
Warping Indexes with Envelope Transforms for Query by
Humming ∗

Yunyue Zhu
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012

yunyue@cs.nyu.edu

Dennis Shasha
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012

shasha@cs.nyu.edu

ABSTRACT
A Query by Humming system allows the user to find a song
by humming part of the tune. No musical training is needed.
Previous query by humming systems have not provided sat-
isfactory results for various reasons. Some systems have
low retrieval precision because they rely on melodic con-
tour information from the hum tune, which in turn relies on
the error-prone note segmentation process. Some systems
yield better precision when matching the melody directly
from audio, but they are slow because of their extensive
use of Dynamic Time Warping (DTW). Our approach im-
proves both the retrieval precision and speed compared to
previous approaches. We treat music as a time series and
exploit and improve well-developed techniques from time se-
ries databases to index the music for fast similarity queries.
We improve on existing DTW indexes technique by intro-
ducing the concept of envelope transforms, which gives a
general guideline for extending existing dimensionality re-
duction methods to DTW indexes. The net result is high
scalability. We confirm our claims through extensive exper-
iments.

1. INTRODUCTION
You have a tune lingering in your head for many days, but
you don’t know where you heard this tune or which song it is
from. You can’t search it using an online search engine such
as Google because you know nothing about the metadata
of the tune. Often, a music store clerk acts as a musical
search engine, interpreting tunes hummed by shoppers and
directing them to an album. This works even for shoppers
who can’t hum very well, as the authors know from personal
experience. Such a resource is very useful but hard to find.

A Query by Humming system is just such a resource. The
user will hum a piece of tune into a microphone connected to

∗Work supported in part by U.S. NSF grants IIS-9988636
and N2010-0115586.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06...$5.00.

a computer. The computer will search a database of tunes
to find a list of melodies that are most similar to the user’s
“query”. The user will then listen to this result to see if it
is actually the tune that he had in mind. Sometimes the
user won’t get the tune he wanted because he hummed way
off tune, the database does not contain that tune, or the
computer is not intelligent enough to tell whether two tunes
sound similar.

Query by humming is a particular case of “Query by Con-
tent” in multimedia databases. One queries a symbolic
database of melodies (such as MIDIs or digital music scores),
rather than a general acoustic database (such as MP3s). Al-
though these two formats can be linked by metadata such as
artist and song names, there is no known method to extract
melodies from MP3. Querying acoustic databases [31] is an
interesting problem, but it is not the focus of a query by
humming system. Most research into “query by humming”
in the multimedia research community uses the notion of
“Contour” information. Melodic contour is the sequence of
relative differences in pitch between successive notes [8]. It
has been shown to be a method that the listeners use to de-
termine similarities between melodies. However, the inher-
ent difficulty the contour method encounters is that there is
no known algorithm that can reliably transcribe the user’s
humming to discrete notes. We discuss this point further
below.

Recently, there has been work that matches a melody di-
rectly from audio [19, 11, 34]. This generally gives better
query results because it is free from the error-prone note seg-
mentation. However, because such work relies on Dynamic
Time Warping (DTW), the performance is poor.

The database community has been investigating similarity
query in time series databases for a long time[1, 7]. This
paper will show that query by humming is a natural applica-
tion for time series database research. Time series database
techniques, especially dynamic time warping indexes, can
be applied to build a fast and robust query by humming
database system.

2. RELATED WORK
Most of the research in pre-existing query by humming sys-
tems uses pitch contour to match similar melodies [8, 5,
20, 29]. The user’s humming is transcribed to a sequence
of discrete notes and the contour information is extracted

from the notes. This contour information is represented by
a few letters. For example, (“U”, “D”, “S”) represents that
a note is above, below or the same as the previous one. Nat-
urally, more letters can be introduced to get a finer measure
of the contour. For example, “u” indicates that a note is
slightly higher than the previous one while “U” indicates
that it is much higher. The tunes in the databases are also
represented by contour information. In this way, a piece
of melody is represented by a string with a small alphabet.
The edit distance can be used to measure the similarity be-
tween two melodies. Techniques for string matching such
as “q-grams” can be used to speed up the similarity query.
The advantage of using contours is that while most users can
hum the contour correctly, they cannot hum the contour in-
tervals correctly. But such work suffers from two serious
problems.

• It has been shown that contour information alone is
not enough to distinguish a large database of melodies.
A typical query of six notes on a database of 2,697
tracks would result in about 330 tracks being returned
[28].

• It is very hard to segment a user’s humming into dis-
crete notes. There are reliable algorithms to transcribe
the user humming in each short time period to a spe-
cific pitch [27]. But no good algorithm is known to seg-
ment such a time series of pitches into discrete notes.
The precision of the query system thus rests on an
imprecise preprocessing stage.

To avoid the first problem, one can use longer query lengths
and finer measures of contour intervals. But that requires
too much of users, especially poor singers. The second prob-
lem is more fundamental. There are two solutions proposed
in the literature.

1. The user is required to clearly hum the notes of the
melody using only the syllable “ta”, “la” or “da” [18,
20]. But such an input method is very unnatural for
users. Moreover, when there are tie notes in a tune, it
is very hard for the user to articulate them correctly.
Such a cumbersome job should be left to intelligent
computer programs.

2. Some recent work [19, 11, 34] proposes to match the
query directly from audio based on melody slope [34]
or dynamic time warping [19, 11] to match the hum-
query with the melodies in the music databases. The
results reported using such methods are quite encour-
aging. Compared to note based methods, such direct
methods generally have higher retrieval precision [19].
But this quality improvement comes at a price. Perfor-
mance deteriorates to such an extent that [19] states
“Perhaps the biggest criticism of our work is that it
is clearly a brute-force approach and it is very slow.”
No indices are used, which makes searching in a large
music database unpractical.

The database community has been researching problems in
similarity query for time series databases for many years.

The techniques developed in the area might shed light on
the query by humming problem. Agrawal et al. [1] utilized
the Discrete Fourier Transform (DFT) to transform data
from the time domain into the frequency domain and used a
multidimensional index structure to index the first few DFT
coefficients. The focus in their work was on whole sequence
matching. This was generalized to allow subsequence match-
ing [7, 21]. Rafiei and Mendelzon [25] improved this tech-
nique by allowing transformations, including shifting, scal-
ing and moving average, on the time series before similarity
queries. In addition to DFT [1, 25, 35], Discrete Wavelet
Transform (DWT) [6, 30, 23], Singular Value Decomposition
(SVD)[16], Piecewise Aggregate Approximation (PAA)[32,
13] and Adaptive Piecewise Constant Approximation [14]
approaches have also been proposed for similarity search-
ing.

