
phenomena must be to
approximate, as nearly
as practicable, to the
truth. But this can be
accomplished in no other
way than by asuiteble
combination of more
observations than the
number absolutely
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vaues stored from the previous cycle. Thisprocedure  requisite for the
digtinguishes itsdlf from batch-processing dgorithms, determination of the
which mugt save dl past measurements. unknown quantities. This
problem can only be
Starting with an initid predicted state estimate (as shown properly undertaken
inFigure 2) and its associated covariance obtained from  when an approximate
past information, thefilter cculatesthewaightstobe  knowledge of the orbit
used when comhbining this estimate with the first has been aready
measurement vector to obtain an updated "bext” atained, whichis
esimate. If the measurement noise covarianceismuch  afterwards to be
smadler than thet of the predicted Sate estimate, the corrected so as to satisfy
measurement's weight will be high and the predicted dl the observaionsin the

date etimate's will be low. most accurate manner
possible.

Also, the rdlaive weighting between the scdar states will

be afunction of how "observable' they arein the -- From Theory of the

measurement. Reedily visble gatesin the messurement  Mation of the Heavenly

will receive the higher weights. Because thefilter Bodies Moving about the

caculates an updated state estimate using the new Sunin Conic Sections, a

measurement, the state estimate covariance must also be  trandation by C.H. Davis
changed to reflect the information just added, resulting in  of C.F. Gauss's 1809
areduced uncertainty. The updated state estimatesand ~ Theoria Motus

their associated covariances form the Kaman filter Corporum Codestium in
outputs. Sectionibus Conicis
Solem Ambientium.

Finaly, to prepare for the next measurement vector, the Daviss 1857 trandation
filter must project the updated Sate estimate and its was republished by
associated covariance to the next measurement time. Dover Publications, Inc.,
The actud system State vector is assumed to change New York, in 1963.
with time according to a determinidtic linear

transformation plus an independent random noise.

Therefore, the predicted state estimate follows only the

determinigtic transformation, because the actua noise

vaue is unknown. The covariance prediction ac-counts

for both, because the random noise's uncertainty is

known. Therefore, the prediction uncertainty will

increase, as the Sate estimate prediction cannot account

for the added random noise. This last step completesthe

Kamanfilter'scycle.

One can see that as the measurement vectors are recursively processed, the state
estimate's uncertainty should generally decrease (if al Sates are observable)
because of the accumulated information from the measurements. However, because
information islost (or uncertainty increases) in the prediction step, the uncertainty
will reech a steady state when the amount of uncertainty increase in the prediction
sep is balanced by the uncertainty decrease in the update step. If no random noise
exigsin the actud modd when the gate evolves to the next Sep, then the
uncertainty will eventualy approach zero. Because the State estimate uncertainty
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changes with time, 0 too will the weights. Generaly spesking, the Kaman filter isa
digitd filter with time-varying gains. Interested readers should consult "The
Mathe-matics of Kadman Filtering" sidebar for asummary of the dgorithm.

If the gtate of a system is congtant, the Kalman filter reduces to a sequentia form of
determinigtic, classicd least squares with aweight matrix equd to the inverse of the
measurement noise covariance matrix. In other words, the Kalman filter is essentidly
arecursve solution of the least-squares problem. Carl Friedrich Gaussfirst solved
the problem in 1795 and published hisresultsin 1809 in his Theoria Motus, where
he gpplied the least-squares method to finding the orbits of celestial bodies (see the
"What Gauss Said" sdebar). All of Gausss statements on the effectiveness of least
suares in anadyzing measurements gpply equaly wdl to the Kaman filter.

A SMPLE EXAMPLE

A smple hypotheticd example may hdp clarify the concepts in the preceding
section. Congder the problem of determining the actua resistance of anomind
100-ohm resistor by making repeated ohmmeter measurements and processing
them in aKdman filter.

