
Homework	2,	due	Feb	14	

	 1	

15-323/623 Spring 2019
Homework 2
Due Feb 14

Scheduler implementation:

1. Compare an ordered linked list, a heap, and a timing wheel implementation of a scheduler.
Fill in a table like the following with characteristics of these approaches. Assume N means
the number of currently scheduled events.

Algorithm Expected
Insertion
Time per
event, e.g.
O(N), O(log
N)

Expected
Dispatch
Time per
event, e.g.
O(N) etc.

Worst-
case
Insertion
Time

Worst-
case
Dispatch
Time

Clarify what would
cause the worst case
situation(s) and/or
assumptions you are
making

Ordered
Linked List

Heap Priority
Queue

Timing
Wheel

Homework	2,	due	Feb	14	

	 2	

In this Timing in FORMULA graph (Figure 6 of Anderson and Kuivila from the readings; also
week 3, slide 26), we see three scheduled and executed events. Show your understanding of this
important graph by answering the following questions:

2. Assume that C1 takes 0.5 time units. What time would C1 have to begin in order to compute
results on time?

3. Assuming C1 started early enough and A1 also takes 0.5 time units, what time would A1
produce output?

4. There is separation in time between C2 and A2. Why is there no time separation between C1
and A1?

5. C2 becomes runnable at time 2, but it starts later at about 2.5. Why?

6. C3 follows C2, but we do not immediately start computation C3 after C2. Why not?

7. Suppose that the CPU is fast enough so that all computations are meeting deadlines with time
to spare, but the system is not very responsive because of pre-computation and event
buffering. How would you change the parameters and how would the graph change to make
the system more responsive?

More questions…

8. Suppose you had Serpent (or another language) with preemptive threads. To get more
computation done, you propose to:

o use a thread for each task (e.g. each drum in a drum machine could be on a different
thread),

Homework	2,	due	Feb	14	

	 3	

o use a single scheduler: threads will sleep by waiting on an synchronization event, but
first the thread schedules a function call that signals the event. Thus, the thread
blocks on the synchronization event until the correct logical time, after which the
thread will run again,

o you use locks around the scheduler to avoid concurrent scheduling by multiple
threads (which would undoubtedly have race conditions), but since scheduling is fast,
you can assume that the scheduler is not a bottleneck.

What other problems would you have to deal with? There are at least 2 problems. Try to
answer with one problem having to do with concurrency and one having to do with timing.

9. The “Global Drum Circle” aims to allow drummers across the globe to play together. But
internet delays are high (over 100 ms for intercontinental connections) and there is
considerable variability (jitter) in transmission times. Describe briefly what you would do to
transmit drumming events to a remote location over the Internet. Assume that network
messages are delivered reliably but with a latency that varies from 25 to 500 ms. Assume
further that delays of up to 1000 ms are acceptable (i.e. the receiver can hear each drumming
event exactly 1000 ms after the performer plays), but you need to reproduce drum timing to
within 5ms to achieve musically acceptable results.

10. Here is a naïve Serpent program for playing a sequence of notes (don’t worry about the
details of play_note()):

 for i = 0 to 10:
 play_note()
 time_sleep(0.5)

Assuming that your program will have a scheduler rtsched initialized and running, finish
the program below by defining play_sequence to use the scheduler to achieve the same
general effect (i.e. rewrite the naïve version to make it correct). Since this program is not
concerned with the details of play_note(), you should not worry about timestamps or
forward-synchronous scheduling:

 sched_select(rtsched) // prepare to use rtsched
 play_sequence(0)