Allowing Dynamic Time Warping (DTW) in time series sim-
ilarity searching is very critical for a query by humming
system. A point-by-point distance measure between time
series is very likely to fail due to variations in the duration
of notes. Berndt and Clifford [4] introduced the concept of
DTW to the data mining community. They showed how to
use Dynamic Programming to compute the DTW distance
and demonstrated its application as a time series similarity
measure. Yi et al. [33] were the first to investigate the DTW
in very large databases. They proposed two techniques to
speed up DTW in a pipeline fashion. The first technique is
to use FastMap to index time series with the DTW distance
measure. But this technique might result in false negatives.
The second is a global lower-bounding technique for filtering
out unlikely matches. In recent work, Keogh [13] proposed
a technique for the exact indexing of DTW that guarantees
no false negatives.

2.1 Our contributions
In this paper, we investigate the problem of indexing large
music databases, which allows efficient and effective query
by humming. Our strategy and contributions are as follows.

• We treat both the melodies in the music databases
and the user humming input as time series. Such an
approach allows us to integrate many database index-
ing techniques into a query by humming system, im-
proving the quality of such system over the traditional
(contour) string databases approach.

• We design an indexing scheme that is invariant to shift-
ing, time scaling and local time warping. This makes
the system robust and allows flexible user humming
input, while attaining high speeds.

• We improve on the state-of-the-art indexing technique
for time series databases allowing dynamic time warp-
ing due to [13] by giving a better lower-bound distance
for dynamic time warping. This yields less false neg-
atives and shows improvements of speed by 3 to 10
times in practice.

• We formulate a general method for dimensionality re-
duction transforms on time series envelopes. Existing
dimensionality reduction transforms, such as Discrete
Fourier Transform (DFT) and Discrete Wavelet Trans-
form (DWT), can be extended to index time series

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11

time (seconds)

p
it

ch
 v

al
u

es

Figure 1: An example of a pitch time series. It is the
tune of the beginning two phrases in the Beatles’s
song “Hey Jude” hummed by an amateur.

allowing dynamic time warping while avoiding false
negatives. This might have applications to video pro-
cessing in the spirit of [13].

• The net effect is that our approach is scalable to large
music databases, as we demonstrate.

3. ARCHITECTURE OF QUERY BY HUM-
MING SYSTEM

A typical query by humming system includes three compo-
nents:

• User humming: the input hum-query

• A database of music

• An index into the database for efficient retrieval of the
hum-query

In this section, we will discuss these components in detail,
with a focus on the indexing techniques.

3.1 User humming: the input hum-query
The user hums the query melody using a PC microphone
with a single channel (mono). This acoustic input is seg-
mented into frames of 10ms and each frame is resolved into
a pitch using a pitch tracking algorithm [27]. This results
in a time series of the pitches. Figure 1 shows an example
of a pitch time series. It is the tune of the first two phrases
in the Beatles’s song “Hey Jude”. The user may hum in
any way he/she prefers. From the example of figure 1, we
can see that it is very hard for the human being to mark
the borders between notes. This is also the case for the
computer. As mentioned above, we are not aware of any
algorithm or product that can automatically segment notes
with high accuracy. That is why our system avoids note
segmentation.

3.2 A database of music
Our music database is made up of a collection of melodies.
A melody is made up of a sequence of the tuples (Note,
Duration). Because we use a monotone melody, there is

only one note playing at each moment. A sequence of tuples
(N1, d1), (N2, d2), ..., (Nk, dk) represents a melody starting
with note N1 that lasts for d1 time, followed by note N2 that
lasts for d2 time... etc. Notice that we do not include the
information of rests in the melody because amateur singers
are notoriously bad in the timing of rests. In fact, we simply
ignore the silent information in the user input humming and
the candidate melodies in the database. Such a sequence of
tuples can then be thought of as a time series in the following
format:

N1, N1, · · · , N1
︸ ︷︷ ︸

d1

, N2, N2, · · · , N2
︸ ︷︷ ︸

d2

, ...

Figure 2 shows the melody of the beginning two phrases in
the Beatles’s “Hey Jude” and its time series representation.

Users are not expected to hum the whole melody. For the
system to recognize sub-melodies, two methods are possible.

1. subsequence matching There are many techniques
for subsequence queries proposed in time series database
research[7, 21], but subsequence queries are generally
slower than whole sequence queries because the size of
the potential candidate sequences is much larger.

2. whole sequence matching We can segment each
melody into several pieces based on the musical in-
formation, because most people will hum melodic sec-
tions. The query will be matched with each small piece
of melody in the database.

In this research, we use whole sequence matching.

3.3 Indexing databases for ef£cient humming
query

50

52

54

56

58

60

62

64

66

1 9 17 25 33 41 49 57

time (beats)

p
it

ch
 v

al
u

es

Figure 2: The sheet music of “Hey Jude” and its
time series representation

If the user of the query by humming system were a good
singer, we would just use the Euclidean distance between
the time series to match the input pitch time series with
the candidate time series in the database. The difficulty of
query by humming comes from the fact that most users will
not hum at the right pitch or tempo. The system should be
flexible enough to allow typical inaccuracies in:

1. Absolute pitch Only about 1 in 10,000 people can
get the absolute pitch right [24]. People of different
genders, ages or even in different moods will hum the
same melody with very different pitches. The hum-
ming of most people will have more accuracy in the
relative pitch, or the intervals. Our system allows the
user to hum at different absolute pitches. To do this,
we subtract from the time series their average pitches
before the matching. This is a Shift-invariant tech-
nique for time series matching.

2. Tempo A song can be sung at different tempos and
still sound quite the same. In practice, a melody will
be hummed at a tempo that ranges from half to double
the original tempo. However the tempo is usually more
or less consistent, that is, when the tempo changes, the
duration of each note changes proportionally. We can
imagine this as a uniform stretching or squeezing of
the time axis. In time series database research, this is
called Time Scaling, or Uniform Time Warping.

