Methods

15-110 Summer 2010
Margaret Reid-Miller

Methods

A method is a group of programming statements that
has a name, e.g., main()

e A method definition includes the method header and
method body.

 Flow of control:

- When a method is invoked (called), program
execution transfers to that method and the body of
the method is executed.

- When the method finishes program execution
returns to the place from where the method was
called.

Summer 2010 15-110 (Reid-Miller)

Review: Calling Methods

e To call a method defined in the same class, then use
the method name only:

e.g., displayQuestion();

e To call a method defined in a different class and is
not static, then use an object variable of that class:

e.gJ., console.next();

e To call a method defined in a different class and is
static, then use the class name:

e.d., Math.round(3.6);

Summer 2010 15-110 (Reid-Miller)

Static Methods Definitions

header
* A static method definition has the following form:

public static <return-type> <method-name> (<parameter-list>) |
<method-body>

}

 The parameter-list is zero, one, or more variables (type
and name) that holds the data passed to the method
when the method is called.

e The return-type specifies the type of the data that
method returns to the instruction that called this method.

 The method-bodly is the list of instructions that define
how this method performs its action.

Summer 2010 15-110 (Reid-Miller)

Void-Method Definitions

 When a method perform some action and does not
return a value, its return type is specified as void.

Example: / return type parameter list
public static void displayQuestion() {

System.out.println
(“What does Homer like to eat?”);

Summer 2010 15-110 (Reid-Miller)

Calling Void Methods

Example: In a program we might write, on a line by
itself, the following:

displayQuestion();

This call invokes the displayQuestion method and
the method body is executed.

What is the return type for the println method?
System.out.println(“DONUTS");

Summer 2010 15-110 (Reid-Miller)

Parameters

e Suppose we want to display the question for
different members of the Simpson family:
displayQuestion(“Bart”);
displayQuestion(“Marge”);
e To be able to use different person's names, we need
to parameterize the displayQuestion method

 To parameterize a method requires 2 changes:

Define the method to have one or more parameter variables
that accept data from the caller.

- Call the method with actual values (arguments) to pass to
the method.

Summer 2010 15-110 (Reid-Miller)

Method with One Parameter

argument
displayQuestion("Bart");

public static void displayQuestion(String person) {
System.out.println(“What does “ + person
+ “ like to eat?”);

parameter

e The parameter person is a local variable

(available in the method only) but it gets its initial
value from the caller.

e When we call displayQuestion(“Bart”), itis as
If we started the method with

String person = “Bart”;

Summer 2010 15-110 (Reid-Miller)

Parameters and Arguments

* A parameter (or formal parameter) in the method
header declares the type and name of a variable that
generalizes the method behavior; It is a placeholder for
some unspecified value.

public static void displayQuestion(String person)

 An argument (or actual parameter) is the actual value
passed by the caller to the method when it invokes the
method. It indicates the specific behavior of the
method.

displayQuestion(“Bart”);

Summer 2010 15-110 (Reid-Miller)

Method with Two Parameters

printRectangleArea(4.5, 3.2);

public static void ¢ l
printRectangleArea (double width, double height) {
System.out.println(“Area of rectangle with width “ +
width + “ and height “ + height +
“ is “ + width * height);

Output:

Area of a rectangle with width 4.5 and height 3.2 is 14.4

Summer 2010 15-110 (Reid-Miller)

Method that returns a value

double taxOwed = computeTax(300.0, 12.0);

/ return type

public static double computeTax
(double amount, double rate) {
double tax = amount * rate / 100.0;
return tax;

} / \
This expression must

return statement have the same type as
the return type.

Summer 2010 15-110 (Reid-Miller)

The return Statement

return <expression>;

e The return statement returns the expression value
to the statement that called this method.

* |t can return primitive value or an object. The type
must match the return type specified in the method
header.

e If areturn statement is executed, control returns to
the statement that called this method immediately.
(Any statements following the return statement in the
method are not executed.)

Summer 2010 15-110 (Reid-Miller)

Exercises:

1. Define the following method.

// Returns the maximum of a and b
public static int findMax(int a, int b) {

}
2. Write a code fragment to find the max of three
numbers, nl, n2, and n3, using findMax method.