First, one must determine the gppropriate satistical modds of the sate and
measurement processes S0 that the filter can compute the proper Kaman weights
(or gains). Here, only one state variable -- the resstance, x -- is unknown but
assumed to be congtant. So the state process evolves with time as

Xpr1 =X - [

Note that no random noise corrupts the state process asit evolves with time. Now,
the color code on aresstor indicates its precison, or tolerance, from which one can
deduce -- assuming that the population of resistors has a Gaussian or norma

histogram -- that the uncertainty (variance) of the 100-ohm vaueis, say, (2 ohm)2.
So our best estimate of x, with no measurements, is X, = 100 with an uncertainty of

Py.= 4. Repeated ohmmeter measurements,

Z, =X Vv, [2]

directly yield the resistance value with some measurement noise, v, (measurement

errors from turn-on to turn-on are assumed uncorrelated). The ohmmeter
manufacturer indicates the measurement noise uncertainty to be R, = (1 ohm)? with

an average vaue of zero about the true res stance.

Sarting the Kaman filter a k = 0, with theinitid estimate of 100 and uncertainty of
4, the weight for updating with the first measurement is
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with the updated State estimate as

Xor0 = (1-Ko)xg. + KoZg

[4]

where Xo/0 denotes the best estimate at time 0, based on the measurement at time 0.

Note that the measurement receives ardaively high weight because it is much more
precise (less uncertain) than the initid Sate estimate. The associated uncertainty or
variance of the updated estimate is

Poro= (1 - Kg)Py. =

5]

Also note that just one good measurement decreases the state estimate variance
from 4 to 4/5. According to equation [1], the actual State projectsidentically to time

1, so the estimate projection and variance projection for the next measurement at
timelis

4
X10= %00 Puo= Poo

5
-[6]
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Repesting the cycle over again, the new gain is

P]_/o 4/5
K, = - = ceeee-
P1otRy 4/5+1
[7]

and the new update varianceis

Py1 =@ -Ky) Pyo=

Figure 3 represents a smulation of this process with the estimate converging toward
the true vaue. The estimation uncertainty for this problem, which the Kaman filter
provides, appearsin Figure 4. One can see that the uncertainty will eventudly
converge to zero.

A New Set of Conditions. Let's now change the problem by assuming that the
measurements are taken one year gpart with the resstor placed in extreme
environmenta conditions so that the true resistance changes asmdl amount. The
manufacturer indicates that the smdl change is independent from year to year, with
an average of zero and avariance of 1/4 ohms2. Now the state process will evolve
with time as

X+ 1=x, +w,.[9]

where the random noise, w, , has avariance of Q = 1/4. In the previous case, the

variance prediction from time O to time 1 was congtant asin equation [6]. Here,
because of the random noise in equation [9)], the variance predictionis
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P]_/O: PO/O + QO = - + --- = 105

.[20]

Now the gain and update variance caculations proceed on asin equations [7] and
[8] but with larger vaues for the predicted variance. Thiswill be repeated every
cycle so that the measurement update will decrease the variance while the prediction
step will increase the variance. Figure 5 illugtrates this tendency. Eventudly, the filter
reaches a Steady State when the variance increase in the prediction step matches the
variance decrease in the measurement updeate step, with B, ;, =0.65and P, , =

0.4. The Q, represents a very important part of the Kalman filter model because it

tellsthefilter how far back in time to weight the measurements. An incorrect vaue
of this parameter may dramaticdly affect performance.

GPYINSINTEGRATION THE MATHEMATICS
OF KALMAN

We can see that the Kaman filter providesasmple FILTERING

agorithm that can easlly lend itsdlf to integrated systems

and requires only adequate statistica models of the state The Kdman filter

variables and associated noises for its optimal assumes that the system
performance. Thisfact led to itswide and enthusiastic  state vector, x,, evolves
usein aided inertid applications. with time as

Integrating GPS with an inertid navigation system (INS) Xiaq = FiXy + W
and aKaman filter provides improved overdl
navigation perfor-

mance. Essentidly, the INS supplies virtualy noisdess
outputs that dowly drift off with time. GPS has minima
drift but much more noise. The Kaman filter, using Z, = HX, + Vv,
datistical models of both systems, can take advantage
of their different error characterigtics to optimally
minimize their deleterious traits.