3. Relative pitch The problem of variation in relative
pitch for the average singer is less severe than that of
the absolute pitch. But it is still not rare for notes to
be sung a bit high or low. Suppose that the timing of
each note is perfect, the distance between the query
humming time series and a candidate time series can
then be measured by the sum of the differences at each
sample time moment. The smaller this distance is, the
more similar a candidate melody is to the humming.
So the problem of finding a similar melody is a Nearest
Neighbors query.

4. Local timing variation Unfortunately, it is not re-
alistic to require that the timing of each humming
note is perfect. Using Dynamic Time Warping, we can
make the matching process allow variations in tempo
for each note. The idea is to stretch and squeeze the
time axis locally to minimize the point-to-point dis-
tance of two time series. An important contribution
of our paper is an efficient indexing scheme for local
dynamic time warping.

In short, our time series approach first transforms time se-
ries to a “normal form” [9] to make the similarity measure
invariant under shifting and time scaling. Figure 3 shows an
example of the time series representations of the humming
and the candidate music tune after they are transformed to
their normal forms, that is, they have the same absolute
pitch and tempo. The dynamic time warping distance be-
tween the normal forms of the time series will be used as the
similarity measure.

To scale up to large databases, we must avoid a linear scan
which examines the distance between the query time series

Humming time series

Music time series

Figure 3: the time series representations of the hum-
ming and the candidate music tune after they are
transformed to their normal forms

Table 1: list of symbols
D Euclidean distance function
~x time series
~xn time series of length n

xi the i−th element of ~x
Uw(~x) w−upsample of a time series ~x

First(~x) the first element of ~x
Rest(~x) the rest time series of ~x without First(~x)

and all the time series in the database. However, it is hard
to index time series data because of their high dimension.
To address the problem, the GEMINI framework [7] is used.
The idea is to approximate the original time series and to
reduce their dimensionality. Given a time series ~xn, a di-
mensionality reduction transform T will reduce it to a lower
dimension ~XN = T (~xn), N << n. ~XN is also called the
feature vector of ~xn. After the time series are mapped to a
lower dimensionality space, they can be indexed by a mul-
tidimensional index structure such as an R* tree [3] or a
grid file [35]. To guarantee no false negatives in similarity
queries, T must be lower-bounding, that is, the distance
between time series under dimensionality reduction should
lower-bound their original distance:

D(T (~x), T (~y)) ≤ D(~x, ~y).

Popular dimensionality reduction transformations include
the Fourier Transform, the Wavelet Transform, SVD and
Piecewise Aggregate Approximation. We extend the GEM-
INI framework to the Dynamic Time Warping distance mea-
sure.

4. DYNAMIC TIME WARPING
We first summarize in table 1 a list of symbols used in the
rest of paper. The Euclidean distance metric is the distance
metric we use for time warping. Other distance metrics are
also possible in our framework with some modifications.

The standard definition of Dynamic Time Warping distance
is as follows [4, 33, 22]:

Definition 1. The Dynamic Time Warping distance be-

tween two time series ~x,~y is

D
2
DTW (~x, ~y) = D

2(First(~x), F irst(~y))

+min

D2
DTW (~x,Rest(~y))

D2
DTW (Rest(~x), ~y)

D2
DTW (Rest(~x), Rest(~y))

The process of computing the DTW distance can be visual-
ized as a string matching style dynamic program (figure 4).
We construct a n×m matrix to align time series ~xn and ~ym.
The cell (i, j) corresponds to the alignment of the element
xi with yj . A warping path, P , from cell (1, 1) to (n,m)
corresponds to a particular alignment, element by element,
between ~xn and ~ym:

P = p1, p2, ..., pL = (p
x
1 , p

y
1), (p

x
2 , p

y
2), ..., (p

x
L, p

y
L)

max(n,m) ≤ L ≤ n+m− 1

px
t , p

y
t , t = 1, 2, ..., L are the position numbers of ~x

n and ~ym

respectively in the alignment. The distance between ~xn and
~ym on the warping path P is the distance between xpx

t
and

yp
y
t
, t = 1, 2, ..., L. The constraints on the path P are:

• P must be monotonic :px
t −px

t−1 ≥ 0 and p
y
t −p

y
t−1 ≥ 0

• P must be continuous :px
t −px

t−1 ≤ 1 and p
y
t −p

y
t−1 ≤ 1

The number of possible warping paths grows exponentially
with the length of the time series. The distance that is mini-
mized over all paths is the Dynamic Time Warping distance.
It can be computed using Dynamic Programming in O(mn)
time [4].

4.1 Uniform time warping
Uniform Time Warping (UTW) is a special case of DTW.
The constraint imposed by UTW is that the warping path
must be diagonal.

Definition 2. The Uniform Time Warping distance be-
tween two time series ~xn, ~ym is

D
2
UTW (~x

n
, ~y

m) =

∑mn
i=1(xdi/me − ydi/ne)

2

mn

For simplicity of notation, we stretch both time axis of
~xn, ~ym to be mn. It is clear that if their greatest common
divisor, GCD(m,n) > 1, the time axis can be stretched to
only their least common multiple, LCM(n,m).

Using the concept of upsampling, the definition of Uniform
Time Warping can be simplified.

Definition 3. The w−upsampling of a time series ~xn is

U
w(~xn) = ~z

nw

zi = xdi/we, i = 1, 2, ..., nw

Intuitively, w−upsampling repeats each value in a time se-
ries w times. The following lemma makes it possible to
reduce the UTW distance to Euclidean distance.

Lemma 1.

D
2
UTW (~x

n
, ~y

m) =
D2
(
Um(~xn), Un(~ym)

)

mn

Uniform Time Warping is a generalization of Time Scaling.
In time scaling, the length of one time series must be a
multiple of the length of the other, while there is no such
a restriction for UTW. Using UTW, we can compute the
distance between time series of different lengths. The UTW
normal form of a time series ~xn is Uw(~xn), where nw is a
predefined large number. It is not hard to adjust existing
dimensionality reduction techniques to compute the UTW
normal form of a time series.

