
Methods

15-110 Summer 2010
Margaret Reid-Miller

Summer 2010 15-110 (Reid-Miller)

Methods
•  A method is a group of programming statements that

has a name, e.g., main()!
•  A method definition includes the method header and

method body.
•  Flow of control:

•  When a method is invoked (called), program
execution transfers to that method and the body of
the method is executed.

•  When the method finishes program execution
returns to the place from where the method was
called.

Summer 2010 15-110 (Reid-Miller)

Review: Calling Methods
•  To call a method defined in the same class, then use

the method name only:
e.g., displayQuestion();!

•  To call a method defined in a different class and is
not static, then use an object variable of that class:

e.g., console.next();

•  To call a method defined in a different class and is
static, then use the class name:

e.g., Math.round(3.6);

Summer 2010 15-110 (Reid-Miller)

Static Methods Definitions
•  A static method definition has the following form:
public static <return-type> <method-name> (<parameter-list>) {

!<method-body>!

}!

•  The parameter-list is zero, one, or more variables (type
and name) that holds the data passed to the method
when the method is called.

•  The return-type specifies the type of the data that
method returns to the instruction that called this method.

•  The method-body is the list of instructions that define
how this method performs its action.!

header

Summer 2010 15-110 (Reid-Miller)

Void-Method Definitions

•  When a method perform some action and does not
return a value, its return type is specified as void.

Example:

public static void displayQuestion() {!
 System.out.println!
 (“What does Homer like to eat?”);!
}!

return type parameter list

Summer 2010 15-110 (Reid-Miller)

Calling Void Methods
Example: In a program we might write, on a line by
itself, the following:
 displayQuestion();!

! !
This call invokes the displayQuestion method and
the method body is executed.

What is the return type for the println method?
 System.out.println(“DONUTS”);!

Summer 2010 15-110 (Reid-Miller)

Parameters
•  Suppose we want to display the question for

different members of the Simpson family:
displayQuestion(“Bart”);!
displayQuestion(“Marge”);!

•  To be able to use different person's names, we need
to parameterize the displayQuestion method

•  To parameterize a method requires 2 changes:
•  Define the method to have one or more parameter variables

that accept data from the caller.
•  Call the method with actual values (arguments) to pass to

the method.

Summer 2010 15-110 (Reid-Miller)

 displayQuestion("Bart");!

•  The parameter person is a local variable
(available in the method only) but it gets its initial
value from the caller.

•  When we call displayQuestion(“Bart”), it is as
if we started the method with

String person = “Bart”;!

Method with One Parameter

public static void displayQuestion(String person) {!
 System.out.println(“What does “ + person!
 + “ like to eat?”);!
}!

parameter

 argument

Summer 2010 15-110 (Reid-Miller)

Parameters and Arguments
•  A parameter (or formal parameter) in the method

header declares the type and name of a variable that
generalizes the method behavior; It is a placeholder for
some unspecified value.

public static void displayQuestion(String person) !

•  An argument (or actual parameter) is the actual value
passed by the caller to the method when it invokes the
method. It indicates the specific behavior of the
method.
 displayQuestion(“Bart”);!

Summer 2010 15-110 (Reid-Miller)

 printRectangleArea(4.5, 3.2);!

•  The parameter person is a local variable!

Method with Two Parameters

public static void!
 printRectangleArea (double width, double height) {!
 System.out.println(“Area of rectangle with width “ +!
 width + “ and height “ + height +!
 “ is “ + width * height);!
}!

Output:
Area of a rectangle with width 4.5 and height 3.2 is 14.4!

 double taxOwed = computeTax(300.0, 12.0);!

public static double computeTax!
 (double amount, double rate) {!
 double tax = amount * rate / 100.0;!

 return tax;!
}!

Summer 2010 15-110 (Reid-Miller)

Method that returns a value

return type

return statement!
This expression must
have the same type as
the return type.

Summer 2010 15-110 (Reid-Miller)

The return Statement
return <expression>;

•  The return statement returns the expression value
to the statement that called this method.

•  It can return primitive value or an object. The type
must match the return type specified in the method
header.

•  If a return statement is executed, control returns to
the statement that called this method immediately.
(Any statements following the return statement in the
method are not executed.)

Summer 2010 15-110 (Reid-Miller)

Exercises:
1. Define the following method.
 // Returns the maximum of a and b!
public static int findMax(int a, int b) {!

 }!