with the measurement
vector given by

where Xgr Wies and Vi

are mutudly uncorrelated
vectors: The latter two

As shown in the "The Mathematics of Kaman Fltering" i .
are white noise

Sdebar, the Kdman filter isalinear agorithm and ,
assumes that the process generating the measurements s SEAUeNces, with means
aso linear. Because most systems and processes of mg, 0, and 0 and
(induding GPS and INS) are nonlinear, amethod of ~ nNonnegetive definite
linearizing the process about some known reference covariancesof S, Q,.,
process is needed. Figure 6 illustrates the approach for - gnd R, respectively. The
integrating GPS and inertid navigators. Note that the - -

true values of each system cancd out in the &o;rni%o;\ ﬂg‘?sogt \I/gdby
measurement into the Kaman filter so that only the GPS

and inertid errors need be modeed. The reference tlge;?:;rsxﬁi?ﬁomhm e
trgjectory, one hopes, is suificiently dosetothe truth 0. eeponds to the block

7of 11 7/4/01 3:51 PM



Untitled Web Page

8of 11

Na INe ETor Moaes are linear and the kaman TITES IS
optima. For most GPS applicationsthisisthe case.

So, even though the overdl systems are nonlinear, the

Kaman filter ill operatesin the linear domain. Of

course, the dtate variables for the Kalman filter must
adequatdly mode dl error variables from both systems.

GPS erors could include receiver clock, selective

avallability, ionospheric, tropospheric, multipath, and

satdllite ephemeris and clock errors. Inertia

inaccuracies, on the other hand, could include position,
velocity, orientation, gyro, accelerometer, and gravity

errors. The equipment quality and the application

requirements will determine how extensve the error

models must be.

If the GPS outputs are user position, one terms the

integration architecture as loosdy coupled. A tightly

coupled architecture depicts one in which the GPS

outputs are pseudoranges (and possibly carrier phases)
and the reference trgjectory is used (dlong with the GPS

ephemeris from the recelver) to predict the GPS
measurements. In the tightly coupled system, the
measurement errors would be in the range domain
rather than the position domain. Usualy, the tightly
coupled arrangement is preferred because it isless

sengtive to satdlite dropouts, and adequate Kalman
filter modds are smpler and more accurate. One must

employ the loosdly coupled arrangement when the
receiver outputs provide position without raw
measurements.

The open-loop correction approach of Figure 6 is
termed linearized Kaman filtering. An dternate

gpproach in which the dgo-rithm feeds the estimates

back to theinertid system to keep the reference

trgectory close to the truth is an example of extended

Ka-man filtering.

GPS-ONLY NAVIGATION

In some gpplications, an INSis not desired or may not
be available, asin a sand-done GPS receiver. In such
cases, the Kaman filter resdes within the recaiver, and

some known (or assumed) recelver equations of
motion will replace the inertid system in atightly

coupled verson of Figure 6. The extent to which the

equations of motion (usudly dead reckoning, for a

moving receiver) faithfully mode the recelver trgectory

http://www.gpsworld.com/columns/0997Innov/0997kal man.htm

diagram of Figure 2. The
vector Xy denotes the

optima estimate of x at

timet, , based on
measurements up to tj ,
and Pk,j isthe
corresponding "optimal”
egtimation error
covariance matrix when
the implemented

filter modd meatchesthe
red-world system that is
actudly generating the
data.

One can derive the filter
equations using a number
of methods. Minimizing
the generdized mean
Sguare error,
E[etk/qudj], where
ek/j[xk - Xy adAis
any podtive semidefinite
weighting matrix, results
in the Kalman equations
if dl varidbles and noises
are Gaussan. For
non-Gaussian cases, an
additiond restriction
requires that there be a
linear rdationship
between the state
edimate, the
measurements, and the
predicted state.
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will determine the error modd needed in the Kalman
filter.

Simple equations of motion generdly exhibit large errors
that cause degraded performance relative to
inertial-based reference trgectoriesin moving-receliver
scenarios. Of course, fixed location eguations of motion
aretriviad and very accurate. Here, the advantage of
using Kamean filtering versus a sngle-point,
least-squares fix is that the equations of motion can
smooth the GPS noise, improving the performance.