4.2 Local dynamic time warping
The constraint imposed by UTW is too rigid, but it can be
relaxed by Local Dynamic Time Warping (LDTW). Intu-
itively, humans will match two time series of different lengths
as follows. First, the two time series are globally stretched
to the same length. They are then compared locally point
by point, with some warping within a small neighborhood in
the time axis. Such a two-step transform can emulate tradi-
tional Dynamic Time Warping while avoiding some unintu-
itive results as well as speeding it up. Here is the definition
of Local Dynamic Time Warping.

Definition 4. The k−Local Dynamic Time Warping dis-
tance between two time series ~x,~y is

D
2
LDTW (k)(~x, ~y) = D

2
constraint(k)(First(~x), F irst(~y))

+min

D2
LDTW (k)(~x,Rest(~y))

D2
LDTW (k)(Rest(~x), ~y)

D2
LDTW (k)(Rest(~x), Rest(~y))

D
2
constraint(k)(xi, yj) =

{
D2(xi, yj) if |i− j| ≤ k

∞ if |i− j| > k

Figure 4 shows a warping path for DLDTW (2)in a time warp-
ing grid. The possible paths are constrained to be within
the shadow, which is a beam of width 5(= 2∗2+1) along the
diagonal path. The warping width is defined as δ = 2k+1

n
.

Such a constraint is also known as a Sakoe-Chiba Band.
Other similar constraints are also discussed in [13]. It can be
shown that the complexity of computing k−Local Dynamic
Time Warping Distance is O(kn) using dynamic program-
ming.

Note that in the work [13], the definition of the DTW is
actually LDTW. By combining UTW and LDTW together,
we define a more general DTW distance:

Definition 5. The Dynamic Time Warping distance be-
tween two time series is the LDTW distance between their
UTW normal forms.

0 1 2

0

1

2

3

4

5

6

7

8

9

10

11

3 4 5 6 7 8 9 10 11

j

i

Figure 4: An example warping path with local con-
straint

In other words, it is the LDTW distance between two time
series after they are both upsampled to be of the same
length. In a slight abuse of notation, we will not distinguish
LDTW and DTW in the remaining of the paper, and we
assume the distance of LDTW is computed after the UTW
transform had been performed on the time series.

4.3 Lower-bounding technique and indexing
scheme

The Local Dynamic Time Warping distance makes it pos-
sible to lower-bound the distance locally. Because such a
local lower-bound is tighter than the global lower-bounding
for DTW [33], it produces fewer false positives.

To simplify our notation, we will first introduce the concept
of envelope for time series.

Definition 6. The k−Envelope of a time series ~x = xi, i =
1, ..., n is

Envk(~x) = (Env
L
k (~x);Env

U
k (~x)).

EnvL
k (~x) and EnvU

k (~x) are the upper and lower envelope of
~x respectively:

Env
L
k (~x) = x

L
i , i = 1, ..., n;x

L
i = min−k≤j≤k(xi+j)

Env
U
k (~x) = x

U
i , i = 1, ..., n;xU

i = max−k≤j≤k(xi+j)

~e = ~eL;~eU denotes the envelope of a time series. The dis-
tance between a time series and an envelope is defined nat-
urally as follows.

Definition 7. The distance between a time series ~x and
an envelope ~e is

D(~x,~e) = min
~z∈~e

D(~x, ~z)

We use ~zn ∈ ~e to denote that eL
i ≤ zi ≤ eU

i , i = 1, 2, ..., n.
So the value at each point can be any one in the range.

Keogh [13] proved that the distance between a time series
and the envelope of another time series lower-bounds the
true DTW distance.

Lemma 2. [13]

D(~xn
, Envk(~y

n)) ≤ DDTW (k)(~x
n
, ~y

n)

To index the time series in the GEMINI framework, one
needs to perform dimensionality reduction transform on the
time series and its envelope. Piecewise Aggregate Approx-
imation (PAA) is used in [13]. The PAA of the time series

~xn is ~XN , N << n, where

Xi =
N

n

n
N

i
∑

j= n
N

(i−1)+1

xj , i = 1, 2, ..., N.

That is, the n dimensional time series ~xn is reduced to
dimension N by taking averages in N consecutive equal
sized “frames”. The PAA reduction of the envelopes using
Keogh’s method is as follows. Let (~LN ; ~UN) be the PAA

reduction of an envelope (~ln; ~un),

Li = min(l n
N

(i−1)+1, ..., l n
N

i),

Ui = max(u n
N

(i−1)+1, ..., u n
N

i), i = 1, 2, ..., N.

The PAA of an envelope is just the piecewise constant func-
tion, which bounds but does not intersect the envelope.

We introduce a new PAA reduction as follows.

Li =
N

n

n
N

i
∑

j= n
N

(i−1)+1

lj , Ui =
N

n

n
N

i
∑

j= n
N

(i−1)+1

uj .

i = 1, 2, ..., N

In our method, ~U and ~L are also piecewise constant func-
tions, but each piece is the average of the upper or lower
envelope during that time period. Figure 5-a shows a time
series, its bounding envelope and the PAA reduction of the
envelope using Keogh’s method. Figure 5-b shows the same
time series, its bounding envelops and the PAA reduction
of the envelope using our method. We can see clearly that
the bounds in figure 5-b are tighter than that in figure 5-a
and it is straightforward to prove that this is always the case
for any time series. We will show that our bounds can still
guarantee to lower-bound the real DTW distance.

Before we prove that our PAA transform can provide a
lower-bound for DTW, we will first discuss general dimen-
sionality reduction transforms on envelopes for indexing time
series under the DTW distance. This is a principle contri-
bution of the paper. We define the container property of a
dimensionality reduction transform for an envelope as fol-
lows.

Definition 8. We say a transformation T for an envelope
~e is “container-invariant” if

∀~xn
if ~x

n ∈ ~e then T (~xn) ∈ T (~e)

Original time series
Upper envelope
Lower envelope
U_Keogh
L_Keogh

Original time series
Upper envelope
Lower envelope
U_new
L_new

Figure 5: The PAA for the envelope of a time
series using (a)Keogh’s method(top) and (b)Our
method(bottom).

Just as a transform of time series that is lower-bounding can
guarantee no false negatives for Euclidean distance, a trans-
form of envelopes that is container-invariant can guarantee
no false negatives for DTW distance.