2. Write a code fragment to find the max of three
numbers, n1, n2, and n3, using findMax method.!

Summer 2010 15-110 (Reid-Miller)

public static void main(String[] args) {!
…!

double taxOwed = computeTax(300.0, 12.0);!
…!
}!

public static double computeTax!
 (double amount, double rate){!
 double tax = amount * rate / 100.0;!
 return tax;!
}!

f(3,2) evaluates to 17

 f(x,y) = 3x+2y+4

public static void main(String[] args) {!
…!

double taxOwed = computeTax(300.0, 12.0);!
…!
}!

Summer 2010 15-110 (Reid-Miller)

public static double computeTax(double amount, !
 double rate){!
 double tax = amount * rate / 100.0;!
 return tax;!
}!

amount 300.0 rate 12.0

assigns!copies!L
local variable
with its own
 memory!

Summer 2010 15-110 (Reid-Miller)

public static double computeTax(double amount,!
 double rate){!
 double tax = amount * rate / 100.0;!
 return tax;!
}

 Parameter:
declares a local
 variable

 legal
assignment?

amount 300.0 rate 12.0

public static void main(String[] args) {!
… !

double taxOwed = computeTax(300.0, 12.0);!
…!
}!

 Argument value:
literal, variable,
 expression

Summer 2010 15-110 (Reid-Miller)

public static void main(String[] args) {!
… !

double taxOwed = computeTax(300.0, 12.0);!
…!
}!

public static double computeTax(double amount, !
 double rate){!
 double tax = amount * rate / 100.0;!
 return tax;!
}!

 legal
assignment?

tax 36.0

36.0 taxOwed

Summer 2010 15-110 (Reid-Miller)

public static void main(String[] args) {  

double amount = 300.0; // assign the arguments  
double rate = 12.0; // to the parameters  

double tax = amount * rate/100; // body of the method 

double taxOwed = tax; // value returned by  
 // computTax()!

Calling the computeTax() method
is as if we had executed the code
above.

•  A variable declared in the method is called a local
variable. It can be used only inside the method.!

•  Different methods can have local variables with same
name!
Are they the same variable?
Are parameters local variables?
Can you assign a new value to a parameter?

public static double computeTax!
 (double amount, double rate) {!
 double tax = amount * rate / 100.0;!

 return tax;!
}!

Summer 2010 15-110 (Reid-Miller)

Local Variables

local variable!

Summer 2010 15-110 (Reid-Miller)

Scope
•  The scope of a variable determines where the

variable can be referenced, that is, where the variable
is visible.

•  A related concept is the life of the variable, which is
when, during the execution of the program, a variable
has memory space allocated to it and its data can be
used.

•  The scope of a local variable starts from where the
variable is declared to the end of the block in which it
is declared.

•  The scope of a method parameter is the method
body.

Scope
public static void main(String[] args) {  

 double pay = 300.0;  
 int taxPercent = 12;  
 double tax = computeTax(pay, taxPercent); !

}  

public static double computeTax(double amount,  
 double rate){!

 double tax = amount * rate / 100.0;  
 return tax!

}

Summer 2010 15-110 (Reid-Miller)

Think of methods
being surrounded by

a one-way mirror

Cannot look into
another box!

Can see inside
its own box!

Can look outside
the box it is in

Scope (cont’d)
public static final double SALE_TAX_RATE = 0.07;

public static double totalSale(double price, !
 boolean isTaxable){!
 double totalCost = price;!

 if (isTaxable == true) {!

 double taxAmount = SALE_TAX_RATE * price;!
 totalCost = price + taxAmount;!
 }!

 return totalCost;!
}!

Summer 2010 15-110 (Reid-Miller)

Cannot look into
another box!

Can look outside
the box it is in

Summer 2010 15-110 (Reid-Miller)

Limiting Scope
•  Generally, we want to declare variables in the most local

scope possible because it provides more security. That
is, declare variables at the point you need them.

•  If methods have their own local variables to use, then you
don’t have to consider possible interference from or
changes to other parts of the program.

•  CAREFUL: Don’t limit scope too much:
 if (age >= 12) {!

 int fare = 2;!
}!
else {
!int fare = 5;!

}!
System.out.println(“Fare is “ + fare);!

outside the scope
of fare; fare is
undefined

Summer 2010 15-110 (Reid-Miller)

Overloading Methods
•  Overloading: Two or more methods with the same

name but different signatures. Example:
String substring(int startIndex, int EndIndex)!

String substring(int startIndex)!

•  Signature: The name of the method and the number
and type of the parameters.

•  Java can figure out which method you are calling
based on the number or the types of the arguments
supplied in the call to the method. Example:
str.substring(3, 6)!
str.substring(3)!

•  Note: The names of the parameters and the return type do not distinguish two
methods, as calls to either method could be the same.