Summer 2010 15-110 (Reid-Miller)

public static void main(String[] a
3,2) evaluates to 17

double taxOwed computeTax(300.0, 12.0);

public static double computeTax
(double amount, double rate){
double tax = amount * rate / 100.0;
return tax;

}

Summer 2010 15-110 (Reid-Miller)

public static void main(String[] args) {

double taxOwed

computeTax(300.0, 12.0);
| |

/ \

} , \

/ \
local variable @
with its own ,' CRes \\
memo v v
amount | 300.0 rate 12.0

public static double computeTax(double amount,

double rate){
double tax = amount * rate / 100.0;
return tax;

}

Summer 2010 15-110 (Reid-Miller)

Argument value
literal, variable,
expression

public static void main(String[] args)

double taxOwed computeTax(300.0, 12.0);
I !

/ \

/
/
[d L4 —
legal e \
. / \
assignment? / \
]
v

amount | 300.0 rate 12.0

public static double computeTax(double amount,
double rat

double tax = amount * rate / 100.0;
return tax;

Parameter:
declares a local
variable

}

Summer 2010 15-110 (Reid-Miller)

public static void main(String[] args) {

double taxOwed computeTax(300.0, 12.0);

} taxOwed| 36.0

1
/ legal
| assignment?
\

)\

tax | 36.0

public static double computeTax(double amount,
double rate){
double tax = amount * rate / 100.0;
return tax;

}

Summer 2010 15-110 (Reid-Miller)

public static void main(String[] args) {

double
double

double

double

amount = 300.0; // assign the arguments
rate = 12.0; // to the parameters

tax = amount * rate/100; // body of the method

taxOwed = tax; // value returned by
// computTax ()

Calling the computeTax() method
IS as if we had executed the code
above.

Summer 2010 15-110 (Reid-Miller)

Local Variables

e A variable declared in the method is called a /ocal
variable. It can be used only inside the method.

public static double computeTax
(double amount, double rate) {
double tax = amount * rate / 100.0;

return tax; _
} local variable

e Different methods can have local variables with same
name!
Are they the same variable?
Are parameters local variables?
Can you assign a new value to a parameter?

Summer 2010 15-110 (Reid-Miller)

Scope

e The scope of a variable determines where the
variable can be referenced, that is, where the variable
IS visible.

e A related concept is the life of the variable, which is
when, during the execution of the program, a variable

has memory space allocated to it and its data can be
used.

e The scope of a local variable starts from where the
variable is declared to the end of the block in which it
Is declared.

e The scope of a method parameter is the method
body.

Summer 2010 15-110 (Reid-Miller)

Think of methods
being surrounded by
a one-way mirror

public static void mainkString[] args)Li
‘double pay = .0;

int taxPercent = 12;

double tax = computeTax(pay, taxPercent);
/ \

Scope

} Can look outside
Cannot look into the box it is in
another box

public \static double computeTax(houble amount,
uble rate)){

Can see inside
its own bo

double tax = amount * rate / 100.0;
return tax

}

Summer 2010 15-110 (Reid-Miller)

Scope (cont’d)

public static final double SALE _TAX RATE = 0.07;

public static double totalSal:&

double totalCost = price;

if (isTaxable == true) {

double price,
boolean isTaxable

Can look outside
the box it is in

| \
double taxAmount = SALE _TAX RATE * price;

totalCost = price + taxAmount;

} S

return totalCost;

Cannot look into
another box

}

Summer 2010 15-110 (Reid-Miller)

) {

Limiting Scope

e Generally, we want to declare variables in the most local
scope possible because it provides more security. That
IS, declare variables at the point you need them.

e |If methods have their own local variables to use, then you
don’t have to consider possible interference from or
changes to other parts of the program.

e CAREFUL: Don’t limit scope too much:

if (age >= 12) { outside the scope
int fare = 2;

} of fare; fareis

else { undefined
int fare = 5;
}

System.out.println(“Fare is “ + fare);

Summer 2010 15-110 (Reid-Miller)

Overloading Methods

e Overloading: Two or more methods with the same
name but different signatures. Example:
String |substring(int startIndex, int EndIndex)

String |substring(int startlIndex)

o Signature: The name of the method and the number
and type of the parameters.

e Java can figure out which method you are calling
based on the number or the types of the arguments
supplied in the call to the method. Example:

str.substring (3, 6)
str.substring(3)

 Note: The names of the parameters and the return type do not distinguish two
methods, as calls to either method could be the same.

Summer 2010 15-110 (Reid-Miller)