Theorem 1. If a transformation T is container-invariant
and lower-bounding then

D(T (~x), T (Envk(~y))) ≤ DDTW (k)(~x, ~y)

Proof. T is container-invariant,

∴ ∀~zn
if ~z

n ∈ ~e then T (~zn) ∈ T (~e)

∴ {~z|~z ∈ Envk(~y)} ⊆ {~z|T (~z) ∈ T (Envk(~y))}

∴ min
{~z|T (~z)∈T (Envk(~y))}

D(~x, ~z) ≤ min
{~z|~z∈Envk(~y)}

D(~x, ~z)

T is lower-bounding,

∴ D(T (~x), T (~z)) ≤ D(~x, ~z)

∴ min
{~z|T (~z)∈T (Envk(~y))}

D(T (~x), T (~z)) ≤ min
{~z|T (~z)∈T (Envk(~y))}

D(~x, ~z)

∴ min
{~z|T (~z)∈T (Envk(~y))}

D(T (~z), T (~z)) ≤ min
{~z|~z∈Envk(~y)}

D(~x, ~z)

By the definition of distance between time series and enve-
lope,

D(T (~x), T (Envk(~y))) ≤ D(~x,Envk(~y))

From lemma 2,

D(T (~x), T (Envk(~y))) ≤ DDTW (k)D(~x, ~y)

Using the concept of container-invariant, we can design the
transform for the envelope based on PAA, DWT, SVD and
DFT. All these dimensionality reduction transforms are lin-
ear transforms1, that is,

~X
N = T (~xn), Xj =

n∑

i=1

aijxi, j = 1, 2, ..., N.

We can extend such linear transforms for time series to
transforms for time series envelopes, and at the same time
guarantee they are container-invariant.

Lemma 3. Let transform T be a linear transform, ~XN =
T (~xn), Xj =

∑n
i=1 aijxi, j = 1, 2, ..., N , and the transform

T on envelope ~e is as follows,

E = (~EL
, ~E

U) = T (~eL
, ~e

U)

E
U
j =

n∑

i=1

(aije
U
i τ(aij) + aije

L
i (1− τ(aij)))

E
L
j =

n∑

i=1

(aije
L
i τ(aij) + aije

U
i (1− τ(aij)))

j = 1, 2, ..., N

where τ is the sign function:

τ(x) =

{
1 x ≥ 0
0 x < 0

Then transform T is container-invariant.

Proof.

∀~xn
if ~x

n ∈ ~e then e
L
i ≤ xi ≤ e

U
i , i = 1, 2, ..., n

Therefore E
L
i ≤ Xj ≤ E

U
i , j = 1, 2, ..., N

∴ T (~xn) ∈ T (~e)

A transform of an envelope is still an envelope, which we call
the envelope in the feature space. In the special case when
the envelope equals the time series, the transform of the en-
velope becomes the transform of the time series. Because
PAA is a linear transform, and our proposed PAA trans-
form for envelopes is deduced from the lemma above, it is
container-invariant. PAA also has the nice property that
all the coefficients of linear transformation for PAA, unlike
DFT and SVD, are positive. In this case, the upper enve-
lope in feature space is just the PAA transform of the upper
envelope, so is the lower envelope. For other transform like
DFT and SVD, the upper envelope in feature space is the
transform of the combination of the upper and the lower
envelope. So the envelopes in the PAA feature space are
tighter then those for DFT and SVD in general. Our exper-
iments also confirm this.

1 DFT is a linear transform because the real and image part
of a DFT coefficient are still a linear combination of the
original time series.

Now we are ready to describe the strategy for time series
database query with DTW. An ε-range similarity query in
a time series database is to find all the time series whose
distances with the query are less than ε. It includes the
following step.

1. For each time series ~xn in the database, compute its
feature vector ~XN .

2. Build an N -dimensional index structure on ~XN .

3. For a time series query ~qn, compute its envelope ~en

and ~EN = T (~en).

4. Make an ε-range query of ~EN on the index structure,
and return a set of time series S.

5. Filter out the false positives in S using their true DTW
distances with ~qn. We can guarantee no false negatives
from theorem 1.

Similarly, a k-nearest neighbors query can be built on top
of such a range query [17, 26]. For existing time series
databases indexed by DFT, DWT, PAA, SVD, etc., we can
add Dynamic Time Warping support without rebuilding in-
dices. This works because our framework allows all the
linear transforms and adding the DTW support requires
changes only to the time series query.

5. EXPERIMENTS
Our experiments are divided into three parts. First we will
run experiments to evaluate the quality of our query by
humming system using the time series database approach.
Comparisons with traditional contour based method will be
made. We will also test the efficiency of our DTW indexing
scheme comparing to the state-of-the-art technique. Finally
we will test the scalability of our system.

5.1 Quality of the query by humming system
We collected 50 of the most popular Beatles’s songs by man-
ual entry. These songs are further segmented to 1000 short
melodies. Each melody contains 15 to 30 notes. We asked
people with different musical skills to hum for the system.

To evaluate the quality of the query by humming system,
first we compared it with the note contour-based method.
We will use the hum queries of better singers in this exper-
iment, because for hum queries of poor quality it is hard
for even a human being to recognize the target song. For
the note contour-based method, we need to transcribe the
user humming into discrete notes first. For lack of a re-
liable note-segmentation algorithm, we used the best com-
mercial software we could find, AKoff Music Composer[2], to
transcribe notes. We also applied a standard algorithm [27]
to transcribe the user hum query to a sequence of pitches,
and used the silence information between pitches to segment
notes. For the contour-based method, we report the better
result based on these two note-segmentation processes. For
the 20 pieces of hum queries by better singers, we searched
the database to find their ranks using the contour-based ap-
proach and the time series approach. The result is shown in
table 2. We can see that our time series approach beats the

Table 2: The number of melodies correctly retrieved
using different approaches

Rank Time series Approach Contour Approach
1 16 2
2-3 2 0
4-5 2 0
6-10 0 4
10- 0 14

Table 3: The number of melodies correctly retrieved
by poor singers using different warping widths

Rank δ = 0.05 δ = 0.1 δ = 0.2
1 2 4 2
2-3 2 3 5
4-5 4 5 7
6-10 3 5 4
10- 9 3 2

contour approach clearly. We are not claiming that using
contour information for music matching is bad. However
until a reliable note-segmentation algorithm is developed,
such an approach is based on dubious input. If for exam-
ple, the query input were by piano instead of human voice
so that each individual note is clearly separated, we would
expect the contour-base approach to have good quality too.