PRACTICAL DESIGNS Further Reading

Regardless of an gpplication’s equipment -- be it GPS, Thajiterature on Kaman
INS, or other devices -- developing a practical filtering abounds, with
Kaman filter-based navigation system requires

) i X _ X goplications ranging from
atention to avariety of desgn consderations.

Spacecraft navigation to

_ . ) _ . the demographics of the
Thefilter's covariance analysis portion (not requiring  French beef cattle herd.

real data; see Figures 2 and 7) uses predetermined To easeyou into it, here
error models of potentid systems (GPS, inertia, and ’

_ / _ : are afew suggestions.
50 forth) to predict the particular configuration's
performance. Thefilter designer repeats thisfor For the seminal introduction
different potentia equipment (models) until the of the Kalman filter agorithm,

requirements are satisfied. In some cases, one must S22
implement the Kalman filter ina"small" computer with

: * "ANewA ht
only afew gtates to model the process. This Sl B STL

Linear Filtering and

suboptima filter must be evaluated by specid Prediction Problems;,"
covariance analyss dgorithms that recognize the by RE. Kamaninthe
differencesin the real-world model producing the g;‘wirl‘je'ecr’iana?h%
measurements and the implemented filter model. Trgnsacti Oﬂ's of the
Findly, once the filter meets dl performance American Society of
requirements, afew simulations of al processes should Mechanical

Engineers, SeriesD,
Voal. 83, No. 1, pp.
35-45, March 1960.

be run to evauate the adequacy of the linearization
gpproach and search for numerical computationa
errors.

For an excellent,
In most cases, the extended Kalman filter (with resets  comprehensive introduction
after every cyde) will andiorate any linearization to Kalman filtering, including
errors. Numeric computational errors caused by finite aGPS case study, see
meachine word length manifest themsdvesin the

® |ntroduction to

covariance matrices, which become nonsymmetric or Random Signals and
have negative diagond ements, causing potentially Applied Kalman
disastrous performance. This problem can be Filtering (with Matlab
. . . . .. exercises and
dleviaed by incressing the computatlonal precision or solutions), 3d edition,
by employing atheoreticdly equivdent but more by R.G. Brown and
numericaly robust agorithm. P.Y.C. Hwang,

published by John
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CONCLUSIONS

Because of its deceptivdy Smple and essily
programmed optima dgorithm, the Kalman filter
continues to be the integration method of choicein
GPS-basad navigation systems. It requires sufficiently
accurate multidimensond satistical models of al
variables and noises to properly weight noisy
measurement data. These models enable the filter to
account for the disparate character of the errorsin
different systems, providing for an optimd integrated
combination of large-scde systems. Therecursive
neture of the filter dlowsfor efficient red-time
processing. Off-line covariance studies enable the
integrated system performance to be predicted before
development, providing a convenient and easy-to-use
system design tool.
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Wiley & Sons, Inc.,
New York, 1997.

For discussions about
various Kalman filter
applications, see

® |EEE Transactionson
Automatic Control,
Special issue on
applications of
Kaman filtering, Vol.
AC-28, No. 3
published by the
Institute of Electrical
and Electronics
Engineers (IEEE),
March 1983.

For acomprehensive
selection of reprints of
Kaman filter theory and
application papers, including
some of the germinal ones
from the 1960s and those
from the | EEE Transactions
on Automatic Control special
issue, see

® Kaman Filtering:
Theory and
Application, edited by
H.W. Sorenson,
published by IEEE

Press, New Y ork, 1985.

For a discussion about
special covariance analysis
and numerically robust
algorithms, see the lecture
notes

® Applied Kaiman
Filtering, Navtech
Seminars, Course 457,
presented by L.J.

Levy, July 1997.

For an introductory
discussion about GPS and
inertial navigation integration,
see

® "|nertial Navigation
and GPS," by M.B.
May, in GPS World,
Voal. 4,No. 9,
September 1993, pp.
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56-66.

Several good Web sites
devoted to Kaman filtering
exist, including

¢ "TheKamanFilter," a
site maintained by G.
Welch and G. Bishop
of the University of
North Carolina at
Chapel Hill's
Department of
Computer Science:

http://www.cs.unc.edu
[~welch/kalman

Links.html.
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