We tested our system with some hum queries of poor qual-
ity, for example, by one of the authors. We define a melody
to be perfectly matched if it is the intended target melody of
the hummer and its rank is 1. The number of melodies per-
fectly matched is low. Still the result is quite encouraging.
We noticed that the warping width can be adjusted to tune
the query results. It is hard for a poor hummer to keep the
right duration for each note of the melody. Allowing larger
warping widths will give the hummers more flexibility in
the duration of the notes. For the 20 hum queries by poor
singers, we searched the database to find their ranks using
DTW with different warping width. The result is reported
in table 3. We can see that more queries return in the top 10
matches when the warping width is increased from 0.05 to
0.1. But this tendency disappears when the warping width
is increased to 0.2, because it is unlikely for a hummer to
sing way off tempo. When the warping width is too large,
some melodies that are very different will have a small DTW
distance too. A warping width of 1 for local DTW degener-
ates to global DTW. Larger warping widths also slow down
the processing.

5.2 Experiments for indexing DTW
Having shown that our time series approach for query by
humming system has superior quality over the traditional
contour approach, we will also demonstrate that it is very
efficient. Unlike [19], the performance of the time series ap-
proach does not suffer from the extensive use of DTW. The
scalability of our system comes from our proposed technique
for indexing DTW. We will compare our DTW indexing
technique with the best existing DTW indexing method [13].
There is an increasing awareness to use a benchmark ap-
proach in time series database experiments to guard against

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
ig

ht
ne

ss
 o

f L
ow

er
 B

ou
nd

Data set

Keogh_PAA

New _PAA

LB

Figure 6: The mean value of the tightness of lower bound, using LB, New PAA and Keogh PAA for different
time series data sets. The data sets are 1.Sunspot; 2.Power; 3.Spot Exrates; 4.Shuttle; 5.Water; 6. Chaotic;
7.Streamgen; 8.Ocean; 9.Tide; 10.CSTR; 11.Winding; 12.Dryer2; 13.Ph Data; 14.Power Plant; 15.Balleam;
16.Standard &Poor; 17.Soil Temp; 18.Wool; 19.Infrasound; 20.EEG; 21.Koski EEG; 22.Buoy Sensor; 23.Burst;
24.Randow walk

implementation bias and data bias. In the spirit of the work
[15, 13], we took such an approach to conduct our experi-
ments. To avoid data bias, we conducted our experiments
on a wide range of time series datasets [12] that cover disci-
plines including finance, medicine, industry, astronomy and
music. We also measured the results in an implementation
free fashion to avoid bias in implementation.

We define the tightness of the lower bound for DTW distance
as follows.

T = Lower Bound of DTW distance based on reduced dimension
True DTW distance

T is in the range of [0,1]. Larger T gives a tighter bound.
Note that the definition here is different from that in the
work [13]. In [13], Keogh has shown convincingly that lower-
bounding using the envelope is much tighter than global
bounding as reported in [33]. But such an envelope uses
much more information than global lower-bounding. For a
time series of size n, its envelope is represented by 2n val-
ues. By contrast, the global lower-bounding technique can
be seen as using the minimum and maximum value of a
time series as the envelope of a time series. So the global
bounding is represented by only 2 values. To test the effi-
ciency of dimensionality reduction under DTW, we modify
the definition of T slightly, i.e., the lower-bound is based
on reduced dimension. We compared three methods: LB is
the lower-bound using the envelope (without dimensional-
ity reduction and therefore without the possibility of index-
ing); Keogh PAA is the lower-bound using PAA transforma-
tion proposed by Keogh [13] and New PAA is our proposed
PAA lower-bound. We chose each sequence to be of length
n = 256 and a warping width to be 0.1. The dimension was
reduced from 256 to 4 using PAA. We selected 50 time series
randomly from each dataset and subtracted the mean from
each time series. We computed the tightness of the lower
bound of the distances between each pair of the 50 time se-
ries. The average tightness of lower bound for each dataset
using the three methods are reported in figure 6.

From the figure, we can see that the method LB has the
best T for each dataset. This is not a surprise, because the
method LB uses much more information than Keogh PAA
and New PAA. We include it here as a sanity check. LB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Warping Width

T
ig

ht
ne

ss
 o

f
Lo

w
er

 B
ou

nd

LB
New_PAA
Keogh_PAA
SVD
DFT

Figure 7: The mean value of the tightness of lower
bound changes with the warping widths, using LB,
New PAA, Keogh PAA, SVD and DFT for the ran-
dom walk time series data set.

will be used as a second filter after the indexing scheme,
Keogh PAA or New PAA, returns a superset of answer. Us-
ing the same number of values, New PAA is always better
than Keogh PAA. That comes from the fact that the esti-
mations of DTW using New PAA are always closer to the
true DTW distance than the estimations using Keogh PAA.
The tightness of lower bound of New PAA is approximately
2 times that of Keogh PAA on average for all datasets.

One of the contributions of this paper is a framework allow-
ing DTW indexing using different dimensionality reduction
methods in addition to PAA. The performance of compet-
ing dimensionality reduction methods under the Euclidean
distance measure is very data-dependent, none of them is
known to be the best in all cases. Allowing different di-
mensionality reduction methods to be extended to the case
of the DTW distance measure will provide the users with
more flexibility in choosing the right method for a partic-
ular application. We tested the tightness of lower bounds
for DTW indexing using dimensionality reduction methods
including PAA, DFT and SVD. For brevity, we will only re-
port the results for the random walk data in figure 7, because
the random walk data are the most studied dataset of time
series indexing and are very homogeneous. We varied the
warping widths from 0 to 0.1. Each T value is the average

threshold=0.2

0

10

20

30

40

50

60

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Warping Width

of

 C
an

di
da

te
s

Keogh_PAA

New_PAA

threshold=0.8

0

20

40

60

80

100

120

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Warping Width

of

 C
an

di
da

te
s

Keogh_PAA

New_PAA

Figure 8: The number of candidates to be retrieved
with different query thresholds for the Beatles’s
melody database

of 500 experiments. Again LB is always the tightest lower-
bound because no dimensionality reduction is performed. In
the case of 0 warping width, the DTW distance is the same
as the Euclidean distance. Since SVD is the optimal di-
mensionality reduction method for Euclidean distance, the
lower-bound using SVD is tighter than any other dimen-
sionality reduction methods. The performance of DFT and
PAA for the Euclidean distance measure is similar, which
confirms other research [30, 14]. For all the warping widths,
New PAA is always better that Keogh PAA as we would
expect. New PAA also beats DFT and SVD as the warping
widths increase. The reason is that all the linear transfor-
mation coefficients for PAA are positive, as we mentioned
before.

5.3 Scalability testing
The tightness of the lower bound is a good indicator of the
performance of a DTW indexing scheme. A tighter lower-
bound means that fewer candidates need to be retrieved for
further examination in a particular query. That will increase
the precision of retrieval at no cost to recall. Higher preci-
sion of retrieval implies lower CPU cost and IO cost at the
same time, because we need to access fewer pages to retrieve
candidate time series and to perform fewer exact Dynamic
Time Warping computations. We will use the number of
candidates retrieved and the number of page accesses as the
implementation-bias free measures for the CPU and IO cost.

First we conducted experiments on our small music database
of the Beatles’s songs. Figure 8 shows the average number
candidates to be retrieved for queries with different selectiv-
ity. The range queries have range nε, n is the length of the
time series and the thresholds ε take the values of 0.2 and
0.8. From the figure, we can see that as the warping widths
get larger, the number of candidates retrieved increases, be-
cause the lower-bounds get looser for larger warping widths.
Our approach (New PAA) is up to 10 times better than
Keogh PAA.

To test the scalability of our system, we need to use larger
datasets. The first database we tested is a music database.
We extracted notes from the melody channel of MIDI files
we collected from the Internet and transformed them to our
time series representation. There are 35, 000 time series in
the database. The second database contains 50, 000 random
walk data time series. Each time series has a length of 128
and is indexed by its 8 reduced dimensions using an R* tree
[3] implemented in LibGist [10]. Each result we report is
averaged over 500 experiments. Figure 9 shows the perfor-
mance comparisons for the music database. We can see that
the number of page accesses is proportional to the number
of candidates retrieved for all the methods and thresholds.
In a Pentium 4 PC, NEW PAA took from 1 second for the
smallest warping width to 10 seconds for the largest warping
width. As the warping width increases, the number of candi-
dates retrieved increases significantly using the Keogh PAA
method while it increases less for New PAA. This is also true
for other time series datasets. Figure 10 shows the perfor-
mance comparisons for the random walk database. Similar
performance advantages of our method hold for the random
walk data too.

6. CONCLUSIONS
We present an improved scheme for indexing time series
databases using Dynamic Time Warping. Our improvement
builds on the dimensionality reduction transform of time
series envelopes. We give a general approach to adapting
existing time series indexing schemes for the Euclidean dis-
tance measure to the DTW distance measure. We prove that
such an indexing scheme guarantees no false negatives given
that the dimensionality reduction on envelope is container-
invariant. Using this approach, our PAA transform for DTW
is consistently better than the previous reported PAA trans-
form. Extensive experiments showed that the improvement
is by a factor between 3 and 10.

Based on the time warping indexes, we show that the time
series database approach for query by humming gives high
precision and is fast and scalable. We have also implemented
a query by humming system. Preliminary testing of the sys-
tem on real people (OK, our friends) gave good performance
and high satisfaction. Some even improved their singing as
a result. The system is not yet mature. We are still working
on expanding our melody database and adapting the sys-
tem to different hummers. However, the system’s potential
applications to entertainment and education are fortissimo.

7. ACKNOWLEDGMENTS
We are grateful to Prof. Eamonn Keogh for providing the
UCR time series data mining archive. We thank Dominic
Mazzoni for providing the transcription software. We thank
Hsiao-Lan Hsu for her input of the Beatles’s songs. And
many thanks to our friends for testing the system by hum-
ming.

8. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient
Similarity Search In Sequence Databases. In
D. Lomet, editor, Proceedings of the 4th International
Conference of Foundations of Data Organization and
Algorithms (FODO), pages 69–84, Chicago, Illinois,
1993. Springer Verlag.

threshold=0.2

0

50

100

150

200

250

300

350

400

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Warping Width

of

 C
an

di
da

te
s

Keogh_PAA

New_PAA

threshold=0.8

0

100

200

300

400

500

600

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Warping Width

of

 C
an

di
da

te
s

Keogh_PAA

New_PAA

threshold=0.2

0

10

20

30

40

50

60

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Warping Width

of

 P
ag

e
A

cc
es

se
s

Keogh_PAA

New_PAA

threshold=0.8

0

10

20

30

40

50

60

70

80

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Warping Width

of

 P
ag

e
A

cc
es

se
s

Keogh_PAA

New_PAA

Figure 9: Performance comparisons with different query thresholds for a large music database

threshold=0.2

0

10

20

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Warping Width

of

 C
an

di
da

te
s

Keogh_PAA

New_PAA

threshold=0.8

0

50

100

150

200

250

300

350

400

450

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Warping Width

of

 C
an

di
da

te
s

Keogh_PAA

New_PAA

threshold=0.2

0

5

10

15

20

25

30

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Warping Width

of

 P
ag

e
A

cc
es

se
s

Keogh_PAA

New_PAA

threshold=0.8

0

10

20

30

40

50

60

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Warping Width

of

 P
ag

e
A

cc
es

se
s

Keogh_PAA

New_PAA

Figure 10: Performance comparisons with different query thresholds for a large random walk database

[2] AKoff Sound Labs. Akoff music composer version
2.0,http://www.akoff.com/music-composer.html, 2000.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The r*-tree: An efficient and robust access
method for points and rectangles. In Proceedings of
the 1990 ACM SIGMOD International Conference on
Management of Data, Atlantic City, NJ, May 23-25,
1990, pages 322–331, 1990.

[4] D. Berndt and J. Clifford. Using dynamic time
warping to find patterns in time series. In Advances in
Knowledge Discovery and Data Mining, pages
229–248. AAAI/MIT, 1994.

[5] S. G. Blackburn and D. C. DeRoure. A tool for
content based navigation of music. In ACM
Multimedia 98, pages 361–368, 1998.

[6] K.-P. Chan and A. W.-C. Fu. Efficient time series
matching by wavelets. In Proceedings of the 15th

International Conference on Data Engineering,
Sydney, Australia, pages 126–133, 1999.

[7] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
In Proc. ACM SIGMOD International Conf. on
Management of Data, pages 419–429, 1994.

[8] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith.
Query by humming: Musical information retrieval in
an audio database. In ACM Multimedia 1995, pages
231–236, 1995.

[9] D. Q. Goldin and P. C. Kanellakis. On similarity
queries for time-series data: Constraint specification
and implementation. In Proceedings of the 1st
International Conference on Principles and Practice
of Constraint Programming (CP’95), 1995.

[10] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer.
Generalized search trees for database systems. In

U. Dayal, P. M. D. Gray, and S. Nishio, editors, Proc.
21st Int. Conf. Very Large Data Bases, VLDB, pages
562–573. Morgan Kaufmann, 11–15 1995.

[11] J.-S. R. Jang and H.-R. Lee. Hierarchical filtering
method for content-based music retrieval via acoustic
input. In Proceedings of the ninth ACM international
conference on Multimedia, pages 401–410. ACM Press,
2001.

[12] E. Keogh and T. Folias. The UCR Time Series Data
Mining Archive[http://www.cs.ucr.edu/ ea-
monn/tsdma/index.html],Riverside CA. University of
California - Computer Science and Engineering
Department, 2002.

[13] E. J. Keogh. Exact indexing of dynamic time warping.
In VLDB 2002,Proceedings of 28th International
Conference on Very Large Data Bases, August 20-23,
2002, Hong Kong, China, pages 406–417, 2002.

[14] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J.
Pazzani. Locally adaptive dimensionality reduction for
indexing large time series databases. In Proc. ACM
SIGMOD International Conf. on Management of
Data, 2001.

[15] E. J. Keogh and S. Kasetty. On the need for time
series data mining benchmarks: A survey and
empirical demonstration. In the 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining,July 23 - 26, 2002. Edmonton, Alberta,
Canada, pages 102–111, 2002.

[16] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently
supporting ad hoc queries in large datasets of time
sequences. In SIGMOD 1997, Proceedings ACM
SIGMOD International Conference on Management of
Data, May 13-15, 1997, Tucson, Arizona, USA, pages
289–300, 1997.

[17] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and
Z. Protopapas. Fast nearest neighbor search in
medical image databases. In VLDB’96, Proceedings of
22th International Conference on Very Large Data
Bases, September 3-6, 1996, Mumbai (Bombay), India,
pages 215–226, 1996.

[18] N. Kosugi, Y. Nishihara, T. Sakata, M. Yamamuro,
and K. Kushima. A practical query-by-humming
system for a large music database. In ACM
Multimedia 2000, pages 333–342, 2000.

[19] D. Mazzoni and R. B. Dannenberg. Melody matching
directly from audio. In 2nd Annual International
Symposium on Music Information
Retrieval,Bloomington, Indiana, USA, 2001.

[20] R. J. McNab, L. A. Smith, D. Bainbridge, and I. H.
Witten. The new zealand digital library melody index.
In D-Lib Magazine, 1997.

[21] Y.-S. Moon, K.-Y. Whang, and W.-S. Han.
Generalmatch: A subsequence matching method in
time-series databases based on generalized windows.
In SIGMOD 2002,Madison,Wisconsin, USA, 3-6 June
2002., 2002.

[22] S. Park, W. W. Chu, J. Yoon, and C. Hsu. Fast
retrieval of similar sub-sequences under time warping.
In ICDE, pages 23–32, 2000.

[23] I. Popivanov and R. J. Miller. Similarity search over
time series data using wavelets. In ICDE, 2002.

[24] J. Profita and T.G.Bidder. Perfect pitch. In American
Journal of Medical Genetics, pages 763–771, 1988.

[25] D. Rafiei and A. Mendelzon. Similarity-based queries
for time series data. In Proc. ACM SIGMOD
International Conf. on Management of Data, pages
13–25, 1997.

[26] T. Seidl and H.-P. Kriegel. Optimal multi-step
k-nearest neighbor search. In L. M. Haas and
A. Tiwary, editors, SIGMOD 1998, Proceedings ACM
SIGMOD International Conference on Management of
Data, June 2-4, 1998, Seattle, Washington, USA,
pages 154–165, 1998.

[27] T. Tolonen and M. Karjalainen. A computationally
efficient multi-pitch analysis model. IEEE
Transactions on Speech and Audio Processing, 2000.

[28] A. Uitdenbgerd and J. Zobel. Manipulation of music
for melody matching. In ACM Multimedia 98, pages
235–240, 1998.

[29] A. Uitdenbgerd and J. Zobel. Melodic matching
techniques for large music databases. In ACM
Multimedia 99, pages 57–66, 1999.

[30] Y.-L. Wu, D. Agrawal, and A. E. Abbadi. A
comparison of dft and dwt based similarity search in
time-series databases. In Proceedings of the 9 th
International Conference on Information and
Knowledge Management, 2000.

[31] C. Yang. Efficient acoustic index for music retrieval
with various degrees of similarity. In ACM Multimedia
2002, December 1-6, 2002,French Riviera, 2002.

[32] B.-K. Yi and C. Faloutsos. Fast time sequence
indexing for arbitrary lp norms. In VLDB 2000,
Proceedings of 26th International Conference on Very
Large Data Bases, September 10-14, 2000, Cairo,
Egypt, pages 385–394. Morgan Kaufmann, 2000.

[33] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient
retrieval of similar time sequences under time warping.
In ICDE, pages 201–208, 1998.

[34] Y. Zhu, M. S. Kankanhalli, and C. Xu. Pitch tracking
and melody slope matching for song retrieval. In
Advances in Multimedia Information Processing -
PCM 2001, Second IEEE Pacific Rim Conference on
Multimedia, Bejing, China, October 24-26, 2001.

[35] Y. Zhu and D. Shasha. Statstream: Statistical
monitoring of thousands of data streams in real time.
In VLDB 2002,Proceedings of 28th International
Conference on Very Large Data Bases, August 20-23,
2002, Hong Kong, China, pages 358–369, 2002.

	page1: 181
	page2: 182
	page3: 183
	page4: 184
	page5: 185
	page6: 186
	page7: 187
	page8: 188
	page9: 189
	page10: 190
	page11: 191
	page12: 192

